Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common?

Size: px
Start display at page:

Download "Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common?"

Transcription

1 Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by :00 pm Thursday February 18th. (It opens on LONCAPA today) The Electric Force Work, Energy and Power Number Score ISP09s10 Lecture ISP09s10 Lecture Comments on exam extra credit What do these pictures have in common? Each question you get up to 4 tries before CAPA marks it incorrect. The online test is not exactly the same as the in-class one, but it is rather close. This is why I didn t collect your copies of the exam. There are only 1 questions, but some of these are weighted more so that the total # of points is 40. Say you got a 30/40 on the in-class exam, and a 40/40 on the extra Credit exam. Then you get (40-30)*.30 = 3 extra points added to Your original score. All are instances of Static Electricity. What is electricity? ISP09s10 Lecture ISP09s10 Lecture 10-4-

2 A new Force! Electrical charge is a property of matter. It is measured in Coulombs C. It comes in types ( positive and negative ) Like charges repel, unlike charges attract. Coulomb s Law of Electric Force kq Q F = k = 8.99E 9 N! m r 1 ISP09s10 Lecture C - + r 1 Questions to ponder Coulomb s law looks like Newton s Law of gravity. Why? Why does charge come in two types and mass only came in one type? Why do we always get r? I hate squares. Why is k = 8.99E9 Nm /C so much bigger than G = Nm /kg? We ll come back to these mundane? s later and see that they are actually pretty profound and cutting edge ISP09s10 Lecture Example 1 Two 1 kg balls with a charge of +1 C are a distance 1 m from each other. What is the electrical force? kq Q F = k = 8.99E 9 N! m r 1 C Example Two 1 kg balls with a charge of +1 C are a distance 1 m from each other. What is the gravitational force? Gm m F =! r ; G = 6.673E 11 Nm kg The math is identical to Gravitational problems! ISP09s10 Lecture The Gravitational Force is 0 orders of magnitude weaker Than the electrical force! Gravity is a VERY weak force. ISP09s10 Lecture 10-8-

3 If the distance between charges suddenly doubles, how does the electric force change? A) It is 1/4 the initial force B) It is 4 times the initial force C) It is 1/ the initial force D) It is times the initial force E) Nothing changes If the distance between charges suddenly doubles, how does the electric force change? A) It is 1/4 the initial force B) It is 4 times the initial force C) It is 1/ the initial force D) It is times the initial force E) Nothing changes ISP09s10 Lecture ISP09s10 Lecture Energy Energy and Power Energy is the ability to do work Energy comes in two forms Kinetic (KE) energy of motion Potential (PE) energy of position There are many variants on these type main types, e.g. chemical, nuclear, thermal, ISP09s10 Lecture Energy is the ability to do work: Work = force x distance = F d Energy comes in two forms Kinetic (KE) energy of motion Potential (PE) energy of position KE = mv m - mass v - velocity Gravitational GPE = m (gh); g = 9.81 m/s on Earth, h height Power (measured in W = J/s) is the rate of change (or use) of energy ISP09s10 Lecture 10-1-

4 Work: Using a Force to Move Something In common English, work refers to any kind of effort you put into performing a task, whether physical or mental. In physics, work is done whenever an object is pushed or pulled through a distance; there must be both force and motion. work = force! distance = Fd ISP09s10 Lecture Under what condition can a force act on an object and yet do no work on that object? (A) If the object moves with no acceleration. (B) If the object does not move. (C) If the net force on the object is zero. (D) If the force operates at constant (unchanging) power. (E) Nonsense--any force on an object must do work on that object. ISP09s10 Lecture Under what condition can a force act on an object and yet do no work on that object? (A) If the object moves with no acceleration. (B) If the object does not move. (C) If the net force on the object is zero. (D) If the force operates at constant (unchanging) power. (E) Nonsense--any force on an object must do work on that object. ISP09s10 Lecture Work and Energy: A simple Example Slowly lift your book some height h and then lower it. You did work on the book while lifting it; the book did work on you while you lowered it. The raised book has an increased ability to do work, and does this work as you lower it. What if you lift your book some height h and then drop it? Can it still do work? ISP09s10 Lecture

5 Work and Energy: A simple Example Work requires motion It accelerates downward, acquiring kinetic energy as it loses height. You could have the dropped book do work by driving a thumbtack into the floor. (remember, W = F x d) ISP09s10 Lecture An object s energy is defined as the amount of work it can do. Therefore, the gravitational potential energy (GPE) of an object is its weight multiplied by its height, GPE = mgh The kinetic energy (KE) of an object in motion can be derived from Newton s laws KE = 1/ * MV Quantitative Look at Energy ISP09s10 Lecture Quantitative Look at Energy GPE when you let it drop from height h is the same as its KE just before it hits the floor. Quantitative Look at Energy If you add the gravitational energy and the kinetic energy at any point in the book s fall, you will find that the sum stays the same. Energy is conserved. ISP09s10 Lecture ISP09s10 Lecture 10-0-

6 An Aside on Semantics A system is a distinct collection of objects and/or fields that are interacting in some way. Any system having the ability to do work is said to have energy. A system with energy need not do work, but a system that does work must have had energy. Some Forms of Energy Kinetic energy: energy of motion Gravitational energy: energy associated with a raised Object (aka potential energy ) Elastic energy: energy of a stretched or deformed object Thermal energy: energy in the form of heat due to the random microscopic motion of atoms and molecules ISP09s10 Lecture ISP09s10 Lecture Forms of Energy Electromagnetic energy energy associated with electric and magnetic fields Radiant energy energy of electromagnetic waves such as light, infrared, and X-rays Chemical energy energy involved in chemical reactions Nuclear energy energy involved in nuclear reactions Physically, the type of energy represented by the water behind a dam is (A) kinetic. (B) chemical. (C) thermal. (D) electromagnetic. (E) Gravitational potential energy. ISP09s10 Lecture ISP09s10 Lecture 10-4-

7 Physically, the type of energy represented by the water behind a dam is (A) kinetic. (B) chemical. (C) thermal. (D) electromagnetic. (E) Gravitational potential energy. ISP09s10 Lecture The Law of Conservation of Energy Experiments have found that energy is always conserved, although it may change its form. The total energy of all the participants in any process remains unchanged throughout that process. That is, energy cannot be created or destroyed. Energy can be transformed (changed from one form to another), and it can be transferred (moved from one place to another), but the total amount always stays the same. ISP09s10 Lecture The Work-Energy Principle Another way of stating the conservation of energy is what the book calls The work-energy principle: Work is an energy transfer. Work reduces the energy of the system doing the work and increases the energy of the system on which work is done, both by an amount equal to the work done. ISP09s10 Lecture Transformations of Energy Where is all that energy now? What happens after it hits the floor? It s gone into heat both your book and the floor are now slightly warmer. ISP09s10 Lecture 10-8-

8 Transformations of Energy One way to visualize energy transformations is through the use of an energy flow diagram. The one below is for the dropped book. Chemical energy is transformed into gravitational energy when (A) a car accelerates (on a level surface). (B) a leaf undergoes photosynthesis. (C) a block slides downhill. (D) water evaporates. (E) a person walks uphill. ISP09s10 Lecture ISP09s10 Lecture Some Example Problems Chemical energy is transformed into gravitational energy when (A) a car accelerates (on a level surface). (B) a leaf undergoes photosynthesis. (C) a block slides downhill. (D) water evaporates. (E) a person walks uphill. Examples: A mass of 1.0 kg is raised 1.0 m. How much work was done? W =!GPE = mg!h = 1.0 kg x 9.81m/s^ x 1.0 m = 9.81 J A 90.0 kg ISP09 professor walks up two flights of stairs. How much did his/her potential energy increase? DATA 1 flight of stairs = 3.00 m!gpe = 90.0 kg x 9.81m/s x flights x (3 m/flight) = 5.9 kj ISP09s10 Lecture ISP09s10 Lecture 10-3-

9 Conservation of Energy In nature certain quantities are conserved. Energy is one of these quantities. Charge is another. Example: Ball on a hill A 1.00 kg ball is rolled toward a hill with an initial speed of 5.00 m/s. If the ball roles without friction, how high, h, will the ball go? m KE = mv PE = mgh ; g = 9.80 s v ( 5 m / s) mv = mgh " h = = = 1.8 m g m! 9.80 s ISP09s10 Lecture Power Power is the rate of change of energy Power = (change in energy)/(change in time) Power is a scalar and is measured in watts. Light bulbs are measured in watts Sun (a big light bulb) !10 6 W ISP09s10 Lecture Information Horsepower 746 W = 1 horsepower In fourteen hundred and ninety-two Columbus sailed the ocean blue. And if you divide by two You get watts in a horsepower too Food energy is measured in kcal 1 (food) Calorie = 1000 (physics) calorie 1 Calorie = 4184 Joule 1 Calorie = amount of energy required to raise the temp. of 1 kg of water by 1 degree Celsius ISP09s10 Lecture Example Problem How many kcal are burned by doing 1500 J of work? DATA: The human body is 10% efficient in converting food energy to work. cal = energy' 1500 J ' 1cal J 1cal J & ' $ % & 1 # ' $! % efficiency " 1 #! = 3590.cal = 3.59 kcal 0.1" ISP09s10 Lecture

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th. Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 0th. F=ma Electric Force Work, Energy and Power Number 60 50 40 30 0 10 0 17 18 0

More information

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics Today Announcements: HW#5 is due by 8:00 am Wed. Feb. 5th. Extra Credit Exam due by Tomorrow 8am. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics ISP09s9 Lecture 11-1- Energy and

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy Physical Science PHYSICS UNIT 4 Study Guide. Chapter 15 - Energy Key Terms Energy Kinetic Energy Potential Gravitational Potential Elastic Potential Mechanical Energy Thermal Energy Chemical Energy Electrical

More information

Work and the Work-Energy Theorem

Work and the Work-Energy Theorem Work and Energy Click on the topic to go to that section Energy and the Work-Energy Theorem Work and Energy 2009 by Goodman & Zavorotniy Forces and Potential Energy Conservation of Energy Power Conservation

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Energy -- The money of physics Demo: Elastic Collisions Objects of equal mass exchange momentum in elastic collisions. 1 Demo: Blaster Balls

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Announcements. Applied Physics

Announcements. Applied Physics Announcements Applied Physics 02-07-08 Conservation of Energy Charles Dickens (196) The Energy Conservation Quiz went up this morning at 8:00 am. Don t forget to print a copy of next weeks lab. Wear comfortable

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Physics Year 11 Term 1 Week 7

Physics Year 11 Term 1 Week 7 Physics Year 11 Term 1 Week 7 Energy According to Einstein, a counterpart to mass An enormously important but abstract concept Energy can be stored (coal, oil, a watch spring) Energy is something moving

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Gravitational Potential Energy (filled in)

Gravitational Potential Energy (filled in) Name: Date: 4/3 Period: Unit 5 Gravitational Potential Energy (filled in) Essential Questions: Why is energy and work useful to learn? What does work mean in physics? What does energy mean in physics?

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards P1 Quick Revision Questions Question 1... of 50 What type of energy is stored in a stretched elastic band? Answer 1... of 50 Elastic potential energy. Question 2... of 50 What type of energy is stored

More information

Work and Energy Chapter 4 and 5

Work and Energy Chapter 4 and 5 Section 1 Work and Energy Chapter 4 and 5 Motion Read Chapter 4 pages 100 121 and Chapter 5 pages: 126-153 Objectives: - Distinguish between kinetic and potential energy; calculate kinetic energy, describe

More information

LINEAR KINETICS (PART 2): WORK, ENERGY, AND POWER Readings: McGinnis Chapter 4

LINEAR KINETICS (PART 2): WORK, ENERGY, AND POWER Readings: McGinnis Chapter 4 LINEAR KINETICS (PART 2): WORK, ENERGY, AND POWER Readings: McGinnis Chapter 4 1 WORK: Another way of expressing the effect of a force. Mechanically, work is done on an object when a force causes a change

More information

Name. Honors Physics AND POTENTIAL KINETIC

Name. Honors Physics AND POTENTIAL KINETIC KINETIC Name Honors Physics AND POTENTIAL Name Period Work and Energy Intro questions Read chapter 9 pages 144 146 (Section 9.1) 1. Define work in terms of physics? 2. In order to do work on an object,

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

6.0 Energy Conservation. 6.1 Work

6.0 Energy Conservation. 6.1 Work Phys 300/301 Physics: Algebra/Trig Eugene Hecht, 3e. Prepared 1/09/05 6.0 Energy Conservation After Newtonian mechanics came a lull in the state of mechanical physics. In the beginning of the 1800 s, the

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

Physics Fall 2011 Exam 2

Physics Fall 2011 Exam 2 Physics 102.001 Fall 2011 Exam 2 1) Two He(lium) nuclei are a certain distance apart. One He nucleus is replaced by a C(arbon) nucleus, keeping the distance unchanged. What happens to the strength of the

More information

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Bring a calculator and a #2 pencil Allowed 1 page notes (front and back) E=mc 2, General Relativity, and exam review ISP209s10

More information

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed l 1 more day for LON-CAPA #4 l First exam: Feb 6 in Life Sciences A133 1:00 2:20 PM 40 questions, should not take full time review in 2 nd half of this lecture you may bring 1 8.5 X11 sheet of paper with

More information

Conservation of Energy 1 of 8

Conservation of Energy 1 of 8 Conservation of Energy 1 of 8 Conservation of Energy The important conclusions of this chapter are: If a system is isolated and there is no friction (no non-conservative forces), then KE + PE = constant

More information

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.7(B) illustrate the transformation of energy within an organism such as the transfer from chemical energy

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Almost all forms of energy on earth can be traced back to the Sun.:

Almost all forms of energy on earth can be traced back to the Sun.: EW-1 Work and Energy Energy is difficult to define because it comes in many different forms. It is hard to find a single definition which covers all the forms. Some types of energy: kinetic energy (KE)

More information

Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

Energy and Mechanical Energy

Energy and Mechanical Energy Energy and Mechanical Energy Energy Review Remember: Energy is the ability to do work or effect change. Usually measured in joules (J) One joule represents the energy needed to move an object 1 m of distance

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes The Energy Story Nature of Energy Energy is all around you! l You can hear energy as sound. l You can see energy as light. l And you can feel it as wind. Nature of Energy You

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J). Work Work The process of moving an object by applying a force. Work = Force x displacement. Work is measured in Joules (J) or Newton-meters (Nm). W = Fd Example: To prove his strength, a weightlifter pushes

More information

Chapter 3: Force, Work and Energy

Chapter 3: Force, Work and Energy Chapter 3: Force and Force Equilibrium Chapter 3: Force, Work and Energy Chapter 3: Force, Work and Energy 3.1 Mass and Weight 3.2 Newton's Law of Gravitation 3.3 Force and Newton's 3 Laws of Motion 3.4

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Chapter 8 Energy Flow and Systems

Chapter 8 Energy Flow and Systems Conceptual Physics/ PEP Name: Date: Chapter 8 Energy Flow and Systems Section Review 8.1 1. In an experiment, you learn that the total energy at the end is a little less than it was at the beginning. Explain

More information

Gravitational Potential Energy and Motional Kinetic Energy Forms of energy Forms of energy include radiant energy from the sun, chemical energy from the food you eat, and electrical energy from the outlets

More information

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 HW and Exam #1 HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed

More information

Kinetic and Potential Energy. Supplemental Text Material Pages

Kinetic and Potential Energy. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Pages 326-333 Work Transference of Energy Work = Force x distance W=Fd Work Lifting load against the force of the weight of the object Twice the

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

CBSE Class 9 Work Energy and Power Quick Study Chapter Note

CBSE Class 9 Work Energy and Power Quick Study Chapter Note CBSE Class 9 Work Energy and Power Quick Study Chapter Note Work: In our daily life anything that makes us tired is known as work. For example, reading, writing, painting, walking, etc. In physics work

More information

Mechanical Energy. Unit 4

Mechanical Energy. Unit 4 Mechanical Energy Unit 4 Expectations Cell phones put away, or upside down on your desk No talking during notes Raise your hand to ask a question Everyone will follow along and copy into their own notes

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J)

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J) WHAT IS ENERGY???? Energy can have many different meanings and forms The ability of an object to do work Measured in joules (J) N m = J Work in Progress So what is are the different types of energy? DIFFERENT

More information

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force.

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy Energy is the ability to do work. (reminder=what is

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind. Nature of Energy You use energy when you: hit

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

Lecture 5. Work Energy

Lecture 5. Work Energy Lecture 5 Work Energy Work, Energy Work and energy are fundamental physical quantities in science. Work is done when a force moves an object through a distance. Energy is the ability to do work The unit

More information

Hour Exam #1. On-line review questions added to web site uw.physics.wisc.edu/~rzchowski/phy107. Sep. 23, 2004 Phy 107, Lecture 9

Hour Exam #1. On-line review questions added to web site uw.physics.wisc.edu/~rzchowski/phy107. Sep. 23, 2004 Phy 107, Lecture 9 Hour Exam #1 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed Questions are multiple choice Scantron sheets will be used - bring #2 HB pencils

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 3.1 & 3.3 & 3.4 - Energy, Work, and Power Energy, Work, and Power You need to know what energy, work, and power is, and the units for energy and

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Physics 101: Lecture 9 Work and Kinetic Energy

Physics 101: Lecture 9 Work and Kinetic Energy Exam II Physics 101: Lecture 9 Work and Kinetic Energy Today s lecture will be on Textbook Sections 6.1-6.4 Physics 101: Lecture 9, Pg 1 Forms Energy Kinetic Energy Motion (Today) Potential Energy Stored

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

Physics 8 Monday, September 21, 2015

Physics 8 Monday, September 21, 2015 Physics 8 Monday, September 21, 2015 HW4 will be due on Friday, October 2. I ll hand it out this Wednesday. Nothing to read for this Wednesday. But for your day off on Friday, read Chapter 9 ( Work ).

More information

Name: Date: Period: Momentum, Work, Power, Energy Study Guide

Name: Date: Period: Momentum, Work, Power, Energy Study Guide Momentum, Work, Power, Energy Study Guide Your test will have fill-in-the-blank and short answer questions. Use the following to help you. Be able to answer questions about the labs (egg drop, collisions,

More information

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008 HNRS 227 Chapter 3 Energy presented by Prof. Geller Fall 2008 Don t Forget the Following Units of length, mass and time Metric Prefixes The Scientific Method Speed, velocity, acceleration Force Falling

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

NCERT solution for Work and energy

NCERT solution for Work and energy 1 NCERT solution for Work and energy Question 1 A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (See below figure). Let us take it that the force acts on the

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

PHYSICS 107. Lecture 8 Conservation Laws. For every action there is an equal and opposite reaction.

PHYSICS 107. Lecture 8 Conservation Laws. For every action there is an equal and opposite reaction. PHYSICS 107 Lecture 8 Conservation Laws Newton s Third Law This is usually stated as: For every action there is an equal and opposite reaction. However in this form it's a little vague. I prefer the form:

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

Physical Science midterm study guide. Chapter 1 and 2

Physical Science midterm study guide. Chapter 1 and 2 Physical Science midterm study guide Chapter 1 and 2 1. Explain the difference between a scientific law and a scientific theory a. Laws generalize observations b. Theories explain observations 2. Select

More information

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J) " Watts (W) second(s)

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J)  Watts (W) second(s) Hour Exam #1 Hour Exam I, Wed. Feb. 14, in-class (50 minutes) Material Covered: Chap 1, 3-6 One page of notes (8.5 x 11 ) allowed 20 multiple choice questions Scantron sheets will be used - bring #2 HB

More information

Gravitational potential energy

Gravitational potential energy Announcements l CAPA homework 4 due on Thursday Sept 27 at 10 AM l Please register your iclicker through LON-CAPA if you want to receive credit only a few of you have not l Help room hours (1248 BPS) Ian

More information

Work & Energy. Chapter 4 pg

Work & Energy. Chapter 4 pg Work & Energy Chapter 4 pg 106-127 Today s Learning Objectives 1) Know the vocabulary of this chapter. 2) What is the two-pronged test to see if something qualifies as work? 3) Solve and calculate problems

More information

Lecture 12 (Kinetic Energy) Physics Spring 2017 Douglas Fields

Lecture 12 (Kinetic Energy) Physics Spring 2017 Douglas Fields Lecture 12 (Kinetic Energy) Physics 160-02 Spring 2017 Douglas Fields Your Toolbox so far: Vectors Components, vector addition, etc. Position, velocity, acceleration Constant acceleration equations Newton

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Pre Comp Review Questions 8 th Grade Answers

Pre Comp Review Questions 8 th Grade Answers Pre Comp Review Questions 8 th Grade Answers Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin

More information

CHAPTER 13.3 AND 13.4 ENERGY

CHAPTER 13.3 AND 13.4 ENERGY CHAPTER 13.3 AND 13.4 ENERGY Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy

More information

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. ENERGY Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy depends on Objective 4: What is non-mechanical

More information

- there will be midterm extra credit available (described after 2 nd midterm)

- there will be midterm extra credit available (described after 2 nd midterm) Lecture 13: Energy & Work Today s Announcements: * Midterm # 1 still being graded. Stay tuned - there will be midterm extra credit available (described after 2 nd midterm) * Midterm # 1 solutions being

More information

Chapter 10: Energy and Work. Slide 10-2

Chapter 10: Energy and Work. Slide 10-2 Chapter 10: Energy and Work Slide 10-2 Forms of Energy Mechanical Energy K U g U s Thermal Energy Other forms include E th E chem E nuclear The Basic Energy Model An exchange of energy between the system

More information

Work and Energy. Describing Energy. Energy comes in many forms. List as many types of energy as you can think of on the lines below.

Work and Energy. Describing Energy. Energy comes in many forms. List as many types of energy as you can think of on the lines below. chapter 4 Work and section 2 Describing Before You Read comes in many forms. List as many types of as you can think of on the lines below. What You ll Learn the different forms of how can be stored Read

More information