Transport Model Description of Flow

Size: px
Start display at page:

Download "Transport Model Description of Flow"

Transcription

1 Transport Model Description of Flow Che-Ming Ko Texas A&M University Transport model (AMPT) Parton coalescence Elliptic flow Collaborators: Z.W. Lin, S. Pal, B. Zhang, B.A. Li: PRC 61, (00); 64, (01); NPA 698, 375c (0) V. Greco, P. Levai: PRL 90, 010 (003); PRC 68, (003) L.W. Chen 1

2 A multiphase transport model Initial conditions: HIJING Hard minjet partons and soft strings Parton evolution: ZPC Default: Minijet partons String melting: Minijet partons and soft partons Hadronization: Default: Lund string model String melting: quark coalescence or recombination Hadronic transport: ART PRC 61, (00); 64, (01); NPA 698, 375c (0)

3 Parton collision rate Default: 800 collisions for 1600 partons, i.e., about one collision per parton String melting: both parton and collision numbers increase by ten, i.e., about ten collisions per parton 3

4 Softening of equation of state 4

5 Rapidity distributions 130 AGeV Data from BRAHMS Solid lines: default HIJING Dashed lines: AMPT prediction 5

6 Transverse mass distributions 6

7 Two-Pion Correlation Function Lin, Ko & Pal, PRL 89, (00) 130 AGeV Need string melting and large parton scattering cross section 7

8 Emission Function Shift in out direction Strong correlation between out position and emission time Large halo due to resonance ( ) decay ω and explosion non-gaussian source 8

9 Elliptic flow in 00 AGeV Lin & Ko, PRC 65, (00) 9

10 130 AGeV 10

11 Jet quenching in quark-gluon plasma r E 0 E = C dτ ρ( τ, x( τ))( τ - τ0)ln( ) 0 τ µ L Gyulassy, Levai, Vitev, PRL, 85, 5535 (000) Screening mass µ ~ 0.5GeV Path length L ~ 4 fm C ~

12 Transverse positions of minijet partons at freezeout n parton ( τ f ) =1fm -3 1

13 Parton azimuthal distribution 13

14 Parton elliptic flow 14

15 The coalescence model Dover et al., PRC 44, 1636 (1991) N = g M f q (x p 1, p dσ 1 )f q p (x dσ M 1 1, p )f 3 d p E M 1 1 (x 1 3 d p E, x ; p 1, p ) Quark distribution function Spin-color statistical factor Coalescence probability function g f q M (x, p) e.g. 3 d p p dσ f 3 q (x, p) = (π) E g = gk = 1/36 π N g = g * ρ q K = 1 /1 fm(x1, x;p1,p) f(x1 x;p1 p) 15

16 Coalescence probability function f (x 1 x ; p 1 exp{[( p 1 p ) = p ) exp[( x (m 1 1 x m ) ) / ] / x p ] } Coalescence radii x p h Quark mass (x (p r r 1 x ) = τ [1 cosh( η 1 η )] (r1 r ) 1 p) = m1t + mt m1t mt cosh(y 1 y) (p1t pt) r r 16

17 Monte-Carlo method Introduce quark probabilities P q (i) according to their transverse momentum and spatial distributions dn r d p M T = g M f M i, j (x i P q, x j (i)p ; p i q, p ( j) j ) δ ( ) r (p T r p it r p jt ) dn r d p B T = g B f B i j k (x i P q, x j (i)p, x k q ( j)p ; p i q, p j (k) δ, p k ) () r (p T r p it r p jt r p kt ) 17

18 Minijet partons Gyulassy, Levai, Vitev, PRL, 85, 5535 (000) dn r d p dn r dp jet T jet T 1 r r r r r r r = d bd rt Au(r)t Au(b r) dxadx bd k atd k σtot a,b r r g(k at)g(k bt )fa / Au(xa,Q )fb / Au(x b,q ) ab ŝ dσ δ(ŝ + tˆ + û) π dtˆ L / λ= 3.5 After jet quenching using opacity parameter = A B B + p T n A(10 4 / GeV ) g u,d u, d s, s B(GeV) n bt 18

19 Quark-gluon plasma dn q r dyd p T = g q τπr (π) 3 m T m T µ exp T q Light quarks g 6, m 300 MeV, u,d = u,d = µ u, d = 10 MeV Strange quarks g s = 6, m s = 475 MeV, µ s = 10 MeV Gluons g = 16, mg = 300 MeV, g g µ = 0 Take T=170 MeV u / u = d / d = 0.89, s / s = 1 s / u = 0.7 p / p = 0.7, K / K + = 89, K / π = 0.4 as in experimental data 19

20 Parton transverse momentum distributions Thermal QGP p T GeV Power-law minijets p T GeV Choose R = 8.3 fm τ = 4 fm, y 0.5 de dy V = 900 fm T = y GeV Consistent with data (PHENIX) 0

21 Other inputs or assumptions Minijet fragmentation via KKP fragmentation functions dn r d p had jet dn dz d p = r jet D had / jet z (z, Q ), z = p p had jet Gluons are converted to quarks and antiquarks with flavor probabilities similar to quarks in QGP Quark-gluon plasma is given a transverse collective flow β = 0.5c velocity of, so partons have an additional velocity v(r) = β(r / R) Minijet partons have current quark masses m u,d = 10 MeV, m s = 175 MeV -1 p = x = 0.4 GeV Use coalescence radii for mesons -1 p = x = 0.45 GeV for baryons 1

22 Pion spectrum including rho decays 00 AGeV Dash-dotted: minijets Dashed: QGP+minijets Solid: QGP+minjets+soft-hard coalescence Filled circles: data Inset: ratio of with and without soft-hard coalescence Reproduce data at all momenta Hard+hard coalescence negligible

23 Antiproton spectrum including antidelta decays 00 AGeV Dash-dotted: minijets Dashed: QGP+minijets Solid: QGP+minijets+soft-hard coalescence Filled squares: data (PHENIX) Inset: ratio of with and without soft-hard coalescence Reproduce data at low momenta Soft+hard coalescence more important than in pions Soft +hard and 3hard coalescence negligible 3

24 Antiproton to pion ratio Dashed: without soft-hard coalescence Solid: with soft-hard coalescence Filled squares: data (PHENIX) Reproduce data at low and intermediate momenta Small ratio at high momenta due to minjets 4

25 Kaon spectrum including K* decays 00 AGeV Dash-dotted: minijets Dashed: QGP+minijets Solid: QGP+minijets+sof-hard coalescence Filled diamonds: data (PHENX) Inset: ratio of with and without soft-hard coalescence Reproduce data at low momenta 5

26 Elliptic flows of pions and protons 00 AGeV Elliptic flow of light quarks is extracted from fitting measured pion elliptic flow Proton elliptic flow is then predicted and agrees with data (STAR) 6

27 Elliptic flows of kaons, lambdas and omegas 00 AGeV Elliptic flow of strange quarks is extracted from fitting measured kaon elliptic flow. Predicted lambda elliptic flow agrees with data (STAR) Omega elliptic flow is predicted to be smaller than that of lambda 7

28 Charm production 00 AGeV e - charm quark D meson charmonium 8

29 Charm flow 9

30 Pentaquark Theta+ flow ( uudd s ) quark 30

31 Summary Transport model can describe rapidity and transverse momentum distributions as well as two-particle correlations. Large elliptic flow is obtained in transport model that includes scattering of soft partons from melted strings. Radiative energy loss of minijet partons in QGP leads to appreciable elliptic flow at high momenta. Quark coalescence can explain elliptic flow of identified hadrons and large baryon/pion ratio at intermediate transverse momenta. Elliptic flow of D meson and J/psi based on quark coalescence are sensitive to charm quark collective dynamics. 31

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

arxiv:nucl-th/ v2 8 Jun 2006

arxiv:nucl-th/ v2 8 Jun 2006 Acta Phys. Hung. A / (2005) 000 000 HEAVY ION PHYSICS Strange quark collectivity of φ meson at RHIC arxiv:nucl-th/0510095v2 8 Jun 2006 J. H. Chen 1,2, Y. G. Ma 1,a, G. L. Ma 1,2, H. Z. Huang 1,3, X. Z.

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

XI SERC School on Experimental High-Energy Physics NISER Bhubaneswar November 07-27, 2017 Event Generators Session

XI SERC School on Experimental High-Energy Physics NISER Bhubaneswar November 07-27, 2017 Event Generators Session A Multi-Phase Transport (AMPT) Model XI SERC School on Experimental High-Energy Physics NISER Bhubaneswar November 07-27, 2017 Event Generators Session 1 Introduction ü A Multi-Phase Transport (AMPT) is

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

1992 Predictions for RHIC with HIJING

1992 Predictions for RHIC with HIJING 1992 Predictions for RHIC with HIJING HIJING: A MONTE CARLO MODEL FOR MULTIPLE JET PRODUCTION IN P P, P A AND A A COLLISIONS Phys.Rev.D44:3501-3516,1991 GLUON SHADOWING AND JET QUENCHING IN A + A COLLISIONS

More information

Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model

Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model Charged Particle Ratio Fluctuation from A Multi-Phase Transport (AMPT) Model You Zhou Institute Of Particle Physics HuaZhong Normal University (CCNU) 1 全国高能学会学术年会 @ 南昌大学 Outline Introduction Results and

More information

Hadronization by coalescence plus fragmentation from RHIC to LHC

Hadronization by coalescence plus fragmentation from RHIC to LHC Vincenzo Minissale University of Catania INFN LNS Hadronization by coalescence lus fragmentation from RHIC to LHC Nucleus Nucleus 015, June 015 Vincenzo Greco Francesco Scardina arxiv:150.0613 Outline

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC

Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC Eur. Phys. J. C (2018) 78:348 https://doi.org/10.1140/epjc/s10052-018-5828-7 Regular Article - Theoretical Physics Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions

More information

The Λ Global Polarization with the AMPT model

The Λ Global Polarization with the AMPT model The Λ Global Polarization with the AMPT model Hui Li ( 李慧 ) University of Science and Technology of China Cooperators: Xiao-Liang Xia, Long-Gang Pang, Qun Wang arxiv: 1704.01507 Outline Introduction The

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

arxiv: v1 [nucl-th] 8 Sep 2016

arxiv: v1 [nucl-th] 8 Sep 2016 Testing of coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle ger Subikash Choudhury, Debojit Sarkar, and Subhasis Chattopadhyay Variable

More information

HF Production and Dynamics in AMPT

HF Production and Dynamics in AMPT HF Production and Dynamics in AMPT Zi-Wei Lin Department of Physics East Carolina University INT Program INT-17-1b Precision Spectroscopy of QGP Properties with Jets and Heavy Quarks May 1 - June 8, 2017

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV Pion, Kaon, and (Anti-) Proton Production in AuAu Collisions at s = 6.4 GeV NN Ming Shao 1, for the STAR Collaboration 1 University of Science & Technology of China, Anhui 3007, China Brookhaven National

More information

Parton matter in the early stage of ultrarelativistic heavy ion collisions

Parton matter in the early stage of ultrarelativistic heavy ion collisions Parton matter in the early stage of ultrarelativistic heavy ion collisions Péter Lévai KFKI RMKI, Budapest Project: Quarks, Hadrons and High Energy Collisions MTA - JINR Workshop Budapest, 7 September

More information

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES (c) 2017 Rom. Rep. Phys. (for accepted papers only) FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES O. RISTEA 1, C. RISTEA 1,2,a, A. JIPA 1, T. PETRUSE 1, T. ESANU 3, M. CALIN

More information

Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions

Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions Physics Letters B 595 (2004) 202 208 www.elsevier.com/locate/physletb Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions V. Greco, C.M. Ko, R. Rapp Cyclotron Institute and Physics

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Production of strange particles at intermediate p T at RHIC

Production of strange particles at intermediate p T at RHIC Production of strange particles at intermediate p T at RHIC Rudolph C. Hwa 1 and C. B. Yang 1,2 1 Institute of Theoretical Science and Department of Physics University of Oregon, Eugene, OR 97403-5203,

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012). 68. A. Adare et al. (M. Sarsour), PHENIX collaboration, J/ψ suppression at forward rapidity in Au + Au collisions at s NN =39 and 62.4 GeV, Phys. Rev. C 86, 064901 (2012). 67. W.M. Snow et al. (M. Sarsour),

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

A study of φ-meson spin alignment with the AMPT model

A study of φ-meson spin alignment with the AMPT model A study of φ-meson spin alignment with the AMPT model Shaowei Lan 1 Zi-Wei Lin 1,2, Shusu Shi 1, Xu Sun 1 1 Central China Normal University 2 East Carolina University Outline Introduction Modified AMPT

More information

arxiv: v2 [nucl-th] 15 Jun 2017

arxiv: v2 [nucl-th] 15 Jun 2017 EPJ manuscript No. (will be inserted by the editor) Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model Liang Zheng 1a, Hui Li 1, Hong Qin, Qi-Ye Shou 1b, and Zhong-Bao

More information

Particle Production, Correlations and Jet Quenching at RHIC

Particle Production, Correlations and Jet Quenching at RHIC QCD@Work 23 International Workshop on QCD, Conversano, Italy, 4 8 June 23 Particle Production, Correlations and Jet Quenching at RHIC John W. Harris Physics Department, Yale University, P.O. Box 2824,

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

The Quark-Gluon-Plasma Is Found at RHIC. (but experimentalists have Yet to recognize it)

The Quark-Gluon-Plasma Is Found at RHIC. (but experimentalists have Yet to recognize it) The Quark-Gluon-Plasma Is Found at RHIC (but experimentalists have Yet to recognize it) Miklos Gyulassy Columbia University Three major discoveries at RHIC 1) Conclusive evidence for Bulk P QCD collective

More information

Can hadronic rescattering explain the jet quenching at relativistic energies?

Can hadronic rescattering explain the jet quenching at relativistic energies? PHYSICAL REVIEW C 71, 3496 (25) Can hadronic rescattering explain the jet quenching at relativistic energies? David Hardtke Department of Physics, University of California, Berkeley, California 9472 USA

More information

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion F.Bopp, R.Engel, J.Ranft and S.Roesler () DPMJET III () Chain fusion in DPMJET III (3) dn/dη cm distributions

More information

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory SCET approach to energy loss Zhongbo Kang Los Alamos National Laboratory Symposium on Jet and Electromagnetic Tomography of Dense Matter June 26-27, 2015 Outline Introduction SCET G = SCET with Glauber

More information

arxiv: v2 [nucl-th] 14 Jul 2017

arxiv: v2 [nucl-th] 14 Jul 2017 Improved Quark Coalescence for a MultiPhase ransport Model Yuncun He Faculty of Physics and Electronic echnology, Hubei University, Wuhan 6, China and Department of Physics, East Carolina University, Greenville,

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

Quark Recombination and Elliptic flow

Quark Recombination and Elliptic flow Qark Recombination and Elliptic flow Sbrata Pal ata Institte of Fndamental Research Otline Qark Recombination - motivation - simple qark recombination formla - recombination verss fragmentation Elliptic

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Lambda-Lambda correlation from an integrated dynamical model

Lambda-Lambda correlation from an integrated dynamical model ExHIC, March 28, 2016 Lambda-Lambda correlation from an integrated dynamical model Tetsufumi Hirano (Sophia Univ.) Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model:

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

DAE-HEP, IIT Guwahati Dec,2014

DAE-HEP, IIT Guwahati Dec,2014 DAE-HEP, IIT Guwahati Dec,014 8-1 Strange Hyperon Productions at LHC energy Purabi Ghosh Fakir Mohan University, Balasore PLAN OF TALK: Introduction Strange particles and Relativistic Heavy Ion Collisions

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Predictions for hadronic observables from. from a simple kinematic model

Predictions for hadronic observables from. from a simple kinematic model Predictions for hadronic observables from Pb + Pb collisions at sqrt(s NN ) = 2.76 TeV from a simple kinematic model Tom Humanic Ohio State University WPCF-Kiev September 14, 2010 Outline Motivation &

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden The Lund Model and some extensions Torbjörn Sjöstrand Department of Astronomy and Theoretical Physics Lund University Sölvegatan 4A, SE-223 62 Lund, Sweden Workshop on Collective effects in small collisions

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz Open charm in heavy-ion collisions A Heavy-Ion Seminar talk by Szymon Harabasz Outline: Charmed hadrons Why charm physics? How to do charm physics Open questions on open charm: D mesons R AA at low p T

More information

Identified Particle v 2 (p t,y) for 200-GeV AuAu S. J. Sanders, U. Kansas (for the BRAHMS Collaboration)

Identified Particle v 2 (p t,y) for 200-GeV AuAu S. J. Sanders, U. Kansas (for the BRAHMS Collaboration) Identified Particle v 2 (p t,y) for 200-GeV AuAu S. J. Sanders, U. Kansas (for the BRAHMS Collaboration) I. C. Arsene 12, I. G. Bearden 7, D. Beavis 1, S. Bekele 12, C. Besliu 10, B. Budick 6, H. Bøggild

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

Heavy flavour production at RHIC and LHC

Heavy flavour production at RHIC and LHC Heavy flavour production at RHIC and LHC Gian Michele Innocenti 1, 1 Massachusetts Institute of Technology Abstract. In this proceedings, I present selected experimental results on heavy-flavour production

More information

arxiv: v1 [nucl-th] 11 Apr 2018

arxiv: v1 [nucl-th] 11 Apr 2018 Radial flow in a multi phase transport model at FAIR energies Soumya Sarkar 1,2, Provash Mali 1, Somnath Ghosh 1 and Amitabha Mukhopadhyay 1 1 Department of Physics, University of North Bengal, Siliguri

More information

Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner

Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner 0-0 SQM 2006 Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner The fact that nuclei have diffuse surfaces (rather than being simple spheres) has dramatic consequences on the

More information

Parton dynamics in heavy-ion collisions from FAIR to LHC

Parton dynamics in heavy-ion collisions from FAIR to LHC Parton dynamics in heavy-ion collisions from FAIR to LHC Wolfgang Cassing Erice, 21.09.2012 The holy grail: Search for the critical point The phase diagram of QCD Study of the phase transition from hadronic

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = GeV T. Hirano, 1 M. Isse, Y. Nara, 3 A. Ohnishi, and K. Yoshino 1 Department of Physics, Columbia University, New York, NY 17

More information

Kinematical correlations: from RHIC to LHC

Kinematical correlations: from RHIC to LHC : from RHIC to LHC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and Univeristy of Rzeszów, PL-35-959 Cracow, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Kinematical correlations between outgoing

More information

The measurement of non-photonic electrons in STAR

The measurement of non-photonic electrons in STAR The measurement of non-photonic electrons in STAR Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519, Prague 1, Czech Republic E-mail: olga.hajkova@fjfi.cvut.cz

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Hydrodynamics Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad First School on LHC Physics, NCP, Islamabad Oct 28, 2009 1 Outline QGP Evolution Centrality Why Hydrodynamics? What is a flow? Percolation

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

arxiv:nucl-th/ v1 11 Feb 2007

arxiv:nucl-th/ v1 11 Feb 2007 Thermalization of quark-gluon matter by 2-to-2 and 3-to-3 elastic scatterings arxiv:nucl-th/7236v Feb 27. Introduction Xiao-Ming Xu Department of Physics, Shanghai University, Baoshan, Shanghai 2444, China

More information

arxiv:nucl-th/ v1 31 Dec 2002

arxiv:nucl-th/ v1 31 Dec 2002 arxiv:nucl-th/0212111v1 31 Dec 2002 HIGH-P T PION PRODUCTION IN HEAVY-ION COLLISIONS AT RHIC ENERGIES G. G. BARNAFÖLDI, P. LÉVAI KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest,

More information

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University The Study of the Critical Point of QCD using Fluctuations Gary Westfall Terry Tarnowsky Hui Wang Michigan State University 1 Search for QCD Transitions If we pass through a QCD phase transition, we expect

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Heavy Flavor Results from STAR

Heavy Flavor Results from STAR Heavy Flavor Results from STAR Wei Xie for STAR Collaboration (PURDUE University, West Lafayette) Open Heavy Flavor Production D meson direct measurement Non-photonic electron Heavy Quarkonia Production

More information

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions

A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions A Light-front Wave-function Approach to the In-medium Modification of Heavy-quark Fragmentation Functions D-mesons, c u B-mesons Time evolution, Nuclear Theory, T-2, LANL Heavy Quark Physics in Nucleus-Nucleus

More information

The QGP phase in relativistic heavy-ion collisions

The QGP phase in relativistic heavy-ion collisions The QGP phase in relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Conference on Exciting Physics Makutsi-Range Range, South Africa,, 13-20 November,

More information

arxiv:hep-ex/ v2 2 Feb 2001

arxiv:hep-ex/ v2 2 Feb 2001 CR-459 hep-ex/00009 RECENT RESULTS ON PARTICLE PRODUCTION FROM J. H. VOSSEBELD CERN, CH - 2 Geneva 23, Switzerland E-mail: Joost.Vossebeld@cern.ch arxiv:hep-ex/00009v2 2 Feb 200 Three recent studies are

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Penetrating probe of the hot, dense medium

Penetrating probe of the hot, dense medium Penetrating probe of the hot, dense medium Low mass dileptons (M ll

More information

JÕ production in relativistic heavy ion collisions from a multiphase transport model

JÕ production in relativistic heavy ion collisions from a multiphase transport model PHYSICAL REVIEW C, VOLUME 65, 054909 JÕ production in relativistic heavy ion collisions from a multiphase transport model Bin Zhang, 1 C.M. Ko, 2 Bao-An Li, 1 Zi-Wei Lin, 2 and Subrata Pal 2 1 Department

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Influence of Bottom Quark Jet Quenching on Single Electron Tomography of Au+Au Permalink https://escholarship.org/uc/item/24x656sm

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information