EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS

Size: px
Start display at page:

Download "EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS"

Transcription

1 INDIAN INSTITUTE OF TECHNOLOGY ROORKEE EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS Muthiah Perumal and C. Madhusudana Rao Professor, Department of Hydrology, Indian Institute of Technology Roorkee Assist. Professor, Department of Civil Engineering, National Institute of Technology Jamshedpur

2 Introduction Flood wave movement is a nonlinear process Many models used for catchment runoff simulations still employ linear theory based models for runoff simulations FLOOD ROUTING METHODS CONSTANT-PARAMETER MUSKINGUM METHOD (MRM) (as used in the SWAT model based on the Muskingum-Cunge (Cunge1969) approach) VARIABLE-PARAMETER MUSKINGUM METHOD ()

3 Objective is: In focus The focus of this study is concerned only with one of the component processes, namely, flood routing in main channels using the Muskingum method. To explore the impact of spatial and temporal discretizations on the routing simulations of the constant-parameter and the variable-parameter Muskingum methods 3

4 CONSTANT-PARAMETER MUSKINGUM METHOD Frame work of Muskingum Routing Method (MRM) (as used in the SWAT model based on the Muskingum-Cunge (Cunge1969) approach) Routing Equation Q C1I C I1 C 3Q1 Coefficients Parameters where K C k 1 L k C Q A k 5 3 V respectively are the channel length (km) and celerity of the flood wave (m/s) is the channel flow velocity (m/s). c C C C 1 3 K t K 1 t K t K 1 t K 1 t K 1 t is weighing factor (-.5); To avoid the numerical instability and negative outflow computation, the following condition is recommended in the SWAT model K t K 1 4

5 The constant parameter-muskingum method by estimating its two constant parameters using a reference discharge. Q ref = (Q pave + Q b )/ Q pave = (Q pinf + qpout)/ Y ref (from Newtorn Raphson method) t If < k, the Muskingum coefficient C o = - Ve Generally negative values of coefficients are avoided For best results, the t should be so chosen that k > t >k 5

6 VARIABLE-PARAMETER MUSKINGUM METHOD () Frame Work of the Method The Variable Parameter McCarthy-Muskingum () method proposed by Perumal and Price [13] directly derived from the Saint-Venant Equations. for routing flood waves in semi-infinite rigid bed prismatic channels having any cross-sectional shape/follows either Mannings friction law. during steady flow depth relationship. in the channel reach there exist discharge and during unsteady flow in the channel reach, the discharge observed at any section has its corresponding normal depth at upstream section. Allows the Simultaneous computations of stage hydrograph corresponding to a given inflow/routed hydrograph. 6

7 Frame Work of Method Saint-Venant equations Continuity equation Q x A t (1) S f y v v 1 v S x g x g t Momentum equation () S f = friction slope; S o = bed slope; y/x = water surface slope; (v/g)(v/x)= convective acceleration; (1/g)(v/t)=local acceleration. Magnitudes of various terms in eqn. () are usually small in comparison with S o [Henderson, 1966; NERC, 1975]. 7

8 Parameter estimation using the method 1 y u I M 3 Q M Q 3 j+1 t t t/ M 3 Δx/ y M y 3 Δx L y d O j 1 x/ x L x Fig. 1 Definition Sketch of the Routing Reach Fig. Numerical grid adopted for application in synchronization with Fig.1 8

9 Parameter estimation using the method Muskingum Routing Equation Q C Q C Q C Q d, j 1 t 1 u, j1 t u, jt 3 d, jt Where Q The estimated downstream d, j 1 t discharges at time j 1 t Q Q u, j 1 t Q t u, j t d, j t The observed upstream discharges at time The observed upstream discharges at time The estimated downstream discharges at time The routing time interval j 1 jt jt t C C 1 C 3 Coefficients t. K. t. K. 1, j1 t, j1 t, j 1 t, j1 t t. K. t. K. 1, jt, jt, j 1 t, j1 t t. K. 1 t. K. 1, jt, jt, j 1 t, j1 t 9

10 Parameter estimation using the method K Routing parameters, j 1, j1 t t V x M o, j 1 t, j1 t 4 PdR dy Q3, 1 1 F j t 9 da dy 1. S. B. c. x o M, j 1 t Mo, j1 t 1 Q3, j1 t. S. B. c. x M, j1 t o M, j 1 t Mo, j1 t ( By neglecting inertial terms) The governing finite difference equation of the routing method dq P dr c 1 v da 3 B dy Q3, j 1 t Q I, 1 I 3,, j t O, 1 O j t j t j t, jt x t V, 1 VMo, j t Mo j t 1

11 Numerical Experiments Twelve numerical test runs have been conducted in this study by changing space ( x) and routing time ( t) intervals to explore the effect of spatial and temporal discretizations on the routing simulations of the constant-parameter and the variableparameter Muskingum methods. In this study, a uniform prismatic trapezoidal channel with a bed slope, S o =., Manning s roughness coefficient, n =.4 and bed width of 5m contained by dykes with a slope ratio (1 V : 5 Horizontal (z)) has been used. Test Run No. Space step (km) Time step (h) 1 4 (Single Reach) 1. 4 (Single Reach) (Single Reach) (Single Reach) (1 Sub-reaches) 1. y 6 4 (1 Sub-reaches) 3. b 7 4 (1 Sub-reaches) 6. Trapezoidal channel 8 4 (1 Sub-reaches) (4 Sub-reaches) (4 Sub-reaches) (4 Sub-reaches) (4 Sub-reaches) z

12 Inflow Hydrograph and Benchmark solution details Pearson type-iii distribution expressed as 1 1 t 1 t t p Q( t) Qb ( Q p Qb ) exp t p 1 The benchmark solutions were obtained by model (USACE, 1) by routing the inflow hydrograph for a reach length of 4km in prismatic Trapezoidal channel using the Space step = 1m and Time step = 3sec **Flow characteristics Q b = 1 m 3 /sec Q p = 3 m 3 /sec T p = 19 h (8 days), Shape factor 1.5 1

13 Results and Discussions Table 1 Summary of performance criteria showing reproduction of pertinent characteristics of the results by the method for routing in Trapezoidal channel reaches using spatial and temporal discretization on the simulations. Test Run Space Time µ q µ y Discharge Routing Stage Computation No. step (km) step (h) (%) (%) EVOL (%) η q (%) q per (%) t pqer (h) η y (%) y per (%) t pyer (h)

14 3 16 Discharge (m 3 /sec) Space step = 4 km Time step = 1. hour Inflow Stage (m) Space step = 4 km Time step =1. hour Input stage Time (h) Figure 1. Typical simulated discharge hydrograph of the method for a space step of 4km and a time step of 1.hour in a Time (h) Figure. Typical computed stage hydrographs of the method for a space step of 4km and a time step of 1.hour in a Discharge (m 3 /sec) Space step = 4 km Time step = 4 hour Inflow Time (Days) Figure 3. Typical simulated discharge hydrograph of the method for a space step of 4km and a time step of 4.hour in a Stage (m) Space step = 4 km Time step = 4 hour Input stage Time (Days) Figure 4. Typical computed stage hydrographs of the method for a space step of 4km and a time step of 4.hour in a 14

15 3 16 Discharge (m 3 /sec) Space step = 4 km Time step = 1. hour Inflow Stage (m) Space step = 4 km Time step =1. hour Input stage Time (h) Figure 5. Typical simulated discharge hydrograph of the method for a space step of 4km and a time step of 1.hour in a Time (h) Figure 6. Typical computed stage hydrographs of the method for a space step of 4km and a time step of 1.hour in a Discharge (m 3 /sec) Space step = 4 km Time step = 4. hour Inflow Stage (m) Space step = 4 km Time step = 4. hour Input stage Time (Days) Time (Days) Figure 7. Typical simulated discharge hydrograph of the method for a space step of 4km and a time step of 4.hour in a Figure 8. Typical computed stage hydrographs of the method for a space step of 4km and a time step of 4.hour in a 15

16 3 16 Discharge (m 3 /sec) Space step = 1 km Time step = 1. hour Inflow Stage (m) Space step = 1 km Time step =1. hour Input stage Time (h) Figure 9. Typical simulated discharge hydrograph of the method for a space step of 1km and a time step of 1.hour in a Time (h) Figure 1. Typical computed stage hydrographs of the method for a space step of 1km and a time step of 1.hour in a 16 Discharge (m 3 /sec) Space step = 1 km Time step = 4. hours Inflow Stage (m) Space step = 1 km Time step = 4. hours Input stage Time (Days) Figure 11. Typical simulated discharge hydrograph of the method for a space step of 1km and a time step of 4.hour in a Time (Days) Figure 1. Typical computed stage hydrographs of the method for a space step of 1km and a time step of 4.hour in a 16

17 Discharge (m 3 /sec) Space step = 4km Time step = 4.hour Inflow Outflow Observed () Time (Days) Figure 13. Typical computed discharge hydrographs of the constant-parameter method for a space step of 4km and a time step of 4.hour in a trapezoidal channel using reference discharge

18 Conclusions A preliminary investigation carried out with the considered objective shows that the routing solution obtained using a longer routing time interval induces significant numerical diffusion of the routed hydrograph leading to over attenuation of the inflow flood peak and, thereby, resulting in poor reproduction of the benchmark solution. 18

19 19

Volume Conservation Controversy of the Variable Parameter Muskingum Cunge Method

Volume Conservation Controversy of the Variable Parameter Muskingum Cunge Method Volume Conservation Controversy of the Variable Parameter Muskingum Cunge Method Muthiah Perumal 1 and Bhabagrahi Sahoo 2 Abstract: The study analyzes the volume conservation problem of the variable parameter

More information

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya Q (m 3 /sec)

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X A new Crank-Nicholson algorithm for solving the diffusive wave flood routing equation along a complex channel network R. Moussa," C. BouquilW* " Institut National de la Recherche Agronomique, 34060 Montpellier,

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria,

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Abstract This paper deals with the application of the Muskingum-Cunge

More information

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN Criteria for the choice of flood routing methods in natural... CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN NATURAL CHANNELS WITH OVERBANK FLOWS Roger Moussa 1 Abstract: The classification of river

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 1 Associated Professor, Irrigation and Hydraulic Department, College of Technical Engineering,

More information

Numerical Hydraulics

Numerical Hydraulics ETH Zurich, Fall 2017 Numerical Hydraulics Assignment 2 Numerical solution of shallow water wave propagation (www.surfertoday.com) 1 Introduction 1.1 Equations Understanding the propagation of shallow

More information

Analysis of dynamic wave model for flood routing in natural rivers

Analysis of dynamic wave model for flood routing in natural rivers Water Science and Engineering, 212, 5(3): 243-258 doi:1.3882/j.issn.1674-237.212.3.1 http://www.waterjournal.cn e-mail: wse28@vip.163.com Analysis of dynamic wave model for flood routing in natural rivers

More information

Accuracy of Muskingum-Cunge flood routing

Accuracy of Muskingum-Cunge flood routing Alternative Hydraulics Paper 3, 02.03.2011 Accuracy of Musingum-Cunge flood routing Institute of Hydraulic and Water Resources Engineering Vienna University of Technology Karlsplatz 13/222, 1040 Vienna,

More information

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS M.L. Kavvas and L.Liang UCD J.Amorocho Hydraulics Laboratory University of California, Davis, CA 95616, USA Uncertainties

More information

Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure

Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure Hydrological Sciences -Journal- des Sciences Hydrologiques,39,5, October 1994 431 Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure INTRODUCTION MUTHIAH

More information

Module 5. Lecture 3: Channel routing methods

Module 5. Lecture 3: Channel routing methods Lecture 3: Channel routing methods Hydrologic flow routing 2. Channel Routing In very long channels the entire flood wave also travels a considerable distance resulting in a time redistribution and time

More information

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1 3 FLOOD PROPAGATION 3.1 Reservoir routing The most important equation to describe the water balance of a reservoir is the water balance: ds = I Q + A P E dt ( ) In finite differences form this equation

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Hydrology Days 2010 Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin Patrícia Freire Chagas 2, Silvia

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY Journal of Civil Engineering and Technology (JCIET) Volume 4, Issue 2, July-December 2017, pp. 1 12, Article ID: JCIET_04_02_001 Available online at http: //www.iaeme.com/jciet/issues.asp?jtype=jciet&vtype=4&itype=2

More information

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Twelfth International Water Technology Conference, IWTC2 2008, Alexandria, Egypt 299 A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Maysoon Kh. Askar and K. K. Al-Jumaily

More information

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models T. UKON 1, N. SHIGETA, M.

More information

Abstract. 1 Introduction

Abstract. 1 Introduction One-dimensional unsteady flow computation in channels with floodplains D. Bousmar, R. Scherer & Y. Zech Civil Engineering Dept., Universite Catholique de Louvain, Place du Levant, 1, B-1348 Louvain-la-Neuve,

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 5 Channel Transitions Lecture - 1 Channel Transitions Part 1 Welcome back

More information

Discharge estimation combining flow routing and occasional measurements of velocity

Discharge estimation combining flow routing and occasional measurements of velocity Hydrol. Earth Syst. Sci., 15, 2979 2994, 2011 doi:10.5194/hess-15-2979-2011 Author(s) 2011. CC Attribution 3.0 License. Hydrology and Earth System Sciences Discharge estimation combining flow routing and

More information

DIFFERENTIAL QUADRATURE METHOD FOR NUMERICAL SOLUTION OF THE DIFFUSION WAVE MODEL

DIFFERENTIAL QUADRATURE METHOD FOR NUMERICAL SOLUTION OF THE DIFFUSION WAVE MODEL JOURNAL OF FLOOD ENGINEERING JFE 1() July December 1; pp. 135 147 DIFFERENTIAL QUADRATURE METHOD FOR NUMERICAL SOLUTION OF THE DIFFUSION WAVE MODEL Birol Kaya, Yalcin Arisoy & Asli Ülke Civil Engineering

More information

Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April.

Guo, James C.Y. (1999). Critical Flow Section in a Collector Channel, ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April. Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 15, No. 4, April. CRITICAL FLOW SECTION IN A COLLECTOR CHANNEL By James C.Y. Guo, PhD, P.E.

More information

Modelling fluid flow JAGST Vol. 13(2) 2011 MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS-SECTION

Modelling fluid flow JAGST Vol. 13(2) 2011 MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS-SECTION Modelling fluid flow JAGST Vol. 13(2) 2011 MODELNG FLUD FLOW N OPEN CHANNEL WTH CRCULAR CROSS-SECTON M. N. Kinyanjui, D. P. Tsombe, J. K. Kwanza and K. Gaterere Department of Pure and Applied Mathematics,

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

PROBLEMS IN REVERSE ROUTING

PROBLEMS IN REVERSE ROUTING A C T A G E O P H Y S I C A P O L O N I C A Vol. 53, no. 4, pp. 357-371 2005 PROBLEMS IN REVERSE ROUTING James DOOGE and Michael BRUEN Centre for Water Resources Research, University College Dublin Earlsfort

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Gopal Sharma* (MEE15628) ABSTRACT Supervisor: Dr. Atsuhiro Yorozuya** : Prof. Shinji Egashira*** Present study

More information

Block 3 Open channel flow

Block 3 Open channel flow Numerical Hydraulics Block 3 Open channel flow Markus Holzner Contents of the course Block 1 The equations Block Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block 4 Numerical

More information

Gradually Varied Flow I+II. Hydromechanics VVR090

Gradually Varied Flow I+II. Hydromechanics VVR090 Gradually Varied Flow I+II Hydromechanics VVR090 Gradually Varied Flow Depth of flow varies with longitudinal distance. Occurs upstream and downstream control sections. Governing equation: dy dx So Sf

More information

Simulation of Transcritical Flow in Hydraulic structures

Simulation of Transcritical Flow in Hydraulic structures Simulation of Transcritical Flow in Hydraulic structures Cornelius E Agu 1 Geir Elseth Bernt Lie 3 1,3 Faculty of Technology, Telemark University College, Norway, {corneliuseagu,berntlie}@hitno Statoil

More information

Numerical modeling of sediment flushing from Lewis and Clark Lake

Numerical modeling of sediment flushing from Lewis and Clark Lake University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2013 Numerical modeling of sediment flushing from Lewis and Clark Lake Jungkyu

More information

Transactions on Ecology and the Environment vol 8, 1994 WIT Press, ISSN

Transactions on Ecology and the Environment vol 8, 1994 WIT Press,   ISSN Dam breachfloods- downstream inundation analyses M. Hartnett,' T. Hayes,* B. Mangan,* o Department of Civil, Structural & Environmental Engineering, Trinity College, Dublin 2, Ireland, UK * ESB International,

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Engineering Hydrology (ECIV 4323) CHAPTER FOUR Stream flow measurement Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib -١ 4.1 Introduction - Surface water hydrology deals with the movement of water

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

Rating Curves: Part 1 Correction for Surface Slope

Rating Curves: Part 1 Correction for Surface Slope The Institution of Engineers, Australia Conference on Hydraulics in Civil Engineering Hobart 8 30 November 001, pp 309-317 Rating Curves: Part 1 Correction for Surface Slope J. D. Fenton Dip.C.E., B.E.,

More information

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Numerical Hydraulics Autumn semester 2016 Prof. Dr. Markus Holzner Author: Pascal

More information

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY Solichin 1 Abstract: A serious erosion problem takes place in Cipamingkis River in west Java, Indonesia. As

More information

= Q:An Qn% icx=zv. A, with Bn = T- n. Modelling of irrigation channel dynamics for controller design

= Q:An Qn% icx=zv. A, with Bn = T- n. Modelling of irrigation channel dynamics for controller design Modelling of irrigation channel dynamics for controller design Jean-Pierre BAUME Jacques SAU Pierre-Olivier Malaterre Cemagref, Division Irrigation, 361 rue J-F. ISTIL Bat. 201, RC, UniversitC Claude Cemagref,

More information

Continuing Education Course #101 Drainage Design with WinTR-55

Continuing Education Course #101 Drainage Design with WinTR-55 1 of 5 Continuing Education Course #101 Drainage Design with WinTR-55 1. WinTR-55 uses the Kinematic Wave method for calculating storm runoff rates and volumes. 2. According to the Velocity Method, the

More information

Computation of gradually varied flow in compound open channel networks

Computation of gradually varied flow in compound open channel networks Sādhanā Vol. 39, Part 6, December 014, pp. 153 1545. c Indian Academy of Sciences Computation of gradually varied flow in compound open channel networks 1. Introduction H PRASHANTH REDDY 1,, M HANIF CHAUDHRY

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Simulation of flow discharge on Danube River

Simulation of flow discharge on Danube River Annals of the University of Craiova, Mathematics and Computer Science Series Volume 41(1), 2014, Pages 129 137 ISSN: 1223-6934 Simulation of flow discharge on Danube River PETRE BĂZĂVAN ABSTRACT. River

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Parameter estimation of linear and nonlinear Muskingum models for river flood routing D. Papamichail, P. Georgiou Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture,

More information

Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan

Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows 27 Prediction of landslide-induced debris flow hydrograph: the Atsumari debris flow disaster in Japan H. Takaoka 1, H. Hashimoto

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023 [TW59] UNIVERSITY OF BOLTON ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 014/015 WATER ENGINEERING MODULE NO: BLT303 Date: Tuesday, 0 January 015 Time: 10.00-1.00 INSTRUCTIONS

More information

Numerical Modeling in Open Channel Hydraulics

Numerical Modeling in Open Channel Hydraulics Numerical Modeling in Open Channel Hydraulics Water Science and Technology Library VOLUME 83 Editor-in-Chief V.P. Singh, Texas A&M University, College Station, TX, U.S.A. Editorial Advisory Board M. Anderson,

More information

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details Project Description File Name... 323 - Att Pond 3 East PIPES ONLY.SPF Project Options Flow Units... Elevation Type... Hydrology Method... EPA SWMM Infiltration Method... Link Routing Method... Enable Overflow

More information

H4: Steady Flow through a Channel Network

H4: Steady Flow through a Channel Network August 9, Chapter 7 H4: Steady Flow through a Channel Network Contents 7. Problem Specification............................. 7-7. Background................................... 7-3 7.3 Contra Costa Water

More information

SEDIMENTATION AND ITS COUNTERMEASURE AT THE OFF-TAKE AREA OF NEW DHALESWARI RIVER

SEDIMENTATION AND ITS COUNTERMEASURE AT THE OFF-TAKE AREA OF NEW DHALESWARI RIVER SEDIMENTATION AND ITS COUNTERMEASURE AT THE OFF-TAKE AREA OF NEW DHALESWARI RIVER Tanjir Saif AHMED* MEE15634 Supervisors: Prof. EGASHIRA Shinji** Assoc. Prof. YOROZUYA Atsuhiro*** ABSTRACT Present study

More information

H3: Transition to Steady State Tidal Circulation

H3: Transition to Steady State Tidal Circulation May 7, Chapter 6 H3: Transition to Steady State Tidal Circulation Contents 6. Problem Specification............................. 6-6. Background................................... 6-6.3 Contra Costa Water

More information

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION July. 2. Vol. 7. No. 2 MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION 1 J. JOMBA, 2 D.M.THEURI, 2 E. MWENDA, 2 C. CHOMBA ABSTRACT Flow in a closed conduit is regarded as open channel

More information

A fuzzy dynamic wave routing model

A fuzzy dynamic wave routing model HYDROLOGICAL PROCESSES Hydrol. Process., 564 57 () Published online October 7 in Wiley InterScience (www.interscience.wiley.com).677 A fuzzy dynamic wave routing model R. Gopakumar and P. P. Mujumdar *

More information

Linear Analysis of Coupled Equations for Sediment Transport

Linear Analysis of Coupled Equations for Sediment Transport Theme B of the XXVII IAHR Congress, San Francisco, 1-15 August, 1997, 156-161. Linear Analysis of Coupled Equations for Sediment Transport YANTAO CUI and GARY PARKER St. Anthony Falls Laboratory, University

More information

Numerical simulation of runoff from extreme rainfall events in a mountain water catchment

Numerical simulation of runoff from extreme rainfall events in a mountain water catchment atural Hazards and Earth System Sciences : 9 7 c European Geophysical Society atural Hazards and Earth System Sciences umerical simulation of runoff from extreme rainfall events in a mountain water catchment

More information

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-6 (390), 2006 The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model Marcin SKOTNICKI and Marek SOWIŃSKI

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

Reverse stream flow routing by using Muskingum models

Reverse stream flow routing by using Muskingum models Sādhanā Vol. 34, Part 3, June 009, pp. 483 499. Printed in India Reverse stream flow routing by using Muskingum models AMLAN DAS Civil Engineering Department, National Institute of Technology, Durgapur

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

Section 4: Model Development and Application

Section 4: Model Development and Application Section 4: Model Development and Application The hydrologic model for the Wissahickon Act 167 study was built using GIS layers of land use, hydrologic soil groups, terrain and orthophotography. Within

More information

An optimized routing model for flood forecasting

An optimized routing model for flood forecasting WATER RESOURCES RESEARCH, VOL. 45,, doi:1.129/28wr713, 29 An optimized routing model for flood forecasting Roland K. Price 1 Received 19 April 28; revised 31 October 28; accepted 5 December 28; published

More information

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time). 56 Review Drag & Lift Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! 8. Open-Channel Flow Pipe/duct flow closed, full,

More information

Comparative Analysis of Flood Routing Methods

Comparative Analysis of Flood Routing Methods US Army Corps of Engineers Hydrologic Engineering Center Comparative Analysis of Flood Routing Methods September 1980 Approved for Public Release. Distribution Unlimited. RD-24 REPORT DOCUMENTATION PAGE

More information

Very long waves the longest ood waves

Very long waves the longest ood waves The momentum equation has become a second-order partial differential equation in terms of the single variable. And it is unusable in this ugly form. It is more useful in theoretical works and where approximations

More information

Long-Term Effects Of River Bed Variations Downstream Of The Shihmen Reservoir Due To Climate Change

Long-Term Effects Of River Bed Variations Downstream Of The Shihmen Reservoir Due To Climate Change City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Long-Term Effects Of River Bed Variations Downstream Of The Shihmen Reservoir Due To Climate

More information

Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters

Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters Hydrology Days 2010 Application of Fuzzy Set Theory to Flood Risk Analysis in Natural Rivers as a Function of Hydraulic Parameters Silvia Helena Santos 2,Patrícia Freire Chagas 2, Carla Freitas Andrade

More information

Modelling Breach Formation through Embankments

Modelling Breach Formation through Embankments Modelling Breach Formation through Embankments Mohamed A. A. Mohamed, Paul G. Samuels, Mark W. Morris, Gurmel S. Ghataora 2 HR Wallingford Howbery Park, Wallingford, Oxon, OX 8BA, UK 2 School of Civil

More information

INTRODUCTION TO HEC-HMS

INTRODUCTION TO HEC-HMS INTRODUCTION TO HEC-HMS Hydrologic Engineering Center- Hydrologic Modeling System US Army Corps of Engineers Hydrologic Engineering Center HEC-HMS Uses Schematics Enter properties: watershed, rivers (reaches),

More information

Uncertainty in the SWAT Model Simulations due to Different Spatial Resolution of Gridded Precipitation Data

Uncertainty in the SWAT Model Simulations due to Different Spatial Resolution of Gridded Precipitation Data Uncertainty in the SWAT Model Simulations due to Different Spatial Resolution of Gridded Precipitation Data Vamsi Krishna Vema 1, Jobin Thomas 2, Jayaprathiga Mahalingam 1, P. Athira 4, Cicily Kurian 1,

More information

New computation method for flood flows and bed variations in a low-lying river with complex river systems

New computation method for flood flows and bed variations in a low-lying river with complex river systems River Flow 2014 Schleiss et al. (Eds) 2014 Taylor & Francis Group, London, ISBN 978-1-138-02674-2 New computation method for flood flows and bed variations in a low-lying river with complex river systems

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

By Bernard Cappelaere'

By Bernard Cappelaere' ACCURATE DIFFUSIVE WAVE ROUTING By Bernard Cappelaere' ABSTRACT: The diffusive wave simplification of the unsteady, open-channel flow equations is a commonly used approach for flood routing applications.

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria

Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria e-mail: scharlerg@verbund.co.at Abstract Birecik Dam & HEPP on the Euphrates river in Turkey

More information

Applicability of the local inertial approximation of the shallow water equations to flood modeling

Applicability of the local inertial approximation of the shallow water equations to flood modeling WATER RESOURCES RESEARCH, VOL. 49, 4833 4844, doi:10.1002/wrcr.20366, 2013 Applicability of the local inertial approximation of the shallow water equations to flood modeling Gustavo A. M. de Almeida 1

More information

Unsteady flow regulation in open channel by using inverse explicit method

Unsteady flow regulation in open channel by using inverse explicit method Unsteady flow regulation in open channel by using inverse explicit method A thesis submitted to National Institute of Technology, Rourkela In partial fulfillment for the award of the degree Master of Technology

More information

Stage Discharge Tabulation for Only Orifice Flow

Stage Discharge Tabulation for Only Orifice Flow Stage Discharge Tabulation for Only Orifice Flow DEPTH STAGE DISCHARGE (meters) (feet) (meters) (feet) (m 3 /s) (ft 3 /s) 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.7 1.3 2.0 2.6 3.3 3.9 4.6

More information

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely. Aide Mémoire Suject: Useful formulas for flow in rivers and channels The University cannot take responsiility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

More information

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 16 2008 MATHEMATICAL MODELING

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 61 (2014), No. 3 4, pp. 89 109 DOI: 10.1515/heem-2015-0006 IBW PAN, ISSN 1231 3726 Comparison of Average Energy Slope Estimation Formulas

More information

Uncertainty in flood routing: Diffuse wave models by fuzzy set theory approach

Uncertainty in flood routing: Diffuse wave models by fuzzy set theory approach Hydrology Days 2018 Uncertainty in flood routing: Diffuse wave models by fuzzy set theory approach Maria Patrícia Sales Castro 1 *, Karyna Oliveira Chaves de Lucena 1, Ticiana Fontoura Vidal 1, Alice Rocha

More information

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 281 THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Karima Attia 1 and Gamal El Saied 2 1

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

FLOODPLAIN ATTENUATION STUDIES

FLOODPLAIN ATTENUATION STUDIES OPW Flood Studies Update Project Work-Package 3.3 REPORT for FLOODPLAIN ATTENUATION STUDIES September 2010 Centre for Water Resources Research, School of Engineering, Architecture and Environmental Design,

More information

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows School of Civil Engineering at the University of Queensland CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows Attendance to tutorials is very strongly

More information