Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory,

Size: px
Start display at page:

Download "Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory,"

Transcription

1 Brazilian Journal of Pysics, vol. 29, no. 1, Marc, Fractional Powers of Operators of sallis Ensemble and teir Parameter Dierentiation A. K. Rajagopal Naval Researc Laboratory, Wasington D. C , USA Received 7 December, 1998 We develop four identities concerning parameter dierentiation of fractional powers of operators appearing in te sallis ensembles of quantum statistical mecanics of nonextensive systems. In te appropriate limit tese reduce to te corresponding dierentiation identities of exponential operators of te Gibbs ensembles of extensive systems derived by Wilcox. I Introduction Wilcox [1] in 1967 publised a seminal paper entitled \Exponential Operators and Parameter Dierentiation in Quantum Pysics". is paper was centered around te following remarkable identity: ten If ^H() is an operator depending on a parameter, c ^Q(; ) =, du ^Q(; ) ^Q (; u) ^H() ^Q(; u) = exp,u ^H() : ^Q(; u) ; (1) d From tis e went on to obtain several oter identities in elegant ways wic are all central in te development of quantum time evolution, Gibbsian ensembles in equilibrium quantum statistical mecanics, perturbation expansions, inequalities concerning correlation functions etc., all of wic depend on te appearance of te exponential operator of te form introduced in Eq.(1). For a compreensive account of te ramications of tis identity, see Appendix A in Vol. I of Grandy's extbook on Statistical Mecanics [2]. In Appendix D of te Vol.II of is text, e uses tis identity to establis inequalities of various covariance functions wic are just te quantum mecanical variances and covariances of quantities of interest. It is useful to recall tat te exponential form in te Gibbsian ensemble arises from te principle of maximum von Neumann entropy, S 1 =,r^ ln ^; wit r^ = 1, subject to te given mean energy of te system, E = r^ ^H, asexplained in [2], for example. In 1988, sallis [3] introduced a dierent ensemble for describing a large variety of nonextensive systems for wic te exponential form of te operator is replaced by a monomial fractional power of te form i q=(1,q) ^Q (; ) = 1, (1, q) ^H() ; (2) q species te system nonextensivity. Nonextensivity comes about in systems wit long-range interactions between constituent particles of te system. is goes over to te Gibbsian form given in Eq.(1) wen q is set equal to unity, wic is appropriate wenever

2 62 A.K. Rajagopal te system consists of particles wic are eiter noninteracting or interacting wit sort-range forces. e operator in Eq.(2) replaces te exponential operator in Eq.(1) wen statistical expectation values of quantities of interest are to be calculated in te sallis formalism. Here te sallis entropy S q =,r(^, ^ q )=(1, q), is maximized subject to te given q-expectation value (a dierent form of te q-expectation value to be de- ned later is sometimes preferred) of te Hamiltonian, E q = r^ q ^H, besides te usual normalization, r^ =1. It is in tis form (as well as te dierent form alluded to above) tat te formal structure of Statistical Mecanics is preserved namely - Legendre transform nature of te free energy. is ensemble as now been used to develop [4] a Green function teory of manyparticle nonextensive systems in muc te same way as te Gibbsian ensemble is used in te Green function teory of te corresponding extensive systems. Wit tis development, te program of statistical mecanics of nonextensive systems is acieved in a manner tat is formally complete in parallel to te conventional statistical mecanics of extensive systems. It may be important to give te reader some compelling reasons for setting up anoter ensemble different from te traditional Boltzmann-Gibbs ensemble for dealing wit nonextensive systems. We rst recall tat among te statistical distributions, te exponential - class played very important role in te analysis of many penomena. (see E.. Jaynes [5] for a discussion of tese aspects). ese can all be derived from a maximum entropy principle subject to some constraints in wic te entropy functional is cosen to be te Gibbs-von Neumann form, S 1 =,r^ ln ^. ere are many oter probability distributions possessing long tails suc as Pareto, Levy, etc. wic are of te monomial - class, not related to te exponential class. ese are not derivable from te maximum entropy principle wit te Gibbs-von Neumann form for te entropy functional. ese cover many penomena wic do not come under te rubric of \extensive" class of systems wic were traditionally treated in pysical and oter sciences. It is tis important gap tat te sallis ensembles cover. As far as we are aware, tere is no matematical or pysical argument to rule out te applicability of te sallis ensemble nor do we know any demonstration tat te exponential-class covers every conceivable situation in pysical and oter sciences so tat te universality of te Boltzmann{Gibbs ensemble may be considered as te only one paramount form. In discussing sensitivity to initial conditions of nonlinear dynamical systems, similar \exponential"and \power" law sensitivities ave been discussed recently [6,7] in te context of te use of von Neumann (Kolmogorov and Sinai) and sallis entropies in teir quantication. e sallis ensemble wit q 6= 1 deals wit Hamiltonians of systems wit long-range interactions wic may exibit nontrivial anomalies in teir ergodicity and mixing properties. For systems wic are noninteracting or interacting systems wit sort-range forces, one certainly as q = 1 (Boltzman-Gibbs class). II Four teorems In tis paper, we rst obtain te counterpart of te Wilcox teorem, Eq.(1), for te sallis form of te operator, and ten deduce tree oters. It is not out of place ere to mention tat some of tese ave been recently stated witout derivation [8] in developing te dynamic linear response of a nonextensive system based on sallis framework. It is wort pointing out tat every one of tese teorems as its counterpart in te exponential version, derived by Kubo, Karplus and Scwinger in dierent pysical situations of te respective autors' interests. Wilcox's teorem unies all of tese in a single, elegant form, from wic all oters follow. c HEOREM I: ^Q (; ) =,q du ^Q (; ) ^Q (; u) ^~ H(; u) ^Q (; u) ;

3 Brazilian Journal of Pysics, vol. 29, no. 1, Marc, ^~ H(; u) ^H() = 1, u(1, q) ^H() 1, u(1, q) ^H() : (3) (4) Prof: Let ^F (; ) = ^Q (; ) : (5) en dierentiating wit respect to, intercanging te order of dierentiation, using te denition (4), and using te denition (3) given above, we obtain te dierential equation ^F (; ) + q =,q ^~ H(; ) 1, (1, q) ^H()i ^H() ^F (; ) ^Q (; ) : Using te explicit form given in Eq.(2), and dening te inverse operator, ^Q (; ), in te usual way, we recast Eq.(6) in te form i ^Q (; ) ^Q (; ) ^F (; ) =,q ^~ H(; ) ^Q (; ) : (7) (6) From tis expression te teorem I is establised upon integration of bot sides of Eq.(7), because ^Q (; =)=1 and ^F (; =)=. e above eorem reduces to te Wilcox teorem [1] wen q is set equal to unity. is derivation is more direct tan te one used in Ref.[1,2] for te Gibbsian ensemble. is is our central teorem. From tis, we deduce te following teorem by applying eorem I using a similarity transformation to generate te -dependence of ^H(). HEOREM II: If ^A is an arbitrary operator, ten te commutator ^A; ^Q ()i ^Q () = ^A(u) = = q ^Q () 1, (1, q) ^H ^A; ^Q (; )i is given by du ^Q(u) ^H; A(u) i ^ ^Q (u) i q=(1,q) ^Hi 1, u(1, q) ^A ; 1, u(1, q) ^Hi : (8) Proof: We deduce tis teorem by taking ^H() in eorem I as a similarity transformation of te following form en it follows tat ^H() = (exp ^A) ^H (exp, ^A) : (9) ^Q(; ) = (exp ^A) ^Q ()(exp, ^A) ; (1) we used te denition in Eq.(8). en, we obtain te following expressions tat appear in Eq.(3) i ^A ^Q () = exp ^A; ^Q () exp, ^A ; and (11) H() ^~ = exp ^A^ A(u); ^H exp, ^A i

4 64 A.K. Rajagopal wic in eorem I lead to te result in Eq.(8). In te limit wen q = 1, tis goes to te well-known Kubo identity [2] wic was of muc use in is teory of irreversible processes. We now employ eorem I to deduce anoter important result concerning te parametric derivative of an sallisexpectation value of an arbitrary operator, often useful in computing te linear response function of a sallis-mean value of a quantity of interest. We must remark ere tat tis denition of te mean value diers from te denition rst proposed in [3] and as te advantage of aving te property tat te mean value of a scalar constant, C, is C itself, wic was not te case in its original formulation. Wile tis entails some canges in te formalism it does not cange te basic Legendre structure of te statistical mecanical principles. For a discussion of te implications and ramications of tese aspects, one may refer to [9]. For q = 1 tis goes over to te result for te usual termodynamic average [2]. HEOREM III: en Dene te sallis-expectation value of an arbitrary operator ^B [9] as. ^Bi = r^b ^Q (; ) r^q (; ) (12) E D ^B =,q =,q ^A = ^A, D ^A E D E dund ^A(; u) ^B, ^A(; u) E o nd ^A(; y) du E ^B ; A(; u) = ^Q (; u) ^~ H(; u) D ^BE o ; (13) ^Q (; u) : Proof: is follows upon dierentiation of te dening expression in Eq.(12) and subsequently using eorem I directly. Quite often, one uses tis expression wen ^H() = ^H + ^V, and evaluates te expression in Eq.(13) for = to obtain te correlation function of interest. Finally,we develop a Karplus-Scwinger perturbation type teory for te sallis ensemble in te next eorem. is teorem is not in te form of eorem I but its proof involves steps similar to te one used in eorem I and ence its inclusion ere. HEOREM IV: If ^H = ^H + ^H 1, ten ^Q () R (; ^H) 1, u(1, q) ^Q ; ^H + ^H1 = ^Q() (; ^H ), q ^Q() (; ^H ) ^H + ^H1 1, u(1, q)( ^H ) H1 ^~ (u) ^Q (u; ^H + ^H1 ) ; du ^~H 1 (u) =1, u(1, q) ^H ^H1 1, u(1, q) ^H : (14) Here ^Q (; ^H + ^H1 ) = 1, (1, q)( ^H + ^H1 ) q=(1,q) ; (15) ^Q () (; ^H ) = q=(1,q) 1, (1, q) ^H :

5 Brazilian Journal of Pysics, vol. 29, no. 1, Marc, Proof: Consider n o ^Q (; ^H ) ^Q (; ^H + ^H 1 ) n = ^Q (; ^H )o ^Q (; ^H + ^H 1 )+ n ^Q (; ^H + ^H 1 )o ^Q (; ^H ) : (16) Performing te indicated dierentiations, and after some algebra we nd o nq (; ^H ) ^Q (; ^H + ^H 1 ) =,q ^Q (; ^H ) 1, (1, q)( ^H + ^H) ^H1 1, (1, q) ^H ^Q (; ^H + ^H 1 ) (17) d Introducing te notation given in Eq.(14), upon integration of bot sides of Eq.(17) wit respect to, from to, and using ^Q ( =; ^H) = 1, we obtain te result stated in eorem IV above. III Summary In summary, weave ere deduced a set of four teorems on parametric dierentiation of te operator dening te sallis ensemble, wic we ope are of use in te same way as te Wilcox teorems were for te operator dening te Gibbsian ensemble. Several versions of tis paper were read by Professor sallis. anks are due to im for making valuable suggestions to improve te presentation. is work is supported in part by te Oce of Naval Researc. References [1] R. M. Wilcox, J. Mat. Pys. 8, 962 (1967). [2] W..Grandy, Jr. Foundations of Statistical Mecanics, Vol. I: Equilibrium eory, and Vol. II:Nonequilibrium Penomena, D. Reidel Publising Co., Boston (1988). [3] C. sallis, J. Stat. Pys. 52, 479 (1988). Since tis paper rst appeared, a large number of papers based on tis work ave been and continues to be publised in a wide variety of topics. A list of tis vast literature wic is continually being updated and enlarged may be obtained from ttp://tsallis.cat.cbpf.br/biblio.tm [4] A. K. Rajagopal, R. S. Mendes, and E. K. Lenzi, Pys. Rev. Lett. 8, 397 (1998). See also an expanded version of tis work by E. K. Lenzi, R. S. Mendes, and A. K. Rajagopal, Pys. Rev. E 59, 1398 (1999). [5] E.. Jaynes: Papers on Probabilty, Statistics, and Statistical Pysics, edited by R. D. Rosenkrantz, D. Reidel Publising Co., Boston (1983). [6] M. L. Lyra and C. sallis, Pys. Rev. Lett. 8, 53 (1998). [7] C. Anteneodo and C. sallis, Pys. Rev. Lett. 8, 5313 (1998). [8] A. K. Rajagopal, Pys. Rev. Lett. 76, 3469 (1996). [9] C. sallis, R. S. Mendes, and A. R. Plastino, Pysica A 261, 534 (1998).

Relativistic nuclear matter in generalized thermo-statistics

Relativistic nuclear matter in generalized thermo-statistics Relativistic nuclear matter in generalized termo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract Te generalized Fermi-Dirac termo-statistics is developed for relativistic nuclear matter.

More information

ch (for some fixed positive number c) reaching c

ch (for some fixed positive number c) reaching c GSTF Journal of Matematics Statistics and Operations Researc (JMSOR) Vol. No. September 05 DOI 0.60/s4086-05-000-z Nonlinear Piecewise-defined Difference Equations wit Reciprocal and Cubic Terms Ramadan

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households Volume 29, Issue 3 Existence of competitive equilibrium in economies wit multi-member ouseolds Noriisa Sato Graduate Scool of Economics, Waseda University Abstract Tis paper focuses on te existence of

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Some Results on the Growth Analysis of Entire Functions Using their Maximum Terms and Relative L -orders

Some Results on the Growth Analysis of Entire Functions Using their Maximum Terms and Relative L -orders Journal of Matematical Extension Vol. 10, No. 2, (2016), 59-73 ISSN: 1735-8299 URL: ttp://www.ijmex.com Some Results on te Growt Analysis of Entire Functions Using teir Maximum Terms and Relative L -orders

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Close-packed dimers on nonorientable surfaces

Close-packed dimers on nonorientable surfaces 4 February 2002 Pysics Letters A 293 2002 235 246 wwwelseviercom/locate/pla Close-packed dimers on nonorientable surfaces Wentao T Lu FYWu Department of Pysics orteastern University Boston MA 02115 USA

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 18 Feb 2002

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 18 Feb 2002 Close-packed dimers on nonorientable surfaces arxiv:cond-mat/00035v3 cond-mat.stat-mec 8 Feb 2002 Wentao T. Lu and F. Y. Wu Department of Pysics orteastern University, Boston, Massacusetts 025 Abstract

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Continuous Stochastic Processes

Continuous Stochastic Processes Continuous Stocastic Processes Te term stocastic is often applied to penomena tat vary in time, wile te word random is reserved for penomena tat vary in space. Apart from tis distinction, te modelling

More information

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms More on generalized inverses of partitioned matrices wit anaciewicz-scur forms Yongge Tian a,, Yosio Takane b a Cina Economics and Management cademy, Central University of Finance and Economics, eijing,

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

MANY scientific and engineering problems can be

MANY scientific and engineering problems can be A Domain Decomposition Metod using Elliptical Arc Artificial Boundary for Exterior Problems Yajun Cen, and Qikui Du Abstract In tis paper, a Diriclet-Neumann alternating metod using elliptical arc artificial

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

Homework 1 Due: Wednesday, September 28, 2016

Homework 1 Due: Wednesday, September 28, 2016 0-704 Information Processing and Learning Fall 06 Homework Due: Wednesday, September 8, 06 Notes: For positive integers k, [k] := {,..., k} denotes te set of te first k positive integers. Wen p and Y q

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Quasiperiodic phenomena in the Van der Pol - Mathieu equation

Quasiperiodic phenomena in the Van der Pol - Mathieu equation Quasiperiodic penomena in te Van der Pol - Matieu equation F. Veerman and F. Verulst Department of Matematics, Utrect University P.O. Box 80.010, 3508 TA Utrect Te Neterlands April 8, 009 Abstract Te Van

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

arxiv: v1 [math.pr] 28 Dec 2018

arxiv: v1 [math.pr] 28 Dec 2018 Approximating Sepp s constants for te Slepian process Jack Noonan a, Anatoly Zigljavsky a, a Scool of Matematics, Cardiff University, Cardiff, CF4 4AG, UK arxiv:8.0v [mat.pr] 8 Dec 08 Abstract Slepian

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

On convexity of polynomial paths and generalized majorizations

On convexity of polynomial paths and generalized majorizations On convexity of polynomial pats and generalized majorizations Marija Dodig Centro de Estruturas Lineares e Combinatórias, CELC, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

More information

7 Semiparametric Methods and Partially Linear Regression

7 Semiparametric Methods and Partially Linear Regression 7 Semiparametric Metods and Partially Linear Regression 7. Overview A model is called semiparametric if it is described by and were is nite-dimensional (e.g. parametric) and is in nite-dimensional (nonparametric).

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

arxiv: v1 [quant-ph] 29 Nov 2018

arxiv: v1 [quant-ph] 29 Nov 2018 Scwinger s Metod for Non Relativistic Feynman Propogators in Momentum Space arxiv:1811.188v1 [quant-p] 9 Nov 018 Oem Trivedi November 30, 018 Abstract In tis paper, we present a formulation of Scwinger

More information

Bifurcation Analysis of a Vaccination Model of Tuberculosis Infection

Bifurcation Analysis of a Vaccination Model of Tuberculosis Infection merican Journal of pplied and Industrial Cemistry 2017; 1(1): 5-9 ttp://www.sciencepublisinggroup.com/j/ajaic doi: 10.11648/j.ajaic.20170101.12 Bifurcation nalysis of a Vaccination Model of Tuberculosis

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series

Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series Stationary Gaussian Markov Processes As Limits of Stationary Autoregressive Time Series Lawrence D. Brown, Pilip A. Ernst, Larry Sepp, and Robert Wolpert August 27, 2015 Abstract We consider te class,

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Chaos, Solitons & Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena

Chaos, Solitons & Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena Caos, Solitons & Fractals 5 (0) 77 79 Contents lists available at SciVerse ScienceDirect Caos, Solitons & Fractals Nonlinear Science, and Nonequilibrium and Complex Penomena journal omepage: www.elsevier.com/locate/caos

More information

Fractional Derivatives as Binomial Limits

Fractional Derivatives as Binomial Limits Fractional Derivatives as Binomial Limits Researc Question: Can te limit form of te iger-order derivative be extended to fractional orders? (atematics) Word Count: 669 words Contents - IRODUCIO... Error!

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 34, pp. 14-19, 2008. Copyrigt 2008,. ISSN 1068-9613. ETNA A NOTE ON NUMERICALLY CONSISTENT INITIAL VALUES FOR HIGH INDEX DIFFERENTIAL-ALGEBRAIC EQUATIONS

More information

Quantum Theory of the Atomic Nucleus

Quantum Theory of the Atomic Nucleus G. Gamow, ZP, 51, 204 1928 Quantum Teory of te tomic Nucleus G. Gamow (Received 1928) It as often been suggested tat non Coulomb attractive forces play a very important role inside atomic nuclei. We can

More information

Implicit-explicit variational integration of highly oscillatory problems

Implicit-explicit variational integration of highly oscillatory problems Implicit-explicit variational integration of igly oscillatory problems Ari Stern Structured Integrators Worksop April 9, 9 Stern, A., and E. Grinspun. Multiscale Model. Simul., to appear. arxiv:88.39 [mat.na].

More information

Research Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic Spline Quasi Interpolation

Research Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic Spline Quasi Interpolation Advances in Numerical Analysis Volume 204, Article ID 35394, 8 pages ttp://dx.doi.org/0.55/204/35394 Researc Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic

More information

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim Mat 132 Differentiation Formulas Stewart 2.3 So far, we ave seen ow various real-world problems rate of cange and geometric problems tangent lines lead to derivatives. In tis section, we will see ow to

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab To appear in: Advances in Neural Information Processing Systems 9, eds. M. C. Mozer, M. I. Jordan and T. Petsce. MIT Press, 997 Bayesian Model Comparison by Monte Carlo Caining David Barber D.Barber@aston.ac.uk

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Technology-Independent Design of Neurocomputers: The Universal Field Computer 1

Technology-Independent Design of Neurocomputers: The Universal Field Computer 1 Tecnology-Independent Design of Neurocomputers: Te Universal Field Computer 1 Abstract Bruce J. MacLennan Computer Science Department Naval Postgraduate Scool Monterey, CA 9393 We argue tat AI is moving

More information

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp Computer Derivations o Numerical Dierentiation Formulae By Jon H. Matews Department o Matematics Caliornia State University Fullerton USA Int. J. o Mat. Education in Sci. and Tec. V No (Marc-April ) pp.8-87.

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Copyright 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

Copyright 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future Copyrigt 212 IEEE. Personal use of tis material is permitted. Permission from IEEE must be obtained for all oter uses, in any current or future media, including reprinting/republising tis material for

More information

hal , version 1-29 Jan 2008

hal , version 1-29 Jan 2008 ENERGY OF INTERACTION BETWEEN SOLID SURFACES AND LIQUIDS Henri GOUIN L. M. M. T. Box 3, University of Aix-Marseille Avenue Escadrille Normandie-Niemen, 3397 Marseille Cedex 0 France E-mail: enri.gouin@univ-cezanne.fr

More information

GELFAND S PROOF OF WIENER S THEOREM

GELFAND S PROOF OF WIENER S THEOREM GELFAND S PROOF OF WIENER S THEOREM S. H. KULKARNI 1. Introduction Te following teorem was proved by te famous matematician Norbert Wiener. Wiener s proof can be found in is book [5]. Teorem 1.1. (Wiener

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Chapter 2 Ising Model for Ferromagnetism

Chapter 2 Ising Model for Ferromagnetism Capter Ising Model for Ferromagnetism Abstract Tis capter presents te Ising model for ferromagnetism, wic is a standard simple model of a pase transition. Using te approximation of mean-field teory, te

More information

c [2016] Bud B. Coulson ALL RIGHTS RESERVED

c [2016] Bud B. Coulson ALL RIGHTS RESERVED c 206 Bud B. Coulson ALL RIGHTS RESERVED AN AFFINE WEYL GROUP INTERPRETATION OF THE MOTIVATED PROOFS OF THE ROGERS-RAMANUJAN AND GORDON-ANDREWS-BRESSOUD IDENTITIES BY BUD B. COULSON A dissertation submitted

More information

The Zeckendorf representation and the Golden Sequence

The Zeckendorf representation and the Golden Sequence University of Wollongong Researc Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 1991 Te Zeckendorf representation and te Golden

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Influence of the Stepsize on Hyers Ulam Stability of First-Order Homogeneous Linear Difference Equations

Influence of the Stepsize on Hyers Ulam Stability of First-Order Homogeneous Linear Difference Equations International Journal of Difference Equations ISSN 0973-6069, Volume 12, Number 2, pp. 281 302 (2017) ttp://campus.mst.edu/ijde Influence of te Stepsize on Hyers Ulam Stability of First-Order Homogeneous

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Part C : Quantum Physics

Part C : Quantum Physics Part C : Quantum Pysics 1 Particle-wave duality 1.1 Te Bor model for te atom We begin our discussion of quantum pysics by discussing an early idea for atomic structure, te Bor model. Wile tis relies on

More information