Numerical Analysis of Engineering Systems

Size: px
Start display at page:

Download "Numerical Analysis of Engineering Systems"

Transcription

1 Itroductio to tri ysis Lrry Cretto echic Egieerig Numeric ysis of Egieerig Systems Ferury 7, Outie Why mtrices, sic defiitios/terms tri mutipictio Determits Iverse of tri Simuteous ier equtios: mtri from d Gussi eimitio soutio tri r d its roe i determiig type of soutios uique, ifiite, oe) Eigevues d eigevectors Why trices Simpified ottio for geer sttemets out mthemtic or egieerig systems Hve mutipe compoets tht re iterreted Eemets i mchie structure Sprigs, msses d dmpers i virtig system tri ottio provides geer retioships mog compoets tri Empe Simpe ige of two sprigs with sprig costt d dispcemets u t idividu poits Idividu ods, P, reted to idividu dispcemets, u, y mtri equtio show eow. P= P P P = + u u u = KU tri Bsics m m m m rry of umers with rows d m coums Compoets re row)coum) Size of mtri m) or y m) is umer of rows d coums Row d Coum trices trices with oy oe row or oy oe coum re ced row or coum mtrices sometimes ced row or coum vectors) The row umer is usuy dropped i row mtrices s is c c the coum umer i c c coum mtrices r r r r r r r r m m r c c c c c E Numeric ysis of Egieerig Systems

2 ore tri Bsics Two mtrices re equ e.g., = B) If oth d B hve the sme size rows d coums) If ech compoet of is the sme s the correspodig compoet of B i = i for i d ) squre mtri hs the sme umer of rows d coums digo mtri, D, hs zeros ecept for the pricip digo Digo tri Compoets of re i d i, where d i is the The digo mtri is squre mtri with ozero compoets oy o the pricip digo Kroeecer det i di i 7 8 tri Opertios C dd or sutrct mtrices if they re the sme size C = B oy vid if, B, d C hve the sme size rows d coums) Compoets of C, c i = i i utipictio y scr: C = C d hve the sme size rows d coums) Compoets of C, c i = i For scr divisio, C = /, c i = i / Nu ) d Uit I) trices For y mtri,, + = + = ; I = I = d = = The uit or idetity) mtri is squre mtri; the u mtri, which eed ot e squre, is sometimes writte m) I Trspose of tri Trspose of deoted s T Reverse rows d coums; for B = T i = i If is m), B = T is m y ) I TLB the postrophe is used to costruct the trspose: B = T tri utipictio Preview Not ituitive opertio. Loo t two coordite trsformtios s empe y z y y y ] z [ y Sustitute equtios for y i terms of ito equtios for z d z z [ ] [ ] z [ ] y E Numeric ysis of Egieerig Systems

3 tri utipictio Preview II Rerrge st set of equtios to get direct trsformtio from to z z [ z [ c c [ ] [ ] [ [ ci i ] ] ] c c ] c c c c [ [ i,;,) ] ] tri utipictio Preview III Coefficiets s mtri compoets c C c B c c C = B if ci i c C c Geerize this to y mtri size c c i,;,) utipyig trices For geer mtri mutipictio, C = B p hs rows d p coums ci B hs p rows d m coums i C hs rows d m coums i, ;, m) is eft; B is right; C is product For C = B, we get c i y ddig products of terms i row i of eft mtri) y terms i coum of B right mtri) c i = i + i + i + i + I geer, B B Geer tri utipictio For mtri mutipictio, C = B hs rows d p coums ci B hs p rows d m coums C hs rows d m coums i is eft; B is right; C is product Empe ) ) ) B ) ) ) p i B ) ) ) 7 ) ) ), ;, m) B) i is product of row i of times coum of B tri utipictio Eercise Cosider the foowig mtrices B C you fid B, B or oth? We c fid B, ecuse hs three coums d B hs three rows We cot fid B ecuse B hs four coums d hs three rows Net chrt strts the process of fidig compoets of B 7 tri utipictio Eercise II Wht is the size of C = B? B C = B hs three rows ie d four coums ie B) Wht is c? c = )) + )) + )) = 8 8 E Numeric ysis of Egieerig Systems

4 tri utipictio Eercise III Fid c, c, c, d c i C = B B c = )) + )) + )) = 8 c = )) + )) + )) = c = )-) + )) 8 + )-) = - c = )) + C )) + )) = tri utipictio Eercise IV Fid c, c, c, d c i C = B B c = )) + -)) + )) = 7 c = )) + -)) + )) = c = )-) + -)) + )-) = - 8 C 7 c = )) + -)) + )) = tri utipictio Eercise V Fid c, c, c, d c i C = B B c = )) + )) + )) = c = )) + )) + )) = c = )-) + )) + )-) = - 8 c = )) C + )) 7 + )) = tri utipictio Resuts Soutio for mtri product C = B B 8 C 7 TLB/Ece trices Hve see term-y-term opertios o rrys, +B, -B,.*B,./B d.^ tri opertios re give y foowig: +B, -B, *B, /B, \B d ^ TLB =. ^ = ^: = = 7 Ece hs mmut rry fuctio to mutipy two rrys Determits Loos ie mtri ut is t mtri squre rry of umers with rue for computig sige vue for the rry Empe t right shows ccutio of, the determit of mtri Det E Numeric ysis of Egieerig Systems

5 ore Determits Usefu i otiig geric epressios for mtri opertios, ut ot usefu for umeric computtio Equtio for y determit Det Det determit hs iors, i, otied y deetig row i d coum Cofctors, i = -) i+ i used i geer epressios for determits Geer Rue for Determits y size determit c e evuted y y of the foowig equtios Det i ) i i i ) i i C pic y row or y coum Choose row or coum with most zeros to simpify ccutios C ppy equtio recursivey; evute determit s sum of determits the get s i terms of s i i i i i i Determit Behvior determit is zero if y row or y coum cotis zeros. If oe row or oe coum of determit is mutipied y costt,, the vue of the determit is mutipied y the sme costt. Note the impictio for mtrices: if mtri is mutipied y costt,, the ech mtri eemet is mutipied y. If is mtri, =. 7 Determit Behvior II If oe row or oe coum) of determit is repced y ier comitio of tht row or coum) with other row or coum), the vue of the determit is ot chged. If two rows or two coums) of determit re iery depedet the vue of the determit is zero. 8 Determit Behvior III The determit of the product of two mtrices, d B is the product of the determits of the idividu mtrices: B) = B). The determit of trsposed mtri is the sme s the determit of the origi mtri: T ) =. TLB: det gives Ece: mdeterm; video for Ece mtri Iverse of tri For squre mtri,, iverse mtri, - my eist such tht - = - = I For the geric equtio =, = - For the mtri equtio =, = - Just s = - is ot vid if =, = - is ot vid if - does ot eist - does ot eist if Det = The iverse is importt cocept i ysis of ier systems, ut is ot used i computtio wor E Numeric ysis of Egieerig Systems

6 Formu for Iverse of tri Iverse of tri Fid the compoets of B = -, i, from determit of d its cofctors i i i If B, i ) Use to get geric equtios for compoets of iverse mtri tri computtios, if ecessry, oti compoets y tertive umeric gorithms If B ) ), i i i ) i ) ) ppy Iverse of tri i ) i B ) ), i ) ) ) ) ) ) ) TLB/Ece Iverse TLB: use B = iv to get B = - TLB c use C=B/ to get C = - B Ece fuctio miverse computes iverse Seect empty ce re sme size s mtri Eter formu =miverse<mtri ces>) Press cotro+shift+eter Origi mtri i ces :B rry formu =miverse:b) i ces C:D rry formu =mmut:b,c:d) i ces E:F Simuteous Equtio Bsics set of simuteous ier geric equtios my hve sige uique) soutio No soutio ifiite umer of soutios ier comitio of y two equtios c repce oe of the equtios d ot chge the soutio Eq I Eq II 8 8 Eq II) * Eq I) Simuteous Equtios The secod coum is equivet set of equtios tht is ier comitio of the equtios i the first coum 8 y ) No soutio E Numeric ysis of Egieerig Systems

7 Gettig to tri Form Empe of equtios uows) + 7y z = 8 y + z = y z = How c we deveop geer ottio for N equtios i N uows? C vries,, etc. C right hd side,,, etc. C top row coefficiets,,, etc. Coefficiet of i equtio i is i 7 Stdrd Form N- N- + N N = N- N- + N N = N- N- + N N = N-, + N-, N-,N N = N- N + N + N NN N = N Usu suscripts o re row,coum Row is equtio d coum is uow N c e y umer 8 Compct Stdrd Forms = N i i i,, N Equtios defied y dt: N, i, d i Summtio is sme s mtri mutipictio formu i coefficiets re mtri, Right-hd side,, d uows,, re coum vectors Empe i Stdrd Form Previous empe of equtios N = ) + 7y z = 8 y + z = y z = I stdrd form: is, y is, d z is =, = 7, = -,, = 8 =, = -, =,, = - = 8, =, = -,, = Empe i Stdrd Form Previous empe of N = equtios s = 8 + 7y z = 8 y + z = y z = 7 8 Empe i Stdrd Form utipy d s show eow = = Fi equ sig for two ) mtrices gives origi form of three simuteous equtios + 7y z = 8 y + z = y z = 8 E Numeric ysis of Egieerig Systems 7

8 E Numeric ysis of Egieerig Systems 8 Sove = i TLB/Ece TLB coud use = iv * Preferred pproch is = \ which is fster d more ccurte for sovig = Ece: Seect coum for soutio the eter rry formu: mmutmiverse< ces>), < ces>) rry formu i e:e is: =mmutmiverse:c),d:d) rry formu i f:f is: =mmut:c, e:e)-d:d Sovig = Kow the i ) d i ) Wt the uows i ) Geer System for = m m m m m m) m ) ) equtios d m uows? How c this e? We epect m = First we hve to see if the equtios re rey idepedet equtios Systems for m > hve ifiite umer of soutios Systems for > m c e soved i est squres sese Provide soutio tht hs est error i soutio: miimize i= i = m i 7 Guss Eimitio Prctic too for otiig soutios ytic too for determiig ier depedece or idepedece Bsic ide is to mipute the equtios or dt) to me them esier to sove without chgig the resuts Systemticy crete zeros i ower eft prt of the equtios or dt) 8 Upper Trigur Form UTF) Covert origi set of equtios to UTF

9 Guss Eimitio III Upper trigur form o previous side is esiy soved y c sustitutio = / - = - - )/ - -, et ceter Geer equtio for c sustitutio i i i i ii i,,,, Covetio: If ower ide is greter th upper ide i S Guss Eimitio gorithm How do we get the upper trigur form? Wor o ugmeted mtri [, ] m opertor, do ot eecute sum m m m Guss Eimitio gorithm II Repetedy repce rows y ier comitio of two rows tht produces zero i desired row/coum comitio First step: me of coum eow row zero sets r = ecept ) Secod step: me of coum eow row zero sets r = for r > ) Cotiue this id of step for rows ecept the st row Row eig sutrcted is ced pivot row Geer Guss Eimitio Use ech row from row to row - s the pivot row Digo eemet o pivot row is pivot,pivot For ech row row r) eow the pivot row utipy tht row y row,pivot / pivot,pivot Sutrct resut from row r to me row,pivot = Opertio requires sutrctio for ech coum of right of pivot coum d for Repet for ech row eow pivot row Repet for rows to - s pivot rows Repce eistig rry with resuts of ew opertios Geer Guss Eimitio II Opertios with row s pivot row Repce RowR y {RowR R / )Row} m m m m m m m m row, pivot row, coum row, coum pivot, coum pivot, pivot For pivot to For Guss Pseudocode row pivot to For coum pivot to row, coum row, coum row, pivot row row pivot pivot, pivot row, pivot pivot, pivot pivot, coum Opertios o row re the sme s opertios woud e o row,+ E Numeric ysis of Egieerig Systems

10 Soutio Detis Sove the set i) of equtios ) o the right ii 7 8 ) iii Sutrct / times i) from equtio ii) d 7/ times i) from iii) ) ) ) ) 8 ) ) Resut from first set of opertios Sutrct 7/-) times ii) from iii) Fi uppertrigur form ore Detis 8 7 Uecessry opertios 7 7 ) 7 7 ) 8) Fi uppertrigur form Bc Sustitutio We see tht = d c sustitutio gives d s foows 8 8 ) 8 ) ) ) 7 Do we hve soutio to =? swer to questio sed o the r which is defied s the umer of iery idepedet rows or coums Use Guss eimitio to determie r Use Guss eimitio to covert mtri to upper-trigur form I this form, r is umer of rows with o-zero coefficiets This is sometimes ced row-echeo form TLB hs fuctio rmtri) 8 Wht is row-echeo form? ppy Guss eimitio to get zeros eow row oe i coum oe zeros eow row two i coum two Keep this up uti you get to the fi row or uti there re o more rows with ozeros Cout umer of rows tht re ot zeros; this is the r This is wy to determie ier idepedece of set of vectors Wht is the r of ech mtri? E Numeric ysis of Egieerig Systems

11 E Numeric ysis of Egieerig Systems Fidig R Wht is r of mtri,? Wht is mimum possie vue for r? Lower right mtri is resut of ppyig Guss eimitio to Wht is its r? R = Soutios to = For system of uows If r = r [ ] = there is uique soutio If r = r [ ] < there re ifiite umer of soutios If r r [ ] there re o soutios Three Empes No soutio Origi Equtios Trigurized Set Soutios First Empe R 8 7 Origi 8 7 Rowecheo form... Here we see tht r = r [ ] = umer of uows = so we hve uique soutio Secod Empe R Origi Rowecheo form r = r [ ] = which is ess th the umer of uows ) so we hve ifiite umer of soutios Third Empe R Origi 8 Rowecheo form Here, r = r [ ] = ; therefore we hve o soutios

12 Homogeous Equtios If =, i.e., ech i =, we utomticy hve r = r[ ] so we hve soutio If this r equs the umer of uows, we hve uique soutio, = If this r is ess th the umer of uows we hve ifiite umer of soutios 7 Homogeous Equtio Empe Equtios 8 [ ] Origi [ ] mtri 8 = - mtri 8 [ ] 7 Row-echeo form 8 R = r [ ] = < uows = so there re ifiite soutios 8 Homogeous Equtio Empe II Equtios 8 Origi [ ] mtri = + mtri 8 Row-echeo form [ ] [ ] 8.8 R = r [ ] = uows = so there is uique soutio = ) R d Determits Determit r, ie mtri r, is the umer of iery idepedet rows or coums. Two equivet sttemets: determit is zero if its rows re iery depedet the size of determit is rger th its r 7 Prctic Determit Evutio Use Guss eimitio d fid the product of the eemets o the digo determit does ot chge if oe row is repced y ier comitio of tht row with other row Guss eimitio coverts determit ito upper-trigur form without chgig its vue The determit of upper-trigur rry is the product of the compoets o the pricip digo 7 Upper Trigur Determit ) ) ) 7 E Numeric ysis of Egieerig Systems

13 Determit Sig Guss eimitio uses row swppig to reduce roud-off error If two rows i determit re swpped, the determit sig chges Det = = Det = = I Guss eimitio eep cout of the row swps, Swps; fid determit from digoized rry y the formu Swps N = Homogeous Ifiite Soutios Empe 8 Row-echeo form ~ 7 α = mtri 8 ~ Det Det ))) ) 8)) ) ) ) ))) ) )) ) 8) ) 8 8 Det = => soutio of my eist Homogeous Ifiite Soutios Empe 8 Row-echeo form ~.8 ~ Det ) ).8) = + mtri 8 Det ))) ) 8)) ) ) ) ))) ) )) ) 8) ) 8 8 Det d = mes = Crmer s Rue You my ie to use this for sm systems of equtios 7 7 R d Iverses Fidig - for mtri requires the soutio of = times, where is oe coum of the uit mtri We cot sove this equtio uess r = squre mtri wi ot hve iverse uess its r equs its size tertive sttemet is tht wi ot hve iverse if = 77 R d Iverses II Rec the geer resut for the eemets, i, of B = - i = i /, where i is the cofctor of i We see tht i is ot defied if Det = - does ot eist if Det = Det = for determit shows tht R < Det d r = : two equivet coditios for ) to hve iverse 78 E Numeric ysis of Egieerig Systems

14 Why Eigevues/Eigevectors I eectric d mechic etwors, provides fudmet frequecies Shows coordite trsformtios pproprite for physic proems Provides wy to epress etwor proem s digo mtri Trsformtios sed o eigevectors used i some soutios of = Eigevues d Eigevectors Bsic defiitio squre): = is eigevector, is eigevue Bsic ide is tht eigevector is speci vector of mtri ; mutipictio of y produces mutipied y costt = => = [ I] = Homogeous equtios; requires Det [ I] = for soutio other th = 7 8 Det[ I] Det Det[ I] = Det[ I] = produces th order equtio tht hs roots for. y hve dupicte roots for eigevues. 8 Two-y-two tri Eigevues Qudrtic equtio with two roots for eigevues ) ) Eigevue soutios ) ) ) ) Det 8 Two-y-two tri Eigevues Write ) Det s dd the two soutios to get ) ) utipy the two soutios to get ) ) ) ) ) Det Det 8 Sum d Product The resuts o the previous side ppy to mtrices The sum of the eigevues is the sum of the digo eemets of the mtri, ced the trce of the mtri The product of the eigevues is the determit of the mtri Trce Det i ii i i i i 8 E Numeric ysis of Egieerig Systems

15 Two-y-two tri Eigevectors Two-y-two Eigevectors II Two eigevectors: ) = [ ) ) ] T d ) = [ ) ) ] T ) = [ ) ) ] T ) Sustitute ech eigevue soutio,, ito I) = to fid ) compoets ) ) ) ) ) ) Nottio: y i is compoet i of vector y; z ) Eigevector equtios re homogeeous, so eigevectors re determied oy withi mutipictive costt Pic ) = ) ) ) ritrry) ) ) ) ) ) ) ) is oe of vector set with compoets z )i 8 8 How y Eigevues? mtri hs distict eigevues geric mutipicity of eigevue,, is the umer of roots of Det[ I] = tht hve the sme root, Geometric mutipicity, m, of eigevue is umer of iery idepedet eigevectors for this 87 X = Digoize tri For mtri it is possie to crete mtri, X, where ech coum is oe eigevector Oe c the show tht X - X = L, where L is digo mtri whose compoets re the eigevues Net ssigmet uses TLB to do this L = N N N N N N λ λ λ N 88 Suppemet teris Items ot ped for i-css coverge tri equtios for coordite trsforms Derivtio of determit formu from geer determit formu Empe of iverse ccutio for mtri with my zeros) Empe of eigevue d eigevector ccutios rry rry Coordite trsformtios Rec previous equtios y z y y B y z y z y z 8 z y y y Defie mtrices so tht y = d z = By E Numeric ysis of Egieerig Systems

16 Coordite trsformtios II Coordite Trsformtios III Show tht mtri defiitios give trsformtio resuts y z y y y y y z z By z z y y y y y y y y y From mtri equtios y = d z = By, we hve z = B = C with C = B c c B C c c c C c c c z c z C z c c c c c c c Empe of Geer Rue Get determit of mtri y epsio og st row ) ) ) ) Empe of Geer Rue II Get determit of mtri ) ) ) Empe Proem Empe Proem Det Fid - for t right Hve the foowig formu for B = - i ) i i Geer determit formu: S i i Te sum over third row to simpify ccutio of Det Det = -) + + -) + + -) + + -) + Det ) ) Det ))) ))) ))) ))) ))) ))) E Numeric ysis of Egieerig Systems

17 Empe Proem III ppy: i = -) i+ i /Det Det = so i = -) i+ i Empes show eow ) Remove Remove for for 8 ) 7 Empe Proem Soutio We c show tht - = - = I - ) = + + -) + = - = + + -) + -) = Oy eft to chec 8 Two-y-two Empe Fid eigevues d eigevectors of Det[ I] Det[ I] ) ) )) Soutios re = d = Two-y-two Empe Cotiued Fid ) compoets for = Sove [ I] = for ) compoets ) ) ) ) ) ) ) ) Oe equtio i two uows ) ) Pic ) = the ) = from first equtio Eigevector ) is [ ] T Two-y-two Empe Cocuded Net fid ) compoets for = Sme s pproch for fidig ) ) ) ) ) ) ) ) ) Both equtios give ) = ) ) Pic ) = ) cot e determied) ) = [ ] T Chec Two-y-two Empe ) ) ) ) ) ) ) ) ) ) ) ) )) ) ) )) ) ) E Numeric ysis of Egieerig Systems 7

18 E Numeric ysis of Egieerig Systems 8 Eigevector Fctors empe showed ) = ) regrdess of choice of d This is geer resut We c pic oe eigevector compoet; typic choices re to me eigevector simpe or uit vector ) ) ) ) ) utipe Eigevue Empe I ) ) ) ) )) ) ) ) ) )) ) ) ) ) ) ) ) I Det utipe Eigevue Empe II ) ) ) ) I Det Soutios re =,, = hs geric mutipicity of Fid eigevectors) from I ) ) = ) ) ) Loo t = utipe Eigevue Empe III ) ) ) ppy Guss eimitio to these equtios ) ) ) ) ) ) ) ) ) Pic ) d ) 7 utipe Eigevue Empe IV Two iery idepedet eigevectors for = - ) ) ) Pic ) = d ) = => ) = Pic ) = d ) = => ) = - ) ) ) Pic ) d ) the 8 Cotiue Empe for = 7 ) ) ) ppy Guss eimitio to these equtios ) ) ) ) ) I ) ) ) Pic ) = => ) =-

19 Empe Resuts Eigevector Lier Depedece ) ) ) ) ) ) ) ) Eigevues = -, = -, = hve eigevectors show eow C we hve ) + ) + ) = without = = =? Homogeous equtios hve = = = if mtri hs fu r Lier Depedece II tri hs fu r it its determit is ot zero ))) )) ) Det ) ) ) )) ) ) )) )) ) Sice determit is ot zero, the oy soutio is = = =, so eigevectors re iery idepedet Quiz Three Soutios. Resuts of TLB commds >> = [ ; ; ; ] = >> B = [ ; 7 8; ] B = 7 8 >> C = [ B] Error: d B must hve the sme umer of rows >> D = [:,) B:,)] D = 8 Quiz Three Soutios II. Write TLB Commds E = E = [ - ; 7 - ] 7 7 F = F = [ 7; - ; ]. Resuts of series of two commds >> t = : >> = ogt).^ t ) >> t = :pi/:pi >> y = cost)./ ept) >> t = :: >> z = sumt) og)), og)), og)), og)), og)) cos)/e, cosp/)/e p/, cosp/)/e p/, cosp/)/e p/,cosp)/e p z = = Quiz Three Soutios III. Resuts of ) G = [E; [F F]] d ) H = [F; E ]? 7 7 G = 7 7 H = 7. G rry fter the commd G:,:) = F? 7 G = 7 E Numeric ysis of Egieerig Systems

20 First Progrmmig ssigmet Numer of studets: imum possie score: e:.7 edi: Stdrd devitio:. Grde distriutio: Commets o ssigmet Rge of methods cosidered Ce formus re simpest d quicest Use user defied fuctios UDF) whe you hve repeted ccutios d you wt to void errors i reeterig formus Rge mes etter idetify vries ot so importt for simpe ccutios, ut usefu for more compe woroos Commets o ssigmet II rry fuctio d mcro require ot of codig which is ustified oy if ccutio is repeted y sever users With rry fuctio mutipe tes c e pced o worsheet, ech drive y seprte iput ces Difficut to specify ect umer of ces y seectio cro requires recodig to use other iputs or pce resuts i other octios Uses ect specifictio of umer of ces 7 Secod Quiz Numer of studets: imum possie score: e:. edi:. Stdrd devitio:. Grde distriutio: Commets o Secod Quiz Cofusio over trspose TLB deotes trspose usuy T ) For =, T = Epressio cost).^t-) is sme s cost)).^t-) NOT cos[t).^t-) Sum ), where is D rry gives the sum of eemets i For D rry it gives sum of ech coum Secod Progrm Numer of studets: imum possie score: e:. edi: 7. Stdrd devitio: 8.8 Grde distriutio: E Numeric ysis of Egieerig Systems

21 Secod Progrm Commets Do ot geerte or do ot copy output or rge rrys Differeces etwee scripts d fuctios Fuctios receive vrie vues through rgumet ist, ust s fuctios do i other guges ie VB Vries i scripts, tht re ot set i the script, use the curret vue of the vrie i the worspce TLB vs. Ece/VB We hve focused o use of TLB from commd widow This is simir to eterig dt o the Ece spredsheet Less focus o TLB progrmmig This is compre to VB y studets prefer Ece ecuse of fmiirity Ece/VB more rediy vie, especiy i sm compies Quiz Three Soutios Iiti guesses show tht + = d - = ecuse f) > d f) < ew = f =. + f + f.88. =. f ew ) < so ew repces - ew =.. reerr = =. =.8 >.: cotiue f ew ) < so ew repces - Quiz Three Soutios II ew =.. reerr =... ew = =. =. >.: cotiue f ew ) < so ew repces - reerr = =. =. <.: fiished =. Review Lst Lecture Discussio of mtrices: row)coum) Row, coum, digo, squre, uiti), u) = B, ± B,, / scr ), T tri mutipictio: P = LR q Coums i L = rows i R = q p i = = i r P rows = L rows; P coums = R coums utipy row of L y coum of R Determits: sige umer for rectgur rry; formu depeds o rry size Iverse, - : - = - = I Review Lst Lecture II Use TLB commds det d iv for determit d iverse Use Ece formus mmut, B) for mtri mutipictio, mdeterm for determit, d miverse for iverse miverse d mmut re rry formus Simuteous ier equtios i geer mtri form, = N i = i = Vries,,, Coefficiets i mutipies i equtio i Right hd side i i equtio i E Numeric ysis of Egieerig Systems

22 Review Lst Lecture III Lier depedece: if oe equtio i system of equtios is ier comitio of oe or more other equtios, the system is sid to e iery depedet system tht is ot iery depedet is iery idepedet I mtri form equtio is row tri r = umer of iery idepedet rows = umer of iery idepedet coums TLB formu r for mtri r Review Lst Lecture IV Soutio of system of ier geric equtios, =, with uows depeds of r of d [ ] Uique soutio: r = r[ ]) = Ifiite soutios: r = r[ ]) < No soutios: r r[ ]) Gussi eimitio: process to get mtri for system of equtios i upper trigur form for simpe c sustitutio so used to determie r Wi review i deti ter 7 8 E Numeric ysis of Egieerig Systems

MATH 174: Numerical Analysis. Lecturer: Jomar F. Rabajante 1 st Sem AY

MATH 174: Numerical Analysis. Lecturer: Jomar F. Rabajante 1 st Sem AY MATH 74: Numeric Aysis Lecturer: Jomr F. Rbjte st Sem AY - INTERPOLATION THEORY We wt to seect fuctio p from give css of fuctios i such wy tht the grph of y=p psses through fiite set of give dt poits odes.

More information

If a is any non zero real or imaginary number and m is the positive integer, then a...

If a is any non zero real or imaginary number and m is the positive integer, then a... Idices d Surds.. Defiitio of Idices. If is o ero re or igir uer d is the positive iteger the...... ties. Here is ced the se d the ide power or epoet... Lws of Idices. 0 0 0. where d re rtio uers where

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Taylor series expansion of nonlinear integrodifferential equations

Taylor series expansion of nonlinear integrodifferential equations AMERCA JOURAL OF SCEFC AD DUSRAL RESEARCH 2, Sciece Huβ, http://www.scihu.org/ajsr SS: 253-649X doi:.525/jsir.2.2.3.376.38 yor series expsio of oier itegrodiffereti equtios Eke A.. d 2 Jckreece P. C. Deprtet

More information

z-transform A generalization of the DTFT defined by

z-transform A generalization of the DTFT defined by The DTFT provides frequecy-domi represettio of discrete-time sigs d LTI discrete-time systems Becuse of the covergece coditio, i my cses, the DTFT of sequece my ot exist As resut, it is ot possie to mke

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Divide-and-Conquer. Divide-and-Conquer 1

Divide-and-Conquer. Divide-and-Conquer 1 Divide-d-Coquer 7 9 4 4 7 9 7 7 9 4 4 9 7 7 9 9 4 4 Divide-d-Coquer 1 Outie d Redig Divide-d-coquer prdigm 5. Review Merge-sort 4.1.1 Recurrece Equtios 5..1 tertive sustitutio Recursio trees Guess-d-test

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Linear Algebra. Lecture 1 September 19, 2011

Linear Algebra. Lecture 1 September 19, 2011 Lier Algebr Lecture September 9, Outlie Course iformtio Motivtio Outlie of the course Wht is lier lgebr? Chpter. Systems of Lier Equtios. Solvig Lier Systems. Vectors d Mtrices Course iformtio Istructor:

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1 Numericl Methods (CENG 00) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. Itroductio I this chpter, we will del with the cse of determiig the vlues of,,..., tht simulteously stisfy the set of equtios: f f...

More information

LU FACTORIZATION. ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

LU FACTORIZATION. ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek EM Nmeric Asis Dr Mhrrem Mercimek FACTORIZATION EM Nmeric Asis Some of the cotets re dopted from ree V. Fsett, Appied Nmeric Asis sig MATAB. Pretice H Ic., 999 EM Nmeric Asis Dr Mhrrem Mercimek Cotets

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autr Kw Bejmi Rigsby http://m.mthforcollege.com Trsformig Numericl Methods Eductio for STEM Udergrdutes http://m.mthforcollege.com . solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Lecture 2: Matrix Algebra

Lecture 2: Matrix Algebra Lecture 2: Mtrix lgebr Geerl. mtrix, for our purpose, is rectgulr rry of objects or elemets. We will tke these elemets s beig rel umbers d idicte elemet by its row d colum positio. mtrix is the ordered

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15 Algebr /Trig Fil Em Study Guide (Sprig Semester) Mrs. Duphy YOUR FINAL IS THURSDAY, MAY 4 th from 10:30 to 1:15 Iformtio About the Fil Em The fil em is cumultive for secod semester, coverig Chpters, 3,

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania

Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania 8. Systems of Lier Algeric Equtios Titus Beu Uiversity Bes-Bolyi Deprtmet of Theoreticl d Computtiol Physics Cluj-Npoc, Romi Biliogrphy Itroductio Gussi elimitio method Guss-Jord elimitio method Systems

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C MA635 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C 3 4 OBJECTIVES: To itroduce Fourier series ysis which is cetr to my ppictios i egieerig prt from its use i sovig boudry vue probems? To cquit

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

SOLVING FUZZY LINEAR PROGRAMMING PROBLEM USING SUPPORT AND CORE OF FUZZY NUMBERS

SOLVING FUZZY LINEAR PROGRAMMING PROBLEM USING SUPPORT AND CORE OF FUZZY NUMBERS Itertio Jor of Scietific Reserch Egieerig & Techoogy (IJSRET ISSN 78 88 Vome 6 Isse 4 pri 7 44 SOLVING FUZZY LINER PROGRMMING PROBLEM USING SUPPORT ND CORE OF FUZZY NUMBERS Dr.S.Rmthigm K.Bmrg sst. Professor

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Repeated Root and Common Root

Repeated Root and Common Root Repeted Root d Commo Root 1 (Method 1) Let α, β, γ e the roots of p(x) x + x + 0 (1) The α + β + γ 0, αβ + βγ + γα, αβγ - () (α - β) (α + β) - αβ (α + β) [ (βγ + γα)] + [(α + β) + γ (α + β)] +γ (α + β)

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms Uit Chpter- Prtil Frctios, Algeric Reltioships, Surds, Idices, Logriths. Prtil Frctios: A frctio of the for 7 where the degree of the uertor is less th the degree of the deoitor is referred to s proper

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by Alger Iportt Thigs to Kow Chpters 8. Chpter - Qudrtic fuctios: The stdrd for of qudrtic fuctio is f ( ) c, where 0. c This c lso e writte s (if did equl zero, we would e left with The grph of qudrtic fuctio

More information

Northwest High School s Algebra 2

Northwest High School s Algebra 2 Northwest High School s Algebr Summer Review Pcket 0 DUE August 8, 0 Studet Nme This pcket hs bee desiged to help ou review vrious mthemticl topics tht will be ecessr for our success i Algebr. Istructios:

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digitl Sigl Processig, Fll 6 Lecture 6: Sstem structures for implemettio Zeg-u T Deprtmet of Electroic Sstems Alorg Uiversit, Demr t@om.u.d Digitl Sigl Processig, VI, Zeg-u T, 6 Course t glce Discrete-time

More information

Matrix Eigenvalues and Eigenvectors September 13, 2017

Matrix Eigenvalues and Eigenvectors September 13, 2017 Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

8. Applications To Linear Differential Equations

8. Applications To Linear Differential Equations 8. Applicatios To Liear Differetial Equatios 8.. Itroductio 8.. Review Of Results Cocerig Liear Differetial Equatios Of First Ad Secod Orders 8.3. Eercises 8.4. Liear Differetial Equatios Of Order N 8.5.

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

Kp for a Wall with Friction with Exact Slip Surface

Kp for a Wall with Friction with Exact Slip Surface K for W ith Frictio ith Ect Si Surfce Frid A. Chouer, P.E., S.E. 7 Frid Chouer rights reserved Revised 7--6 Itroductio: We ko from efore ( htt://.fcsstems.com/si.df ) the est curve for K ith o frictio

More information

Solving Systems of Equations

Solving Systems of Equations PGE : Formultio d Solutio i Geosystems Egieerig Dr. Blhoff Solvig Systems of Equtios Numericl Methods with MTLB, Recktewld, Chpter 8 d Numericl Methods for Egieers, Chpr d Cle, 5 th Ed., Prt Three, Chpters

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Linear Systems COS 323

Linear Systems COS 323 Liner Systems COS 33 Soving Liner Systems of Equtions Define iner system Singurities in iner systems Gussin Eimintion: A gener purpose method Nïve Guss Guss with pivoting Asymptotic nysis Tringur systems

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Here are some solutions to the sample problems concerning series solution of differential equations with non-constant coefficients (Chapter 12).

Here are some solutions to the sample problems concerning series solution of differential equations with non-constant coefficients (Chapter 12). Lecture Appedi B: Some sampe probems from Boas Here are some soutios to the sampe probems cocerig series soutio of differetia equatios with o-costat coefficiets (Chapter ) : Soutio: We wat to cosider the

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity. Numercy Itroductio to Logrithms Logrithms re commoly credited to Scottish mthemtici med Joh Npier who costructed tle of vlues tht llowed multiplictios to e performed y dditio of the vlues from the tle.

More information