Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Size: px
Start display at page:

Download "Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium"

Transcription

1 Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The governing equations describing the unsteady boundary layer low o a power-law non-newtonian conducting luid through a porous medium past an ininite porous lat plate are transormed to a third order non linear ordinary dierential equation. An additional boundary condition is written as (0) = 0 by (Gamal M. Abdel- Rahman [] (IASME transa-ctions (3), July 2004)). This boundary condition has not any physical meaning and is not matching to the mathematical analysis described. In this article, the second order non-linear ordinary dierential equation with the appropriate boundary condition is solved analytically using the method o successive approximations and numerically using the shooting method.. Introduction Gamal Abdel- Rahman [] has investigated the ormation o magnetohydrodynamic, unsteady low o an incompressible, non-newtonian powerlaw electrically conducting luid past an ininite porous plate in a porous medium. By assuming that the magnetic Reynolds number is small and applying a similarity solutions, Gamal has obtained a third order non- linear ordinary dierential equation or (η) (see equation (0) in []). The transormed boundary conditions or the problem are (0) = 0 and ( ) = He assumed an additional boundary condition (0) = 0 (equation () in []), which has not any physical meaning and is not matching to the mathematical analysis o the problem. Also the special cases which were mentioned by Gamal [2-3] cannot be obtained rom his analysis. For example case (): or Newtonian luid and non-porous medium, one obtains the equations o Takara, H.S., Nath, G. [2]. Takhar and Nath [2] studied the unsteady laminar incompressible boundary layer low o an electrically conducting luid in the stagnation region o two dimensional and axisymmetric bodies with an applied magnetic ield while Gamal has studied the boundary layer over a plate. Case (2): In the absence o the Newtonian luid, we obtained the equations o Helmy [2]. Helmy discussed the unsteady 2-dimensional laminar ree convection low o an incompressible, viscous, electrically conducting (Newtonian or polar) luid through a porous medium bounded by an ininite vertical plane surace o constant temperature, while Gamal used a stationary plate. The aim o this comment is to correct the mathematical ormulation and present an analytical and numerical solution or this problem. 2. Mathematical Formulation Consider unsteady hydromagnetic low o an incompressible, non-newtonian power- law electrically conducting luid past an ininite porous plate in a porous medium. In cartesian coordinate system, let x axis be alon the plate in the direction o the low and y axis normal to it. A magnetic ield is introduced normal to the direction o the low. We assume that the magnetic Reynolds number is much less than unity so that the induced magnetic ield is neglected compared to the applied magnetic ield. Further, all the luid properties are assumed constant. Under the above assumptions with the usual Boussinesq s approximation into account, the governing equations or continuity and momentum are: v y = 0 ()

2 u t + v u y = U y + k ρ y [ u y n u y ] + σm 2 H 2 (U u) + K (U u) (2) ρ ρε where u and v are the components o the velocity in x and y direction, respectively, t is the time, ρ is the density o the luid, ε is the permeability constant, k is the viscosity, µ is the magnetic permeability, σ is the electrical conductivity, H is the magnetic ield strength and U is the outer low velocity. Using the ollowing notation v = k/ρ (3) σµ 2 H 2 = N (4) ρ Then equation (2) can be written as u t + v u y = U y + ν y [ u u n ] + (N + v/ε)(u u) (5) y y Integrating equation () we have v = v 0 (t) The initial and boundary conditions are u = 0, v = v 0 (t) at y = 0, t > 0 u U as y, t > 0 (6) where v 0 (t) is the velocity o injection at the ininite plate. Assume that U = u exp[αt] (7) v 0 = [(N +α)/(νu n )] n + ) exp[α(n t] (8) n + where α and u are constants. We urther deine the ollowing similarity variable η = y[(n + α)νu n ] n+ exp[ α( n) n+ t] u = U(η) (9) where is the non dimensional velocity. From equations (7)- (9) substituting in equation (5) and simpliication leads to the ollowing nonlinear ordinary dierential equation. n n + [ + S/( + M)]( ) /( + M)][/α + η( + n)/( n)] = 0 (0) Where M = N/α is the magnetic number, S = v/αε is the parameter o permeability and the prime denotes dierentiation with respect to η the transormed boundary conditions are η = 0 : = 0 η : 3. Analytical Solution () The successive approximations method is used to obtained the solution to (0), the dierent orders are obtained rom the equation. i+ = ( n) i [{ αn(m+) + S n(m+) }( i)], i = 0,, 2,... ( n)η n(+n)(m+) } i { n + (2) Assume that the zero-approximation solution may be written as ollows 0 = α 0 ( exp( βη)) (3) where α 0 and β are two arbitrary constants chosen such that the boundary conditions are satisied in the zero- approximation 0 ( ) = and in the irst approximation (0) = 0 i.e. α 0 β = and β is given as: β n+ n(n + )(M + )(2 n) 3 + β [2( n) (2 n)( + n)(m + ) (2 n)( + n) + α S( + n)(2 n)] = 0 (4) Integrating (2), using the act that u y 0 as y and the boundary conditions () we have, i (η) = + β (2+n) n(n + )(2 n) 3 (M + ) {β2 (2 n)( + n) + (2 n)( + n)η] + β[2( n) α (2 n)(+n)(m +) [S(+n)(2 n)]}] exp[ β(2 n)η] (5)

3 4.Numerical Solution Equation (0) with the boundary conditions () were solved numerically, using the orth order Runge- Kutta method. The missing value o (0) was determined by a shooting technique. 5. Discussion Equation (0), with the boundary conditions(), has been solved numerically using the shooting method. The eect o the magnetic parameter on the velocity distribution are shown in igure.. From this igure it is clear that the velocity increases with the increasing o the magnetic parameter M, which is contradicting the behavior achieved in the discussion o Gamal []. In igure 2 we compare our solution with the numerical solution using the shooting method. From this igure one inds that the velocity distribution obtained analytically are in good agreement with that obtained numerically. The numerical investigation to the analytical solution are shown in igures 3-5. The velocity decreases as the magnetic parameterm increase as shown in igure 3. From igure 4 one sees that the velocity distribution increases with the increasing o the parameter o permeability S. Figure 5 shows that the velocity distribution decreases as the power law index n increases. From table it is clear that both analytical and numerical values o n (0) are in good agreement. Table 2 illustrates that the skin- riction coeicient increases with the increasing o the magnetic parameterm and the parameter o permeability S. The skin- riction coeicient decreases as the power law index n increases. 6. Conclusion The problem o unsteady magnetohydrodynamic boundary layer low or a power-law non-newtonian conducting luid through a porous medium past an ininite porous lat plate is investigated. A similarity transormation is used to convert the governing partial dierential equation to ordinary dierential equations.the successive approximations method is used to solve the resulting non -linear ordinary dierential equation and the results are compared with the numerical solution. It is ound that the velocity distributions decrease as either the magnetic parameter is increased or the power law index increases. Also, the luid velocity increases with the increasing o the permeability parameter. In addition, it is concluded that the skin-riction coeicient increases as either the magnetic parameter or the permeability increases, while it is decreased as the power law index is increased. S \ n An Nu An Nu Table. Comparison o analytical (An) and numerical (Nu) skin -riction coeicient or α = 0.3 and M = 3 M S n ( (0)) n Table 2. The skin- riction coeicient or dierent values o M, S and n or α = 0.3 Reerences [] Gamal M. Abdel-Rahma, Magnetohydrodynamic unsteady low o a non- Newtonian luid through a porous medium, IASME TRANS- ACTIONS, Vol., Issue 3, Pp. 545, July [2] Takhar, H.S. and Nath, G., Similarity solution o unsteady boundary layer equations with magnetic ield, Meccanica, Inter. J. Italian Assoc. Theor. Appl. Mech., 32, No.2, 57, 997. [3] Helmy, K.A., MHD unsteady ree convection low past a vertical porous plate, ZAMM, Vol. 78, Issue 4, PP. 255, 998.

4 M=8 M=3 M= η Figure. Velocity distribution or various values o M at n =.2, S = 2 and α = 0.3 Analytical Numerical η 8 Figure 2. Velocity distribution or analytical and numerical proiles at n = 0.9, S = 2, M = 3 and α = 0.3

5 M=8 M= M= η 7 Figure 3. Velocity distribution or various values o M at n = 0.75, S = 2 and α = 0.3 S= S=3 S= η 6 Figure 4. Velocity distribution or various values o S at n = 0.75, M = 3 and α = 0.5

6 n=0.5 n=0.7 n=0.9 n= η 6 Figure 5. Velocity distribution or various values o n at α=0.3, M = 3 and S = 2

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal o Engineering Research (AJER) 2015 American Journal o Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-7, pp-33-40.ajer.org Research Paper Open Access The

More information

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd,

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/atam.2014.31124 Magneto-Hydrodynamic Eect with Temperature Dependent Viscosity on Natural Convection

More information

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer International Journal o Mathematics Research. ISSN 0976-5840 Volume 9, Number (017), pp. 89-97 International Research Publication House http://www.irphouse.com Rotating Flow o Magnetite-Water Nanoluid

More information

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP IOSR Journal o Mathematics (IOSR-JM) e-issn:78-578, p-issn: 39-765X.Volume,Issue Ver. III (Jan.-Feb.6)PP 88- www.iosrjournals.org Eect o Chemical Reaction on MHD Boundary Layer Flow o Williamson Nanoluid

More information

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID Proceedings o the International Conerence on Mechanical Engineering and Reneable Energy 7 (ICMERE7) 8 December, 7, Chittagong, Bangladesh ICMERE7-PI- BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE

More information

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction International Journal o Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 4 Radiation Eects on MHD Free Convective Heat and Mass Transer Flow Past a Vertical Porous Flat Plate

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department

More information

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS THERMAL SCIENCE: Year 8, Vol., No. B, pp. 383-39 383 MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS Introduction by Mohammadreza AZIMI and Rouzbeh RIAZI

More information

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer Second Order Slip Flow o Cu-Water Nanoluid Over a Stretching Sheet With Heat Transer RAJESH SHARMA AND ANUAR ISHAK School o Mathematical Sciences, Faculty o Science and Technology Universiti Kebangsaan

More information

COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION

COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION BRAC University Journal, vol.vi, no., 9, pp 11- COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION Mohammad Mokaddes

More information

IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE

IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE THERMAL SCIENCE: Year 8, Vol., No., pp. 89-8 89 IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE by HASHIM * and Masood KHAN Department o Mathematics, Quaid-i-Azam University,

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS

Entropy 2011, 13, ; doi: /e OPEN ACCESS Entropy 011, 13, 1446-1464; doi:10.3390/e13081446 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Second Law Analysis or Variable Viscosity Hydromagnetic Boundary Layer Flow with

More information

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION International Research Journal o Engineering and Technology (IRJET) e-issn: 395-56 Volume: Issue: 9 Dec-5.irjet.net p-issn: 395-7 EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY

More information

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction IOSR Journal o Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue 6 Ver. III (Nov. - Dec.6), PP 3-3 www.iosrjournals.org Eect o Thermal Dispersion and Thermal Radiation on Boundary Payer

More information

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER Muhammad Khairul Anuar Mohamed 1, Norhaizah Md Sari 1, Abdul Rahman Mohd Kasim 1, Nor Aida Zuraimi

More information

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid Journal o Applied Fluid Mechanics, Vol. 9, No. 6, pp. 77-76, 6. Available online at www.jamonline.net, ISSN 735-357, EISSN 735-3645. A Semi-Analytical Solution or a Porous Channel Flow o a Non-Newtonian

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Received September 24, 2012; revised October 25, 2012; accepted November 14, 2012

Received September 24, 2012; revised October 25, 2012; accepted November 14, 2012 Open Journal o Fluid Dynamics,,, -9 http://dx.doi.org/36/ojd..4 Published Online December (http://www.scirp.org/journal/ojd) Eects o Thermophoresis on Unsteady MHD Free Convective Heat and Mass Transer

More information

Numerical Solution of Thermal Radiation and Joule-Heating Effects on an Unsteady MHD with Heat and Mass Transfer with Chemical Reaction

Numerical Solution of Thermal Radiation and Joule-Heating Effects on an Unsteady MHD with Heat and Mass Transfer with Chemical Reaction Numerical Solution o Thermal Radiation and Joule-Heating Eects on an Unsteady MHD with Heat and Mass Transer with Chemical Reaction Adel A. Megahed, Ali A.Hallool, Hamed.A. El Mky Department o Mathematics

More information

The effects of suction and injection on a moving flat plate in a parallel stream with prescribed surface heat flux

The effects of suction and injection on a moving flat plate in a parallel stream with prescribed surface heat flux Noriah Bachok Anuar Ishak The eects o suction inection on a moving lat plate in a parallel stream ith prescribed surace heat lux NORFIFAH BACHOK & ANUAR ISHAK Department o Mathematics Faculty o Science

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone Boundary-Layer Flow over a Porous Medium o a Nanoluid Past rom a Vertical Cone Mohammad Mehdi Keshtkar 1 and jamaladin hadizadeh 2 1 Assistant Proessor, Department o Mechanical Engineering, 2 MSc. Student,

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

Natural convection in a vertical strip immersed in a porous medium

Natural convection in a vertical strip immersed in a porous medium European Journal o Mechanics B/Fluids 22 (2003) 545 553 Natural convection in a vertical strip immersed in a porous medium L. Martínez-Suástegui a,c.treviño b,,f.méndez a a Facultad de Ingeniería, UNAM,

More information

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE by Loganathan PARASURAMAN a *, Nirmal Chand PEDDISETTY a and Ganesan PERIYANNAGOUNDER a a Department o

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX American Journal of Applied Sciences 11 (9): 148-1485, 14 ISSN: 1546-939 14 P. Geetha et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3. license doi:1.3844/ajassp.14.148.1485

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate Journal o Magnetics (), 181-187 (017) ISSN (Print) 16-1750 ISSN (Online) 33-6656 https://doi.org/10.483/jmag.017...181 Flo and Heat Transer Analysis o Copper-ater Nanoluid ith Temperature Dependent Viscosity

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

MIXED CONVECTION FLOW OF JEFFREY FLUID ALONG AN INCLINED STRETCHING CYLINDER WITH DOUBLE STRATIFICATION EFFECT

MIXED CONVECTION FLOW OF JEFFREY FLUID ALONG AN INCLINED STRETCHING CYLINDER WITH DOUBLE STRATIFICATION EFFECT MIXED CONVECION FLOW OF JEFFREY FLUID ALONG AN INCLINED SRECHING CYLINDER WIH DOUBLE SRAIFICAION EFFEC by asawar HAYA a,b,sajid QAYYUM a, Muhammad FAROOQ a Ahmad ALSAEDI b and Muhammad AYUB a a Department

More information

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 119-18 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information

ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD

ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD EMMANUEL OSALUSI, PRECIOUS SIBANDA School of Mathematics, University of KwaZulu-Natal Private Bag X0, Scottsville

More information

Available online at ScienceDirect. Procedia Engineering 127 (2015 )

Available online at   ScienceDirect. Procedia Engineering 127 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 17 (015 ) 106 1033 International Conerence on Computational Heat and Mass Transer-015 MHD Flow o a Nanoluid Embedded with Dust

More information

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY S563 THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY by Kishan NAIKOTI * and Meenakshi VADITHYA Department of Mathematics,

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics o 3-D Wings D-2: Boundary Layer and Viscous Eects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I : List o Subjects

More information

T Fluid temperature in the free stream. T m Mean fluid temperature. α Thermal diffusivity. β * Coefficient of concentration expansion

T Fluid temperature in the free stream. T m Mean fluid temperature. α Thermal diffusivity. β * Coefficient of concentration expansion International Journal of Engineering & Technology IJET-IJENS Vol: No: 5 3 Numerical Study of MHD Free Convection Flo and Mass Transfer Over a Stretching Sheet Considering Dufour & Soret Effects in the

More information

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION THERMAL SCIENCE, Year 011, Vol. 15, No. 3, pp. 749-758 749 CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION by Faiza

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature 37 Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature M. Y. Akl Department of Basic Science, Faculty of Engineering (Shopra Branch),

More information

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation Applied and Computational Mathematics 014; 3(5): 191-196 Published online September 0, 014 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0140305.11 ISSN: 38-5605 (Print); ISSN:38-5613

More information

Heat and Mass Transfer

Heat and Mass Transfer 1 Comments on six papers published by S.P. Anjali Devi and R. Kandasamy in Heat and Mass Transfer, ZAMM, Mechanics Research Communications, International Communications in Heat and Mass Transfer, Communications

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 088 Volume 4, Issue 6, June 05 67 Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with

More information

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface International Journal of Advances in Applied Mathematics and Mechanics Volume, Issue : (3) pp. 39-5 Available online at www.ijaamm.com IJAAMM ISSN: 347-59 A new approach for local similarity solutions

More information

Variable Fluid Properties Effects on Hydromagnetic Fluid Flow over an Exponentially Stretching Sheet

Variable Fluid Properties Effects on Hydromagnetic Fluid Flow over an Exponentially Stretching Sheet Open Science Journal of Mathematics and Application 15; 3(): 6-33 Published online March, 15 (http://.openscienceonline.com/journal/osjma) Variable Fluid Properties Effects on Hydromagnetic Fluid Flo over

More information

Investigation of two phase unsteady nanofluid flow and heat transfer between moving parallel plates in the presence of the magnetic field using GM

Investigation of two phase unsteady nanofluid flow and heat transfer between moving parallel plates in the presence of the magnetic field using GM rans. Phenom. Nano Micro Scales, 4(): -8, Winter - Spring 06 DOI: 0.708/tpnms.06.0.007 ORIGINAL RESEARCH PAPER Investigation o two phase unsteady nanoluid low and heat transer between moving parallel plates

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

INFLUENCE OF POROSITY AND RADIATION IN A VISCO ELASTIC FLUID OF SECOND ORDER FLUID WITHIN A CHANNEL WITH PERMEABLE WALLS

INFLUENCE OF POROSITY AND RADIATION IN A VISCO ELASTIC FLUID OF SECOND ORDER FLUID WITHIN A CHANNEL WITH PERMEABLE WALLS International Journal o Physics and Mathematical Sciences ISSN: 77- (Online) Vol. () January-March, pp.8-9/murthy and Rajani INFLUENCE OF POROSITY AND RADIATION IN A VISCO ELASTIC FLUID OF SECOND ORDER

More information

On the Study of Magnetohydrodynamic Squeezing Flow of Nanofluid between Two Parallel Plates Embedded in a Porous Medium

On the Study of Magnetohydrodynamic Squeezing Flow of Nanofluid between Two Parallel Plates Embedded in a Porous Medium Journal o Computational Engineering and Physical Modeling -4 (8) -5 Contents lists available at CEPM Journal o Computational Engineering and Physical Modeling Journal homepage: http://www.jcepm.com/ On

More information

MHD Heat and Mass Transfer Forced Convection Flow Along a Stretching Sheet with Heat Generation, Radiation and Viscous Dissipation

MHD Heat and Mass Transfer Forced Convection Flow Along a Stretching Sheet with Heat Generation, Radiation and Viscous Dissipation Dhaka Univ. J. Sci. 59(): -8, (July) MHD Heat and Mass Transer Forced onvection Flo Along a Stretching Sheet ith Heat Generation, Radiation and Viscous Dissiation M. A. Samad, Sajid Ahmed and Md. Motaleb

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

MHD Slip Flow and Heat Transfer on Stagnation Point of a Magnetite (Fe3O4 ) Ferrofluid towards a Stretching Sheet with Newtonian Heating

MHD Slip Flow and Heat Transfer on Stagnation Point of a Magnetite (Fe3O4 ) Ferrofluid towards a Stretching Sheet with Newtonian Heating 11, Issue 1 (2019) 17-27 CFD Letters Journal homepage: www.akademiabaru.com/cdl.html ISSN: 2180-1363 MHD Slip Flow and Heat Transer on Stagnation Point o a Magnetite (Fe3O4 ) Ferroluid towards a Stretching

More information

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 7 Oct-25 www.irjet.net p-issn: 2395-72 Influence of chemical reaction and thermal radiation effects

More information

BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP

BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP THERMAL SCIENCE: Year 017, Vol. 1, No. 6A, pp. 47-56 47 BIOCONVECTION HEAT TRANSFER OF A NANOFLUID OVER A STRETCHING SHEET WITH VELOCITY SLIP AND TEMPERATURE JUMP by Bingyu SHEN a, Liancun ZHENG a*, Chaoli

More information

MHD Flow of Nanofluids over an Exponentially Stretching Sheet Embedded in a Stratified Medium with Suction and Radiation Effects

MHD Flow of Nanofluids over an Exponentially Stretching Sheet Embedded in a Stratified Medium with Suction and Radiation Effects Journal o Applied Fluid Mechanics, Vol. 8, No. 1, pp. 85-93, 215. Available online at.jamonline.net, ISSN 1735-3572, EISSN 1735-3645. MHD Flo o Nanoluids over an Exponentially Stretching Sheet Embedded

More information

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field Appl. Math. Mech. -Engl. Ed., 32(4), 409 418 (2011) DOI 10.1007/s10483-011-1426-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) MHD

More information

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams P Periodica Polytechnica Mechanical Engineering P 60(4), pp. 193-202, 2016 DOI: 10.3311/PPme.8511 Creative Commons Attribution b 3D Numerical Modelling o Convective Heat Transer through Two-sided Vertical

More information

VOL. 5, NO. 5, May 2015 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 5, NO. 5, May 2015 ISSN ARPN Journal of Science and Technology All rights reserved. ARPN Journal o Science and Technology 011-015. All rights reserved. http://.ejournaloscience.org Impact o Heat Transer on MHD Boundary Layer o Copper Nanoluid at a Stagnation Point Flo Past a Porous Stretching

More information

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh

More information

Journal of Quality Measurement and Analysis JQMA 6(2) 2010, Jurnal Pengukuran Kualiti dan Analisis

Journal of Quality Measurement and Analysis JQMA 6(2) 2010, Jurnal Pengukuran Kualiti dan Analisis Journal o Quality Measurement and Analysis JQMA 6(), 5-7 Jurnal Pengukuran Kualiti dan Analisis UNSTEADY MAGNETOHYDRODYNAMIC MIXED CONVECTION STAGNATION POINT FLOW OF A VISCOELASTIC FLUID ON A VERTICAL

More information

Similarity solutions of a MHD boundary layer flow of a non-newtonian fluid past a continuous moving surface

Similarity solutions of a MHD boundary layer flow of a non-newtonian fluid past a continuous moving surface 2th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-3, 27 7 Similarity solutions of a MHD boundary layer flow of a non-newtonian fluid past a continuous moving surface M.BENLAHCEN University

More information

MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated Porous Medium

MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated Porous Medium INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING Volume 9 011 Article A66 MHD Free Convective Heat and Mass Transfer of a Chemically-Reacting Fluid from Radiate Stretching Surface Embedded in a Saturated

More information

Analytical Solution to the Boundary Layer Slip Flow and Heat Transfer over a Flat Plate using the Switching Differential Transform Method

Analytical Solution to the Boundary Layer Slip Flow and Heat Transfer over a Flat Plate using the Switching Differential Transform Method Journal o Applied Fluid Mechanics, Vol., o., pp. 33-, 9. Available online at www.jamonline.net, ISS 735-357, EISS 735-365. DOI:.8869/acadpub.jam.75.5.8867 Analytical Solution to the Boundary Layer Slip

More information

Available online at (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012)

Available online at  (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012) 10809 P. Sreenivasulu et al./ Elixir Appl. Math. 51 (01) 10809-10816 Available online at www.elixirpublishers.com (Elixir International Journal) Applied Mathematics Elixir Appl. Math. 51 (01) 10809-10816

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 388 397 6th BSME International Conerence on Thermal Engineering (ICTE 2014) Eect o tilt angle on pure mixed convection

More information

Free convection in a porous cavity filled with nanofluids

Free convection in a porous cavity filled with nanofluids Free convection in a porous cavity illed with nanoluids GROSAN TEODOR, REVNIC CORNELIA, POP IOAN Faculty o Mathematics and Computer Sciences Babes-Bolyai University Cluj-Napoca ROMANIA tgrosan@math.ubbcluj.ro,

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun.

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun. International Journal o Scientiic & Engineering search, Volume 7, Issue 12, December-16 348 ISSN 2229-18 NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER RECTANGULAR PERFORATED FIN Abstract Kuldeep

More information

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Dulal Pal 1 Department of Mathematics, Visva-Bharati University, Institute

More information

MHD Flow and Heat Transfer of a Dusty Nanofluid over a Stretching Surface in a Porous Medium

MHD Flow and Heat Transfer of a Dusty Nanofluid over a Stretching Surface in a Porous Medium Jordan Journal o Civil Engineering, Volume 11, No. 1, 017 MHD Flow and Heat Transer o a Dusty Nanoluid over a Stretching Surace in a Porous Medium Sandee, N. 1) and Saleem, S. ) 1) Proessor, VIT University,

More information

MHD Boundary Layer Stagnation Point Flow and Heat Generation/ Absorption of a Micropolar Fluid with Uniform Suction / Injection

MHD Boundary Layer Stagnation Point Flow and Heat Generation/ Absorption of a Micropolar Fluid with Uniform Suction / Injection Ultra Scientist Vol. 25(1)A, 27-36 (2013). MHD Boundary Layer Stagnation Point Flow and Heat Generation/ Absorption of a Micropolar Fluid with Uniform Suction / Injection R.N. JAT and VISHAL SAXENA (Acceptance

More information

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime. Metallurgical and Materials Engineering Association o Metallurgical Engineers o Serbia AMES Scientiic paper UDC: 669.245 NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER AROUND A CIRCULAR CYLINDER

More information

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate Nonlinear Analysis: Modelling and Control, 27, Vol. 12, No. 3, 37 316 Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate M. A. Alim

More information

Journal of Heat and Mass Transfer Research

Journal of Heat and Mass Transfer Research Journal o Heat and Mass Transer Research 1 (014) 55-65 Journal o Heat and Mass Transer Research Journal homepage: http://jhmtr.journals.semnan.ac.ir Boundary layer lo beneath a uniorm ree stream permeable

More information

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media Nonlinear Analysis: Modelling and Control, 2010, Vol. 15, No. 3, 257 270 Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 117 No. 11 2017, 317-325 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu MHD Flow of a Nanofluid and Heat transfer over an Exponentially Shrinking

More information

Keywords Free Convection, Boundary Layer, Circular Cylinder, Viscoelastic Fluid, Heat Generation I. INTRODUCTION. with previous publication.

Keywords Free Convection, Boundary Layer, Circular Cylinder, Viscoelastic Fluid, Heat Generation I. INTRODUCTION. with previous publication. World Academ o Science, Engineering and Technolog 5 Free Convection Boundar Laer Flow o a Viscoelastic Fluid in the Presence o Heat Generation Abdul Rahman Mohd Kasim, Mohd Ari Admon, and Sharidan Shaie

More information

Squeezing Unsteady MHD Cu-water Nanofluid Flow Between Two Parallel Plates in Porous Medium with Suction/Injection

Squeezing Unsteady MHD Cu-water Nanofluid Flow Between Two Parallel Plates in Porous Medium with Suction/Injection Computational and Applied Mathematics Journal 018; 4(: 31-4 http://www.aascit.org/journal/camj ISSN: 381-118 (Print; ISSN: 381-16 (Online Squeezing Unsteady MHD Cu-water Nanoluid Flow Between Two Parallel

More information

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 1, DECEMBER 014 ISSN 77-8616 Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective

More information

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 2 (27), pp. 647-66 Research India Publications http://www.ripublication.com Effect of Magnetic Field on Steady Boundary Layer

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 59 (2010) 3867 3878 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Double-diffusive

More information

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection Volume 28, N. 2, pp. 195 212, 29 Copyright 29 SBMAC ISSN 11-825 www.scielo.br/cam Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface Journal of Applied Fluid Mechanics, Vol. 8, No. 3, pp. 613-61, 015. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.38.636 Nonlinear Radiation Effects

More information

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 04 ISSN 3-707 MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA Samuel Olumide ADESANYA, Oluwole Daniel MAKINDE This paper deals

More information

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM S. M. M. EL-Kabeir and A. M. Rashad Department of Mathematics, South Valley University, Faculty

More information

SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION

SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 15 25 SIMILARITY SOLUTION FOR MHD FLOW THROUGH VERTICAL POROUS PLATE WITH SUCTION Mohammad Ferdows, Masahiro Ota Department

More information

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling.

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling. Eect o Dierent Perorations Shapes on the Thermal-hydraulic Perormance o Perorated Pinned Heat Sinks Amer Al-Damook 1,, J.L. Summers 1, N. Kapur 1, H. Thompson 1 mnajs@leeds.ac.uk, j.l.summers@leeds.ac.uk,

More information

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation DOI 10.1186/s40064-016-2655-x RESEARCH Open Access Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation Shimaa E. Waheed 1,2* *Correspondence:

More information

Effects of variable viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law velocity

Effects of variable viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law velocity Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 01, 3 (1):319-334 ISSN: 0976-8610 CODEN (USA): AASRFC Effects of variable viscosity and nonlinear radiation on MHD

More information

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface

Similarity Flow Solution of MHD Boundary Layer Model for Non-Newtonian Power-Law Fluids over a Continuous Moving Surface Gen. Math. Notes, Vol. 4, No., October 014, pp. 97-10 ISSN 19-7184; Copyright ICSRS Publication, 014 www.i-csrs.org Available free online at http://www.geman.in Similarity Flow Solution of MHD Boundary

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information