Momentum Kick Model and the Clustering of Heavy Quarks in QGP Cheuk-Yin Wong Oak Ridge National Laboratory

Size: px
Start display at page:

Download "Momentum Kick Model and the Clustering of Heavy Quarks in QGP Cheuk-Yin Wong Oak Ridge National Laboratory"

Transcription

1 UCLA Jan 22-24, 2009 Momentum Kick Model and the Clustering of Heavy Quarks in QGP Cheuk-Yin Wong Oak Ridge National Laboratory Introduction to the momentum kick model for the near-side ridge Successes of momentum kick model for light quarks Failures of momentum kick model for heavy quarks Clustering phenomenon of slow heavy quarks Conclusions C.Y.Wong, Phy.Rev.C76,054908( 07) C.Y.Wong, Chinese Phys. Lett.25,3939(08) C.Y.Wong, J. Phys. G35,104085(08) C.Y.Wong, Phy.Rev.C78,064905( 08) C.Y.Wong, arxiv: ( 09) C.Y.Wong, Phys. Rev. C76,014902( 07) 1

2 What is the ridge phenomenon? jet ridge Particles are detected associated with a near-side trigger Δφ=φ (particle)- φ (trigger jet) Δη=η (particle)- φ (trigger jet) Δφ Δη Find: Δφ- Δη correlation Probability distribution P(Δφ, Δη ) is in the form of (i) a jet component (ii) a ridge component. Putschke et al. (STAR) J.Phys..G74 S679( 07) 2

3 Many Ridge Models S.A.Voloshin, Phys. Lett. B632, 490 (`06) C.Y.Wong, Phy.Rev.C76,054908( 07);arXiv: ;arxiv: ( 08) E. Shuryak, C76, (`07) V. S. Pantuev, arxiv: R.C. Hwa, arxiv: Nestor Armesto, Carlos A. Salgado, Urs Achim Wiedemann, Phys. Rev. C 76, (2007) Adrian Dumitru, Yasushi Nara, Bjoern Schenke, Michael Strickland, arxiv: A. Majumder, B. Müller, and S. A. Bass, Phys. Rev. Lett. 99, (2007) R. Mizukawa, T. Hirano, M. Isse, Y. Nara, A. Ohnishi, arxiv: Sean Gavin, Larry McLerran, George Moschelli, arxiv: A. Dumitru,F. Gelis, L. McLerran, and R. Venugoplan, arxiv: many more 3

4 Experimental observations and their implications (i) Ridge yield correlated with N_participants (ii) Ridge yield nearly independent of pt trigger, flavor, baryon, light meson characters of the jet (iii) Brayon/meson ratios in the ridge and in inclusive bulk are similar (iv) T_ridge is similar to T_inclusive but slightly higher ~ ridge particles are medium partons (v) Δφ ~ 0 implies that the ridge particles acquire their azimuthally properties from the jet (vi) jet-(medium parton) interactions are short-ranged because of non-perturbative screening ridge particles are medium partons kicked by the jet and they acquire a momentum kick q along the jet direction 4

5 Schematic picture of the momentum kick model jet ridge Δφ Δη 5

6 The momentum kick model 6

7 7

8 Momentum kick model described well STAR near-side data around Δη~0 Data from STAR Collaboration PRL95,152301(05) & J. Phy. G34, S679 (07) 8

9 Parton momentum distribution at the moment of jet-parton collision 9

10 Ridge yield is a maximum at Δφ~0 10

11 Momentum kick model described well STAR near-side data around Δη~0 Data from STAR Collaboration PRL95,152301(05) & J. Phy. G34, S679 (07) 11

12 Momentum kick model described well STAR near-side data around 2.7< η <3.9 STAR Prelinimary Data Wang et al. arxiv: ( 07) 12

13 Momentum kick model gives the correct prediction for the PHOBOX data Data from Wenger et al.(j.phys.g35,104080( 08) 13

14 ptrig=2-3gev ptrig=3-4gev ptrig=4-5gev PHENIX Data ptrig=5-10gev 14

15 15

16 STAR preliminary heavy quark data CuCu at sqrt(s)=200 GeV 0.15<p t assoc <0.5 GeV η trig <0.7, η assoc <1 G. Wang et al. J.Phys. G35, ( 08) 16

17 STAR preliminary heavy quark data AuAu at sqrt(s)=200 GeV 0.15<p t assoc <1.0 GeV η trig <0.7, η assoc <1 G. Wang et al. J.Phys. G35, ( 08) B. Biritz et al. (DNP talk, Oct. 08) 17

18 CuCu PYTHIA results AuAu Jet component associated with heavy quark is small. G.Wang et al. J.Phys. G35, ( 08) 18

19 Momentum kick model fails to reproduce STAR particle near-side yields associated with heavy quarks Experimnetal large associated particle yield suggests collective medium excitation by heavy quarks 19

20 Clusters surrounding a charge Q in a plasma An external charge Q polarizes the plasma medium Medium charges of the same sign are pulled toward Q. Medium charges of the opposite sign are pushed away from Q. This is the familiar Debye screening with a screening radius r D There is no net change of total medium density, to the first order of (α/r D T). However, the second order term (α/r D T) 2 has the same sign for charges of both signs. There is a net increase in total density surrounding Q. This increase in polarization charges can be large in a dense medium. 20

21 A simple model of charge clustering Q (charge +q) at -R/2 Q (charge q) at R/2 medium: e + (charge +q), e - (charge q) particles interact with an e 1 e 2 /r interaction We assume e + and e - are massless and are fermions. We also assume local thermal equilibrium 21

22 22

23 23

24 (b) R (fm) Lattice gauge calcualtions of TS 1 =U 1 -F 1. O. Kaczmarek et al. hep-lat/ r C.Y.Wong,Phys.Rev.C76,014902( 07) 24

25 (1) Simple estimates of heavy quark parton cluster (2) 25

26 Implications of a heavy quark parton cluster The motion of the heavy quark is that of a cluster of particles and not just a single particle. The color charge of the heavy quark is substantially screened by the cluster of medium charges. The clustering will enhance the (heavy-quark)-parton cross section by the presence of associated particles. The degree of clustering will decrease in strength as the p t of the heavy quark increases. Associated near-side cluster yield decreases with increasing heavy quark pt. The cluster of particles show up experimentally as associated particles in coincidence with the heavy quark. These associated particles has characteristics different from those associated with a light quark. 26

27 Conclusions The momentum kick model describes near-side ridge data with light quark triggers provides information on early medium properties and jetmedium interaction fails to describe near-side ridge data with heavy quark (electron) trigger Recent STAR near-side heavy quark jet data observations Number of associated with heavy quark is large CuCu yield is large relative to AuAu yield There exists the clustering of medium particles surrounding heavy quarks We should explore whether parton clustering may be a possible origin of the STAR observation of large number of particles associated with heavy quarks 27

28 Additional details 28

29 29

30 Basic ideas of the momemtum kick model Ridge particles are medium partons kicked by the jet and they acquire a momentum kick q along the jet direction The kicked final partons subsequently materialize as hadrons by parton-hadron duality The ridge particle distribution depends on the initial parton momentum distribution and the magnitude of the momentum kick q. 30

31 31

32 The width in Δφ depends on the magnitude of q. at pt=2 GeV 32

33 To describe experimental data, we need 1. A good description of the jet component 2. A good description of the shape of the normalized initial momentum distribution 3. We can then determine the jet-medium interaction parameters by comparison with data: q, f R <N k >, f J 33

34 34

35 35

36 Centrality depedence of R AA & ridge yield 36

37 Distribution of the number of jet-(medium parton) collisions 37

38 The momentum kick model gives a good description of R AA 38

39 Centrality dependence in the momentum kick model 39

40 Energy and mass dependence in the momentum kick model 40

41 Possible evolution scenario of medium partons 41

42 42

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Mike Catanzaro August 14, 2009 1 Intro I have been studying the effects of jet and minijet production on momentum

More information

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR Brooke Haag UC Davis Outline Introduction / Analysis Technique Motivation for multi-hadron triggers Explanation

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J ) Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J ) Wayne State REU 2012 Research Advisor: Joern Putschke Research Undergraduate: Joshua

More information

Summary on high p T probes

Summary on high p T probes Eur. Phys. J. C (2009) 61: 741 745 DOI 10.1140/epjc/s10052-009-0913-6 Regular Article - Experimental Physics Summary on high p T probes Saskia Mioduszewski a Cyclotron Institute, Texas A&M University,

More information

Questions for the LHC resulting from RHIC Strangeness

Questions for the LHC resulting from RHIC Strangeness Questions for the LHC resulting from RHIC Strangeness Outline Intermediate p T strangeness production not jets! (Credit for work goes to Betty Abelev & Jana Bielcikova) Helen Caines Yale University ALICE

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

Momentum Correlations in Nuclear Collisions

Momentum Correlations in Nuclear Collisions Momentum Correlations in Nuclear Collisions By: Patrick Carzon Advisors: Sean Gavin, George Moschelli August 2016 1 Introduction Covariance is a measure of how linearly two things change with each other.

More information

PoS(High-pT physics09)040

PoS(High-pT physics09)040 Correlation and multiplicity measurements from RHIC to the LHC Eötvös Loránd University, Budapest, Hungary E-mail: gabor.veres@cern.ch A selection of experimental results and methods is reviewed in connection

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

The measurement of non-photonic electrons in STAR

The measurement of non-photonic electrons in STAR The measurement of non-photonic electrons in STAR Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519, Prague 1, Czech Republic E-mail: olga.hajkova@fjfi.cvut.cz

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Long-range rapidity correlations in high multiplicity p-p collisions

Long-range rapidity correlations in high multiplicity p-p collisions Long-range rapidity correlations in high multiplicity p-p collisions Kevin Dusling North Carolina State University Raleigh, NC 7695 kevin dusling@ncsu.edu May 9, Contents. Overview of the Ridge. Long range

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = GeV T. Hirano, 1 M. Isse, Y. Nara, 3 A. Ohnishi, and K. Yoshino 1 Department of Physics, Columbia University, New York, NY 17

More information

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration QCD Studies with CMS at LHC Gunther Roland for the Collaboration INT Seattle 5/24/2010 First 7 TeV Collisions: March 30th 2010 2 QCD Studies with CMS pp integrated luminosity ~ 10nb -1 n.b. rates for LHC

More information

Overview of flow results from ALICE experiment

Overview of flow results from ALICE experiment Overview of flow results from ALICE experiment ShinIchi Esumi for the ALICE collaboration Inst. of Physics, Univ. of Tsukuba contents Multiplicity and transverse momentum distribution Source size measurement

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

Ridge correlation structure in high multiplicity pp collisions with CMS

Ridge correlation structure in high multiplicity pp collisions with CMS Ridge correlation structure in high multiplicity pp collisions with CMS Dragos Velicanu for the CMS Collaboration MBUEWG CERN, Geneva, June 17 2011 Results from High Multiplicity pp Dragos Velicanu (MIT)

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

Long-range angular correlations by strong color fields in hadronic collisions

Long-range angular correlations by strong color fields in hadronic collisions Long-range angular correlations by strong color fields in hadronic collisions Kevin Dusling North Carolina State University Rencontres de Moriond La Thuile, Aosta valley, Italy th March 15, 2013 First

More information

Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective

Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective Exploring the Quark-Gluon Plasma at RHIC & LHC Today s Perspective Modifications to α s heavy quark-antiquark coupling at finite T from lattice QCD O.Kaczmarek, hep-lat/0503017 Constituents - Hadrons,

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Using particle correlations to probe the medium produced at RHIC

Using particle correlations to probe the medium produced at RHIC Using particle correlations to probe the medium produced at RHIC Helen Caines - Yale University Oxford/RAL November 2008 Relativistic Heavy-Ion Collider (RHIC) PHENIX PHOBOS STAR 1 km RHIC BRAHMS v = 0.99995

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Two-particle correlation with triggered di-jet

Two-particle correlation with triggered di-jet Two-particle correlation with triggered di-jet Guo-Liang Ma (SINAP) Thanks to X. N. Wang (LBNL), Y. G. Ma (SINAP), X. Z. Cai (SINAP) and S. Zhang (SINAP) 1 Some physics Jet correlation tell us p T trig

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration

Report from PHENIX. Xiaochun He Georgia State University For the PHENIX Collaboration Report from PHENIX Xiaochun He Georgia State University For the PHENIX Collaboration Outline PHENIX status New PHENIX Results Jet and π 0 Heavy flavor Direct Photon & Flow 2 PHENIX Data Taking Mission

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview

Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Correlations and Fluctuations in Nuclear Collisions - Experimental Overview Gunther Roland - MIT Supercomputing RHIC Physics TIFR, Mumbai Dec 5-9 2005 This talk dn/dη/ Pseudorapidity Hadron

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au. Brooke Haag UC Davis. 14 June 2007 Brooke Haag, UC Davis 1

Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au. Brooke Haag UC Davis. 14 June 2007 Brooke Haag, UC Davis 1 Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au Brooke Haag UC Davis 14 June 2007 Brooke Haag, UC Davis 1 Introduction Fragmentation function D(z) depends on z defined as p T /E T,jet Current

More information

11th International Workshop on High-pT Physics in the RHIC & LHC Era

11th International Workshop on High-pT Physics in the RHIC & LHC Era 11th International Workshop on High-pT Physics in the RHIC & LHC Era Contents Motivations Theoretical Predictions Results Summary and Outlook 2 Motivation: Parton Energy Loss in QGP q Energy loss: parton

More information

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011 Correlations of Electrons from Heavy Flavor Decay with Hadrons in and Collisions arxiv:7.v [nucl-ex] Jul Anne M. Sickles, for the PHENIX Collaboration Brookhaven National Laboratory, Upton, NY E-mail:

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

Lessons from RHIC and Potential Discoveries at LHC with Ions

Lessons from RHIC and Potential Discoveries at LHC with Ions Lessons from RHIC and Potential Discoveries at LHC with Ions recent reviews: M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30 pbm and J. Stachel, Nature 448 (2007) 302 pbm and J. Wambach, Rev. Mod.

More information

Jet quenching in PbPb collisions in CMS

Jet quenching in PbPb collisions in CMS Jet quenching in PbPb collisions in CMS Bolek Wyslouch École Polytechnique Massachusetts Institute of Technology arxiv:1102.1957 Orsay, February 18, 2011 1 Heavy Ions at the LHC Huge energy jump from RHIC:

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE Jan Fiete Grosse-Oetringhaus CERN/PH for the ALICE Collaboration Heavy Ions: Experiments Confront Theory Copenhagen, 8th

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

arxiv:nucl-ex/ v1 26 Feb 2007

arxiv:nucl-ex/ v1 26 Feb 2007 International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-ex/0702056v1 26 Feb 2007 ENERGY DEPENDENCE OF SHORT AND LONG-RANGE MULTIPLICITY CORRELATIONS IN AU+AU COLLISIONS

More information

Modeling of Relativistic Heavy-Ion Collisions with 3+1D Hydrodynamic and Hybrid Models. Steffen A. Bass. Duke University

Modeling of Relativistic Heavy-Ion Collisions with 3+1D Hydrodynamic and Hybrid Models. Steffen A. Bass. Duke University Modeling of Relativistic Heavy-Ion Collisions with 3+1D Hydrodynamic and Hybrid Models Steffen A. Bass Duke University collaborators: J. Ruppert T. Renk G.Y. Qin C. Nonaka B. Müller A. Majumder C. Gale

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

Jet Energy Loss at RHIC

Jet Energy Loss at RHIC QCD Session Jet Energy Loss at RHIC Nathan Grau Columbia University for the PHENIX Collaboration Fundamental Question in QED An early study in QED: charged particles losing energy in matter Bethe Formula

More information

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV Pion, Kaon, and (Anti-) Proton Production in AuAu Collisions at s = 6.4 GeV NN Ming Shao 1, for the STAR Collaboration 1 University of Science & Technology of China, Anhui 3007, China Brookhaven National

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High pt inclusive charged hadron spectra from Au+Au collisions at Sqrt(s_NN)=00 Gev Permalink https://escholarship.org/uc/item/3jp4v8vd

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions

Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions EPJ Web of Conferences, 6 (7) DOI:.5/ epjconf/76 ISMD 6 Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions Alice Ohlson,a for the Collaboration Ruprecht-Karls-Universität

More information

Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8

Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8 Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8 Christian Bierlich bierlich@thep.lu.se Lund University / University of Copenhagen May 15, 2018

More information

Investigation of high energy nuclear collisions using Q-entropy

Investigation of high energy nuclear collisions using Q-entropy Investigation of high energy nuclear collisions using Q-entropy Gábor Bíró Wigner RCP of the HAS, Heavy Ion Research Group Gergely Gábor Barnaföldi Ta m á s S á n d o r B i r ó Á d á m Ta k á c s International

More information

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE wo-particle Correlations in pp and Pb-Pb Collisions with ALICE Xiangrong Zhu, Ruina Dang (for the ALICE Collaboration) Institute Of Particle Physics, Central China Normal University he 9th Chinese Physical

More information

Penetrating probe of the hot, dense medium

Penetrating probe of the hot, dense medium Penetrating probe of the hot, dense medium Low mass dileptons (M ll

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012). 68. A. Adare et al. (M. Sarsour), PHENIX collaboration, J/ψ suppression at forward rapidity in Au + Au collisions at s NN =39 and 62.4 GeV, Phys. Rev. C 86, 064901 (2012). 67. W.M. Snow et al. (M. Sarsour),

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory Many body QCD, the Glasma and a near side ridge in heavy ion collisions Raju Venugopalan Brookhaven National Laboratory Theory Seminar, U. Va., March 17, 2010 What does a heavy ion collision look like?

More information

Recent Result on Pentaquark Searches from

Recent Result on Pentaquark Searches from Recent Result on Pentaquark Searches from STAR @RHIC Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration Pentaquark Workshop @JLab, Oct. 2005

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

arxiv: v1 [nucl-th] 8 Sep 2016

arxiv: v1 [nucl-th] 8 Sep 2016 Testing of coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle ger Subikash Choudhury, Debojit Sarkar, and Subhasis Chattopadhyay Variable

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions D-mesons, c u B-mesons Time evolution, Nuclear Theory, T-2, LANL Heavy Quark Physics in Nucleus-Nucleus

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

Transport Model Description of Flow

Transport Model Description of Flow Transport Model Description of Flow Che-Ming Ko Texas A&M University Transport model (AMPT) Parton coalescence Elliptic flow Collaborators: Z.W. Lin, S. Pal, B. Zhang, B.A. Li: PRC 61, 067901 (00); 64,

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Recent results from relativistic heavy ion collisions

Recent results from relativistic heavy ion collisions Recent results from relativistic heavy ion collisions Camelia Mironov MI at the LHC A teaser talk with very few (though recent) results LHC Heavy-Ion (HI) Program Collision systems Center of mass colliding

More information

Azimuthal distributions of high-pt direct and 0. at STAR

Azimuthal distributions of high-pt direct and 0. at STAR Azimuthal distributions of high-pt direct and 0 w.r.t reaction plane For the at STAR Ahmed Hamed Collaboration Hot Quarks 2010 La Londe les Maures, 21-26th June, 2010 Ahmed Hamed (Texas A&M University)

More information

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point Experimental Approach to the QCD Phase Diagram & Search for the Critical Point / LBNL, Berkeley The John Cramer Symposium University of Washington, Seattle, September 10-11, 2009 Outline : QCD phase diagram

More information

arxiv: v1 [nucl-ex] 10 Jan 2009

arxiv: v1 [nucl-ex] 10 Jan 2009 Hard Probes 2008 Conference Proceedings. June 9th, 2008. Illa da Toxa, Spain Two-particle Direct Photon-Jet Correlation Measurements in PHENIX J. Frantz a for the PHENIX Collaboration a State University

More information

arxiv:nucl-th/ v1 11 Feb 2007

arxiv:nucl-th/ v1 11 Feb 2007 Thermalization of quark-gluon matter by 2-to-2 and 3-to-3 elastic scatterings arxiv:nucl-th/7236v Feb 27. Introduction Xiao-Ming Xu Department of Physics, Shanghai University, Baoshan, Shanghai 2444, China

More information

arxiv: v1 [nucl-th] 2 Dec 2018

arxiv: v1 [nucl-th] 2 Dec 2018 The production of b b dijet in heavy-ion collisions at the LHC arxiv:1812.00391v1 [nucl-th] 2 Dec 2018 a, Wei Dai b, Shan-Liang Zhang a, Ben-Wei Zhang a, Enke Wang a a Key Laboratory of Quark & Lepton

More information

arxiv:hep-ph/ v3 2 Jan 2001

arxiv:hep-ph/ v3 2 Jan 2001 Thermalization temperature in Pb+Pb collisions at SpS energy from hadron yields and midrapidity p t distributions of hadrons and direct photons D. Yu. Peressounko and Yu. E. Pokrovsky Russian Research

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

ATLAS Results on Pb+Pb Collisions

ATLAS Results on Pb+Pb Collisions ATLAS Results on Pb+Pb Collisions Helena Santos, LIP-Lisbon for the ATLAS Collaboration International Europhysics Conference on High Energy Physiscs, 21 27 July 2011, Grenoble Heavy Ion Physics Systematic

More information

Heavy Flavor Results from STAR

Heavy Flavor Results from STAR Heavy Flavor Results from STAR Wei Xie for STAR Collaboration (PURDUE University, West Lafayette) Open Heavy Flavor Production D meson direct measurement Non-photonic electron Heavy Quarkonia Production

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

1992 Predictions for RHIC with HIJING

1992 Predictions for RHIC with HIJING 1992 Predictions for RHIC with HIJING HIJING: A MONTE CARLO MODEL FOR MULTIPLE JET PRODUCTION IN P P, P A AND A A COLLISIONS Phys.Rev.D44:3501-3516,1991 GLUON SHADOWING AND JET QUENCHING IN A + A COLLISIONS

More information