Generation of artificial inflow turbulence including scalar fluctuation for LES based on Cholesky decomposition

Size: px
Start display at page:

Download "Generation of artificial inflow turbulence including scalar fluctuation for LES based on Cholesky decomposition"

Transcription

1 July 23 th, 25 ICUC9 Generation o artiicial inlow turbulence including scalar luctuation or LES based on Cholesky decomposition Tsubasa OKAZE (Tohoku University, Japan) Akashi MOCHIDA(Tohoku University, Japan)

2 Issue regarding the coupling o LES with MMM In large-eddy simulation cases, an inlow turbulence which satisies not only the turbulent statistics but also the instantaneous turbulent luctuation should be generated. Global scale Meso scale Downscaling Building scale Van der Hoven - Journal o Meteorology, 957 Recently, increased access to computing power has led to several attempts to couple large-eddy simulation (LES) and MMM. 2

3 Approaches to generating inlow turbulence The approaches to generating inlow turbulence can be divided into two types: ) Storing the time history o velocity luctuations obtained rom a preliminary or recycling LES computation Lund et al., 998; Kataoka and Mizuno, 22 2) Artiicially generating inlow turbulence which prescribes turbulent statistics without conducting LES computations Lee et al., 992; Iizuka et al., 999; Klein et al., 23; Xie and Castro, 28; Kondo and Iizuka, 22 Jarrin et al.,26 etc. 3

4 Non-isothermal LES In recent years, non-isothermal LES computations within boundary layers have been carried. When LES is applied to a non-isothermal ield, not only the inlow velocity luctuation but also the temperature luctuation should be reproduced. The temperature was treated as passive scalar in the driver section. Kong, H., Choi, H., & Lee, J. S. (2) Physics o Fluids, 2() Hattori, H., Houra, T., & Nagano, Y. (27). International Journal o Heat and Fluid Flow, 28(6),

5 Non-isothermal LES In building scale LES cases, Tamura et al. (22) conducted a nonisothermal LES in Tokyo area with a generated temperature luctuation. Few study have been conducted. In addition, the generation method or temperature luctuation based on preliminary LES sometimes consumes much computational cost. Tamura, T., Nozu, T., Okuda, Y., Ohashi, M., Umakawa, H.: The USB proceedings o 8th International Conerence on Urban Climates, Aug

6 Obective o this study This paper proposes a new method o artiicially generating turbulent luctuations in wind velocity and scalar quantities such as temperature and contaminant based on the Cholesky decomposition o the time-averaged turbulent lux tensors o momentum and scalar. The method was validated by applying it to LES computations o contaminant dispersion in a hal-channel low. 6

7 . Background and obective 2. New method o generating inlow turbulence including scalar luctuation 3. Outline o LES computations 4. Conclusions 7

8 Deinition o values In this study, we express the values o wind velocity and scalar as i, the time-averaged values o i as < i >, and the deviation rom the time-averaged value as i ': i i i i =, 2, 3: the wind velocity components in the streamwise, lateral, and vertical directions (u, v, w) i = 4: the scalar value. 8

9 Matrix o the turbulent luxes o momentum and scalar 9 A regular matrix o the turbulent luxes o momentum and scalar, R i, is deined as w v u w w w w v w u v w v v v u v u u w u v u u R i i =, 2, 3: the wind velocity components in the streamwise, lateral, and vertical directions (u, v, w) i = 4 indicates the scalar value.

10 Cholesky decomposition o R i R i uu vu wu u uv vv wv v uw vw ww w u v w Cholesky decomposition R ik = a ik a k = a a T = A lower triangular matrix, a i, is obtained. a i R R2 a R3 a R 4 a R R R 22 a a a 2 2 a a a a R 43 R a 33 3 a a a a a 42 a 33 R 44 a 2 4 a 2 42 a 2 43

11 Expression o luctuations using a i With the lower triangular matrix, a i and a variable satisying and i i, the luctuations, i, can be rewritten as i i i i a i The transormation was originally proposed by Lund et al. (998) using Reynolds stress tensor. R i uu vu wu uv vv wv uw vw ww Lund T. S., Wu X., Squires K. D., 998: Generation o turbulent inlow data or spatiallydeveloping boundary layer simulations, Journal o Computational Physics, 4(2),

12 Extension o the transormation We extended the transormation to consider the turbulent luxes o scalar. R i uu vu wu uv vv wv uw vw ww R i uu vu wu u uv vv wv v uw vw ww w u v w a i R R2 a R3 a R 4 a R R R 22 a a a 2 2 a a a a R 43 R a 33 3 a a a a a 42 a 33 R 44 a 2 4 a 2 42 a

13 How to give the value o i i i i a i i i To impose time and space correlations or each component o the luctuations, the two-dimensional digital-ilter method proposed by Xie and Castro (28) and then revised by Kondo and Iizuka (22) was employed. 3

14 Prescribed time and space correlations Time rag or space correlation The prescribed time and space correlations are assumed using exponential unctions with an integral time scale, T, and a length scale, L: t t t t exp T r r r r exp L Time rag or space rag : Time rag : space rag 4

15 The time advances o generated luctuations The time advances o artiicially generated luctuations on a grid point (m, n) are expressed as t t, m, n t, m, nexp t t, m, n N N y z t, m, n bmbn rm m, nn m n t T exp 2t T 2 r: a random number satisying <r > = and <r i r > = i N y, N z : number o grid points included in the generated plane in each direction b k : a digital-ilter coeicient or the integral length scale in the generated plane in each direction 5

16 The time advances o generated luctuations t t, m, n t, m, nexp t t, m, n N N y z t, m, n bmbn rm m, nn m n t T exp 2t T 2 b k : a digital-ilter coeicient or the integral length scale in the generated plane in each direction According to the method proposed by Xie and Castro (28), two-dimensional random data are iltered to generate a set o two-dimensional data with the prescribed spatial correlation. Then, these data are combined with those rom the previous time step by using two weighting actors based on the exponential unctions. 6

17 Procedure o generation o luctuations By substituting as obtained using a new dataset o random numbers N y N z t, m, n bmbn rm m, nn m n into the equation below or each time step, t t, m, n t, m, nexp t t, m, n t T or the next time step is obtained. Then, the luctuations, i, are given by substituting into i i Storing temporarily. i i a i exp 2t T 2 7

18 . Background and obective 2. New method o generating inlow turbulence including scalar luctuation 3. Outline o LES computations 4. Conclusions 8

19 A priori LES computations A priori LES computations or a hal-channel were carried out to validate the reproducibility o the low and dispersion ields by applying the artiicially generated wind and scalar luctuations as an inlow boundary condition. Preliminary LES Periodic condition only or wind Sampling Generation o turbulent luctuations o wind and scalar H H Line source y z o x Main LES 9

20 Outline o preliminary LES computation First, a preliminary LES computation was conducted to obtain the turbulent statistics. A line source was placed on the ground cell immediately behind the inlow boundary and a passive scalar was emitted. The time series o the turbulent luctuations o the wind and scalar values were stored on the y-z plane at x = 5.H. Preliminary LES Periodic condition only or wind Generation o turbulent luctuations o wind and scalar Sampling H H Line source y z o x Main LES 2

21 Artiicially generation o luctuations Then, the luctuations o the wind and scalar values were artiicially generated based on the Cholesky decomposition o the time-averaged turbulent lux tensor o momentum and scalar which were obtained rom the database collected at x = 5.H in the preliminary simulation. Preliminary LES Periodic condition only or wind Sampling R i uu vu wu u uv vv wv v Generation o turbulent luctuations o wind and scalar uw vw ww w u v w H H Line source y z o x Main LES 2

22 Outline o main LES computation Finally, the main LES computation was carried out with the artiicially generated turbulent luctuations as the inlow boundary condition o the main computation. The reproducibility o the low and dispersion ields when applying the artiicially generated wind and scalar luctuations as inlow boundary conditions was validated. Preliminary LES Periodic condition only or wind Sampling Generation o turbulent luctuations o wind and scalar H H Line source y z o x Main LES 22

23 Integral length and time scales used in this study t t t t exp T r r r r exp L The integral length scales or prescribing the space correlations o the turbulent luctuations o wind velocity were assumed to be L =.5H (H: Domain height). The integral time scales or prescribing the time correlations o the turbulent luctuations were given based on the rozen turbulence approximation known as Taylor s hypothesis : T L/ U It is assumed that the integral length and time scales or scalar dispersion are equal to those or the wind velocity. 23

24 Turbulent statistics or generated mean values.8 Target Generated.8 Target Generated u / U..2.3 c U / q The generated mean wind velocity and concentration are in agreement completely with the targeted values. 24

25 Turbulent statistics or generated luctuations.8 Target.8 Target Generated.6 Generated c 2 U 2 / q wc / q The variance o the generated concentration and the turbulent scalar lux in the vertical direction as obtained rom the artiicial generation are also in good agreement with the targeted values. 25

26 Comparison o low ield Periodic Preliminary 5.H Main.H.H 3.H 5.H Preliminary LES Periodic condition only or wind Sampling Generation o turbulent luctuations o wind and scalar H H Line source y z o x Main LES 26

27 Streamwise change o mean wind velocity Target x=h x=3h x=5h / U.5 Periodic Target x=h x=3h x=5h The mean wind velocity changes very little in the downstream region and is in good agreement with the target value obtained rom the preliminary simulation. Main.2 5.H.H.H 3.H 5.H Preliminary 27

28 Streamwise change o TKE in grid scale Main Target x=h x=3h x=5h k / U 2 Periodic 5.H.5.H.H 3.H 5.H.5 The turbulent kinetic energy in the grid scale at x =.H is rapidly damped by 4%, relative to the target value. The causes are suspected to be related to the artiicially generated luctuations not generally being able to satisy the continuity and momentum equations (Xie and Castro, 28; Kondo and Iizuka, 22). Preliminary 28

29 Comparison o concentration ield 5.H 6.H 8.H.H Preliminary Line source Main.H 3.H 5.H Artiicially generated By comparing the results or the concentration ield at x =.H, 3.H, and 5.H in the main calculation with that obtained with x = 6.H, 8.H, and.h in the preliminary calculation, the reproducibility o the low and dispersion ields when applying the artiicially generated wind and scalar luctuations as inlow boundary conditions was validated. 29

30 Streamwise change o mean concentration Target_5H Generated wind and conc. Target_3H Target_4H Generated wind and conc. Target_2H 系列 7 系列 8 系列 9 系列 Target Generated wind and conc..8.6 Target Generated wind and conc. x =.H x = 3.H x = 5.H c.4 Target_4H Target Preliminary LES (Target) U / q Generated wind and conc. 系列 7 系列 8 系列 9 系列 Target Generated x =.H x = 3.H Generated Main LES wind and conc. The result o the mean concentration obtained rom the main simulation with artiicially generated luctuations is slightly larger c 3.2 c than the result o the preliminary simulation near the surace.

31 Streamwise Target_4H change o mean concentration Target_5H Generated wind and conc. Target_3H Target_4H Generated wind and conc. Target_2H 系列 7 系列 8 系列 9 系列 Target Generated wind and conc..8.6 Target Generated wind and conc. x =.H x = 3.H x = 5.H c.4 Target Preliminary LES (Target) U / q Generated wind and conc. 系列 7 系列 8 系列 9 系列 Target Generated x =.H x = 3.H Generated Main LES wind and conc. This dierence could be attributed to the underestimation o the turbulent diusion o the passive scalar in the upward direction due to the damping o the turbulent kinetic.3energy. near the inlow.2 boundary..6.2 c c U / q 3

32 Streamwise Target_4H change o w c 系列 7 系列 8 mean wind and conc. Target_5H Generated wind and conc. Target_3H 系列 9 系列 mean wind and conc. Generated wind and conc. mean wind and Target_4H conc. Target Generated wind and conc. Generated Target_2H wind and conc. mean wind and conc. Target Generated wind and conc x =.H x = 3.H x = 5.H w'c' / U2.4 The peak values o w c or both simulations are observed at the same height in each measured line. However, the turbulent lux at x =.H is 系列 7 系列 8 系列 9 系列 Target Generated somewhat smaller. than that.2 due.3 to.3 the underestimation..6.2o the turbulent.9.6 c 32 kinetic energy..2 Target Preliminary LES (Target) x =.H x = 3.H / q Generated Main LES wind and conc. c U / q

33 Streamwise change o c 2 Target_4H 系列 7 系列 8 mean wind and conc. Target_5H Generated wind and conc. Target_3H 系列 9 系列 Generated mean wind wind and and conc. Target_4H Generated wind and conc. Target_2H Target Generated wind and conc. 系列 7 系列 8 系列 9 系列 Target Generated Target Generated wind and conc. x =.H x = 3.H x = 5.H c'2 U 2 / q/ 2 U.4 Target Preliminary LES (Target) x =.H x = 3.H Generated Main LES wind and conc. The result o the main simulation are overestimated or each line although the distribution are similar to the results obtained with the preliminary. simulation c c U / q 33

34 . Background and obective 2. New method o generating inlow turbulence including scalar luctuation 3. Outline o LES computations 4. Conclusions 34

35 Conclusions. A new method or generating the turbulent luctuations in wind velocity and scalar such as temperature and contaminants, based on the Cholesky decomposition o the time-averaged turbulent lux tensors o momentum and scalar, was developed. 2. LES computations or a hal-channel were carried out to validate the reproducibility o the low and dispersion ields by applying the artiicially generated wind and scalar luctuations as inlow boundary conditions. 35

36 Conclusions 3. By employing a 5 5 non-singular matrix as a turbulent lux tensor matrix, the proposed method can generate simultaneously time series o wind velocity, temperature, and concentration o contaminants and so on. 4. This method can be applied to other artiicial generation methods based on the Cholesky decomposition o the Reynolds stress, including the synthetic eddy method (SEM) proposed by Jarrin et al. (26). 5. Further investigations into the eect o the integral time and length scales o scalar on reproduced dispersion ield, as well as the applicability o this method to non-isothermal low ields should be undertaken. However, this method will couple LES with MMM easily. 36

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD N. Jarrin 1, A. Revell 1, R. Prosser 1 and D. Laurence 1,2 1 School of MACE, the University of Manchester,

More information

VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA-

VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA- The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA- Tsuyoshi Nozu 1,

More information

LES of wind turbulence and heat environment around dense tall buildings

LES of wind turbulence and heat environment around dense tall buildings EACWE 5 Florence, Italy 19 th 23 rd July 2009 LES of wind turbulence and heat environment around dense tall buildings Flying Sphere image Museo Ideale L. Da Vinci Tsuyoshi Nozu 1, Takeshi Kishida 2, Tetsuro

More information

AIJ COOPERATIVE PROJECT FOR PRACTICAL APPLICATIONS OF CFD TO URBAN VENTILATION

AIJ COOPERATIVE PROJECT FOR PRACTICAL APPLICATIONS OF CFD TO URBAN VENTILATION The Seventh Asia-Pacific Conference on Wind Engineering, November 8-2, 29, Taipei, Taiwan AIJ COOPERATIVE PROJECT FOR PRACTICAL APPLICATIONS OF CFD TO URBAN VENTILATION Ryuichiro Yoshie, Akashi Mochida

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

Divergence free synthetic eddy method for embedded LES inflow boundary condition

Divergence free synthetic eddy method for embedded LES inflow boundary condition R. Poletto*, A. Revell, T. Craft, N. Jarrin for embedded LES inflow boundary condition University TSFP Ottawa 28-31/07/2011 *email: ruggero.poletto@postgrad.manchester.ac.uk 1 / 19 SLIDES OVERVIEW 1 Introduction

More information

Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex

Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex Yoshihide Tominaga* 1, Akashi Mochida 2, Taichi Shirasawa 3, Ryuichiro

More information

Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations

Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 13: 18 186 (212) Published online 27 April 212 in Wiley Online Library (wileyonlinelibrary.com) DOI: 1.12/asl.377 Large-eddy simulation of urban boundary-layer

More information

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale The Eighth Asia-Pacific Conference on Wind Engineering, December 4, 3, Chennai, India NUMERICAL ANALYSIS OF THE MOMENTUM TRANSPORT AND TEMPORAL AND SPATIAL SCALES OF TURBULENT COHERENT STRUCTURES IN THE

More information

elements remain in high frequency region and sometimes very large spike-shaped peaks appear. So we corrected the PIV time histories by peak cutting an

elements remain in high frequency region and sometimes very large spike-shaped peaks appear. So we corrected the PIV time histories by peak cutting an The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 LES of fluctuating wind pressure on a 3D square cylinder for PIV-based inflow

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS DIVERGECE FREE SYTHETIC EDDY METHOD FOR EMBEDDED LES IFLOW BOUDARY CODITIOS R. Poletto, A. Revell, T. Craft,. Jarrin 1 School of Mechanical Aerospace and Civil Engineering University of Manchester, Manchester,

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Coordinate rotation. Bernard Heinesch. Summer school : «eddy covariance flux measurements» Namur July 10th 20th, 2006

Coordinate rotation. Bernard Heinesch. Summer school : «eddy covariance flux measurements» Namur July 10th 20th, 2006 1 Coordinate rotation Bernard Heinesch 2 Outline Need for rotations Mathematical tools for coordinate rotation Angle determination Rotated every-period Classical 2D rotation 3rd rotation Long-term Planar

More information

On the validation study devoted to stratified atmospheric flow over an isolated hill

On the validation study devoted to stratified atmospheric flow over an isolated hill On the validation study devoted to stratified atmospheric flow over an isolated hill Sládek I. 2/, Kozel K. 1/, Jaňour Z. 2/ 1/ U1211, Faculty of Mechanical Engineering, Czech Technical University in Prague.

More information

Comparison of Five Two-Equation Turbulence Models for Calculation of Flow in 90 Curved Rectangular Ducts

Comparison of Five Two-Equation Turbulence Models for Calculation of Flow in 90 Curved Rectangular Ducts Journal o Applied Fluid Mechanics, Vol. 9, No. 6, pp. 97-93, 6. Available online at www.jamonline.net, ISSN 735-357, EISSN 735-3645. Comparison o Five Two-Equation Turbulence Models or Calculation o Flow

More information

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS

DIVERGENCE FREE SYNTHETIC EDDY METHOD FOR EMBEDDED LES INFLOW BOUNDARY CONDITIONS DIVERGECE FREE SYTHETIC EDDY METHOD FOR EMBEDDED LES IFLOW BOUDARY CODITIOS R. Poletto, A. Revell, T. Craft,. Jarrin School of Mechanical Aerospace and Civil Engineering University of Manchester, Manchester,

More information

Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Yoshihide Tominaga a and Ted Stathopoulos b

Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Yoshihide Tominaga a and Ted Stathopoulos b Accepted on 3 April for publication in the Building and Environment Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and Yoshihide Tominaga a and Ted Stathopoulos

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

A combined application of the integral wall model and the rough wall rescaling-recycling method

A combined application of the integral wall model and the rough wall rescaling-recycling method AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

More information

Challenges of modelling wind engineering problems

Challenges of modelling wind engineering problems Challenges of modelling wind engineering problems Zheng-Tong Xie With thanks to: Vladimir Fuka, Paul Hayden, Ian Castro, Alan Robins, Janet Barlow, Yusik Kim, Bob Plant, Omduth Coceal, Denise Hertwig,

More information

Boundary-Fitted Coordinates!

Boundary-Fitted Coordinates! Computational Fluid Dnamics http:wwwndedu~gtrggvacfdcourse Computational Fluid Dnamics Computational Methods or Domains with Comple BoundariesI Grétar Trggvason Spring For most engineering problems it

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION Joongnyon Kim, Kyoungyoun Kim, Hyung Jin Sung Department of Mechanical Engineering, Korea Advanced Institute of Science

More information

Large Eddy Simulation of Particle Wake Effect and RANS Simulation of Turbulence Modulation in Gas-Particle Flows *

Large Eddy Simulation of Particle Wake Effect and RANS Simulation of Turbulence Modulation in Gas-Particle Flows * Chin. J. Chem. Eng., 15(1) 1 16 (007) Large Eddy Simulation o Particle Wae Eect and RANS Simulation o Turbulence Modulation in Gas-Particle Flows * ZENG Zhuoxiong( 曾卓雄 ) a,b, ZHOU Lixing( 周力行 ) a, ** and

More information

Nowadays, the rapid development of computer resources has enabled the numerical simulation based on the computational fluid dynamics (CFD) techniques

Nowadays, the rapid development of computer resources has enabled the numerical simulation based on the computational fluid dynamics (CFD) techniques Large-Eddy Simulation On The Gust Probability In Urban Pedestrian Spaces Y. Ikeda 1,*, A. Hagishima 1, N. Ikegaya 1, and J. Tanimoto 1 1 Interdisciplinary Graduate School of Engineering Science, Kyushu

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS F. T. Pinho Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal C. F. Li Dep. Energy, Environmental

More information

Lecture 3. Design Wind Speed. Tokyo Polytechnic University The 21st Century Center of Excellence Program. Yukio Tamura

Lecture 3. Design Wind Speed. Tokyo Polytechnic University The 21st Century Center of Excellence Program. Yukio Tamura Lecture 3 Design Wind Speed Tokyo Polytechnic University The 21st Century Center of Excellence Program Yukio Tamura Wind Climates Temperature Gradient due to Differential Solar Heating Density Difference

More information

Uncertainty quantification for RANS simulation of flow over a wavy wall

Uncertainty quantification for RANS simulation of flow over a wavy wall Uncertainty quantification for RANS simulation of flow over a wavy wall Catherine Gorlé 1,2,3, Riccardo Rossi 1,4, and Gianluca Iaccarino 1 1 Center for Turbulence Research, Stanford University, Stanford,

More information

Experiments and Numerical Simulations of the Flow Within a Simplified Model of a Surge Chamber

Experiments and Numerical Simulations of the Flow Within a Simplified Model of a Surge Chamber Experiments and Numerical Simulations o the Flow Within a Simpliied Model o a Surge Chamber by Alexandre Massé* 1,3, Maryse age2 and Laurent Mydlarski3 1 Groupe-Conseil LaSalle, LaSalle (Qc), H8R 1R8,

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University email: bengt.sunden@energy.lth.se CFD? CFD = Computational Fluid Dynamics;

More information

MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF 3D ATMOSPHERIC BOUNDARY LAYER

MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF 3D ATMOSPHERIC BOUNDARY LAYER , Vol, Pt, Special Issue Proceedings of International Conference RDAMM 585 MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF D ATMOSPHERIC BOUNDARY LAYER L. Beneš, K. Kozel Department of Technical Mathematics,

More information

CFD ANALYSIS OF TURBULENT THERMAL MIXING OF HOT AND COLD AIR IN AUTOMOBILE HVAC UNIT

CFD ANALYSIS OF TURBULENT THERMAL MIXING OF HOT AND COLD AIR IN AUTOMOBILE HVAC UNIT ISTP-6, 005, PRAGUE 6 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA CFD ANALYSIS OF TURBULENT THERMAL MIING OF HOT AND COLD AIR IN AUTOMOBILE HVAC UNIT Hideo Asano ((, Kazuhiko Suga (3, Masafumi Hirota

More information

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-1103 Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

More information

A TURBULENT HEAT FLUX TWO EQUATION θ 2 ε θ CLOSURE BASED ON THE V 2F TURBULENCE MODEL

A TURBULENT HEAT FLUX TWO EQUATION θ 2 ε θ CLOSURE BASED ON THE V 2F TURBULENCE MODEL TASK QUARTERLY 7 No 3 (3), 375 387 A TURBULENT HEAT FLUX TWO EQUATION θ ε θ CLOSURE BASED ON THE V F TURBULENCE MODEL MICHAŁ KARCZ AND JANUSZ BADUR Institute of Fluid-Flow Machinery, Polish Academy of

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW AT Re τ = 5200 DATA SET Data provenance: M. Lee 1 & R. D. Moser 1 Database ingest and Web Services: Z. Wu 2, G. Lemson 2, R. Burns 2, A. Szalay

More information

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Boundary-Layer Meteorol (2018) 167:171 179 https://doi.org/10.1007/s10546-017-0321-7 NOTES AND COMMENTS A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Zheng-Tong Xie 1 Vladimir Fuka

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Boundary Layer Meteorology. Chapter 2

Boundary Layer Meteorology. Chapter 2 Boundary Layer Meteorology Chapter 2 Contents Some mathematical tools: Statistics The turbulence spectrum Energy cascade, The spectral gap Mean and turbulent parts of the flow Some basic statistical methods

More information

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( ) SIO B, Rudnick! XVIII.Wavelets The goal o a wavelet transorm is a description o a time series that is both requency and time selective. The wavelet transorm can be contrasted with the well-known and very

More information

Generation of initial fields for channel flow investigation

Generation of initial fields for channel flow investigation Generation of initial fields for channel flow investigation Markus Uhlmann Potsdam Institut für Klimafolgenforschung, D-442 Potsdam uhlmann@pik-potsdam.de (Mai 2) In the framework of the DFG-funded research

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

The achievable limits of operational modal analysis. * Siu-Kui Au 1)

The achievable limits of operational modal analysis. * Siu-Kui Au 1) The achievable limits o operational modal analysis * Siu-Kui Au 1) 1) Center or Engineering Dynamics and Institute or Risk and Uncertainty, University o Liverpool, Liverpool L69 3GH, United Kingdom 1)

More information

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling.

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling. Eect o Dierent Perorations Shapes on the Thermal-hydraulic Perormance o Perorated Pinned Heat Sinks Amer Al-Damook 1,, J.L. Summers 1, N. Kapur 1, H. Thompson 1 mnajs@leeds.ac.uk, j.l.summers@leeds.ac.uk,

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (214 ) 599 64 1th International Conference on Mechanical Engineering, ICME 213 Validation criteria for DNS of turbulent heat

More information

nek5000 massively parallel spectral element simulations

nek5000 massively parallel spectral element simulations nek5000 massively parallel spectral element simulations PRACE Scientific Seminar HPC Boosts Science, 22th February 2011 P. Schlatter & D. S. Henningson Linné Flow Centre, KTH Mechanics Fluid flows Tornado,

More information

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa Direct Numerical Simulations of Fundamental Turbulent Flows with the Largest Grid Numbers in the World and its Application of Modeling for Engineering Turbulent Flows Project Representative Chuichi Arakawa

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid Probabilistic Model o Error in Fixed-Point Arithmetic Gaussian Pyramid Antoine Méler John A. Ruiz-Hernandez James L. Crowley INRIA Grenoble - Rhône-Alpes 655 avenue de l Europe 38 334 Saint Ismier Cedex

More information

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

LES of turbulent shear flow and pressure driven flow on shallow continental shelves. LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State

More information

By B. Perot 1 AND P. Moin 2. A new approach to Reynolds averaged turbulence modeling is proposed which has

By B. Perot 1 AND P. Moin 2. A new approach to Reynolds averaged turbulence modeling is proposed which has Center for Turbulence Research Proceedings of the Summer Program 1996 35 A new approach to turbulence modeling By B. Perot 1 AND P. Moin 2 A new approach to Reynolds averaged turbulence modeling is proposed

More information

SPOC: An Innovative Beamforming Method

SPOC: An Innovative Beamforming Method SPOC: An Innovative Beamorming Method Benjamin Shapo General Dynamics Ann Arbor, MI ben.shapo@gd-ais.com Roy Bethel The MITRE Corporation McLean, VA rbethel@mitre.org ABSTRACT The purpose o a radar or

More information

Flutter instability controls of long-span cable-supported bridge by investigating the optimum of fairing, spoiler and slot

Flutter instability controls of long-span cable-supported bridge by investigating the optimum of fairing, spoiler and slot Flutter instability controls of long-span cable-supported bridge by investigating the optimum of fairing, spoiler and slot Duy Hoa Pham 1), *Van My Nguyen 2) 1) National University of Civil Engineering,

More information

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd.

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd. .6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics Spline interpolation was originally developed or image processing. In GIS, it is mainly used in visualization o spatial

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Methods for Generating Turbulent Inflow Boundary Conditions for LES and DES

Methods for Generating Turbulent Inflow Boundary Conditions for LES and DES Methods for Generating Turbulent Inflow Boundary Conditions for LES and DES Andreas Groß, Hannes Kröger NOFUN2016 c 2016 UNIVERSITÄT ROSTOCK CHAIR OF MODELLING AND SIMULATION 1 / 26 Contents Introduction

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Heat-fluid Coupling Simulation of Wet Friction Clutch

Heat-fluid Coupling Simulation of Wet Friction Clutch 3rd International Conerence on Mechatronics, Robotics and Automation (ICMRA 2015) Heat-luid Coupling Simulation o Wet Friction Clutch Tengjiao Lin 1,a *, Qing Wang 1, b, Quancheng Peng 1,c and Yan Xie

More information

4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS. Valentina Stocca* and V. Armenio University of Trieste, Italy

4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS. Valentina Stocca* and V. Armenio University of Trieste, Italy 4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS Valentina Stocca* and V. Armenio University of Trieste, Italy 1. INTRODUCTION It has been estimated that in 2008 for the first time

More information

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications HEFAT27 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 1-4 July 27, Sun City, South Arica Paper number: KS2 The Eect o Internal Obstructions in Naturally Ventilated Greenhouse

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Stochastic excitation of streaky boundary layers Jérôme Hœpffner Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Boundary layer excited by free-stream turbulence Fully turbulent inflow

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

On the transient modelling of impinging jets heat transfer. A practical approach

On the transient modelling of impinging jets heat transfer. A practical approach Turbulence, Heat and Mass Transfer 7 2012 Begell House, Inc. On the transient modelling of impinging jets heat transfer. A practical approach M. Bovo 1,2 and L. Davidson 1 1 Dept. of Applied Mechanics,

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

Turbulent eddies in the RANS/LES transition region

Turbulent eddies in the RANS/LES transition region Turbulent eddies in the RANS/LES transition region Ugo Piomelli Senthil Radhakrishnan Giuseppe De Prisco University of Maryland College Park, MD, USA Research sponsored by the ONR and AFOSR Outline Motivation

More information

On modeling pressure diusion. in non-homogeneous shear ows. By A. O. Demuren, 1 M. M. Rogers, 2 P. Durbin 3 AND S. K. Lele 3

On modeling pressure diusion. in non-homogeneous shear ows. By A. O. Demuren, 1 M. M. Rogers, 2 P. Durbin 3 AND S. K. Lele 3 Center for Turbulence Research Proceedings of the Summer Program 1996 63 On modeling pressure diusion in non-homogeneous shear ows By A. O. Demuren, 1 M. M. Rogers, 2 P. Durbin 3 AND S. K. Lele 3 New models

More information

COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW

COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW COMPUTATIONAL STUDY OF CHEMICALLY REACTING HYPERSONIC FLOW Yoshiuru Funahashi Department o Aeronautics and Astronautics, Graduate School o Engineering, The University o Tokyo, Tokyo, JAPAN Keywords: Hypersonic

More information

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS by MUHAMMAD NOOR AFIQ WITRI, M.Eng 1 CONTENTS 1.Introduction 2.Building Configuration 3.Boundary Condition 4.Previous Works 5.Summary 2

More information

OFFLINE APPROACH FOR HIGHER ORDER CONCENTRATION MOMENTS Andrea Bisignano 1, Luca Mortarini 2, Enrico Ferrero 1, Stefano Alessandrini 3

OFFLINE APPROACH FOR HIGHER ORDER CONCENTRATION MOMENTS Andrea Bisignano 1, Luca Mortarini 2, Enrico Ferrero 1, Stefano Alessandrini 3 OFFLINE APPROAC FOR IGER ORDER CONCENTRATION MOMENTS Andrea Bisignano 1, Luca Mortarini, Enrico Ferrero 1, Stefano Alessandrini 3 1 Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione

More information

Least-Squares Spectral Analysis Theory Summary

Least-Squares Spectral Analysis Theory Summary Least-Squares Spectral Analysis Theory Summary Reerence: Mtamakaya, J. D. (2012). Assessment o Atmospheric Pressure Loading on the International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation,

More information

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Stimit Shah, Elie Bou-Zeid Princeton University 64 th APS DFD Baltimore, Maryland Nov 21, 211 Effect of Stability on Atmospheric

More information

Description of a One-Dimensional Numerical Model of an Active Magnetic Regenerator Refrigerator

Description of a One-Dimensional Numerical Model of an Active Magnetic Regenerator Refrigerator This is a 1D model o an active magnetic regenerative rerigerator (AMRR) that was developed in MATLAB. The model uses cycle inputs such as the luid mass low and magnetic ield proiles, luid and regenerator

More information

Analysis of wind turbulence in canopy layer at large urban area using HPC database

Analysis of wind turbulence in canopy layer at large urban area using HPC database Analysis of wind turbulence in canopy layer at large urban area using HPC database Tetsuro TAMURA 1, Hidenori KAWAI 1, Rahul BALE 2, Keiji ONISHI 2, Makoto TSUBOKURA 2, Koji KONDO 3, and Tsuyoshi NOZU

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

Numerical simulations of heat transfer in plane channel flow

Numerical simulations of heat transfer in plane channel flow Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a, Rafik ABSI 2, b and Ahmed BENZAOUI 3, c 1 Renewable Energy Development Center, BP 62 Bouzareah 163 Algiers, Algeria

More information

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET TUR-3 ExHFT-7 8 June 03 July 009, Krakow, Poland ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET Α. Cavo 1, G. Lemonis, T. Panidis 1, * 1 Laboratory of Applied Thermodynamics,

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The

More information

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E EE70 eview Electrical Current i ( t ) dq ( t ) dt t q ( t ) i ( t ) dt + t 0 q ( t 0 ) Circuit Elements An electrical circuit consists o circuit elements such as voltage sources, resistances, inductances

More information

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES Clinton Smith 1, Nikolaos Beratlis 2, Elias Balaras 2, Kyle Squires 1, and Masaya Tsunoda 3 ABSTRACT Direct

More information

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS

A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS César A Medina S,José A Apolinário Jr y, and Marcio G Siqueira IME Department o Electrical Engineering

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES CAPTER 8 ANALYSS O AVERAGE SQUARED DERENCE SURACES n Chapters 5, 6, and 7, the Spectral it algorithm was used to estimate both scatterer size and total attenuation rom the backscattered waveorms by minimizing

More information