Modeling: How do we capture the uncertainty in our data and the world that produced it?

Size: px
Start display at page:

Download "Modeling: How do we capture the uncertainty in our data and the world that produced it?"

Transcription

1 Location-scale families January 4, 209 Debdeep Pati Overview data statistics inferences. As statisticians, we are tasked with turning the large amount of data generated by eperiments and observations into inferences about the world. This simple directive gives rise to a number of core statistical questions: Modeling: How do we capture the uncertainty in our data and the world that produced it? Methodology: What are the right mathematical and computational tools that allow us to draw these statistical inferences? Analysis: How do we compare and evaluate the statistical inferences we make and the procedures we use to make them? In particular, how do we do optimal inference? 2 Location-Scale Family Definition. A location-scale family of distributions has densities (pdf s) of the form g( µ, ) = ( ) µ ψ where ψ is a pdf, > 0, < µ <. 2. Properties. g( 0, ) = ψ() 2. If X g( µ, ), then X µ g( 0, ). 3. If X g( 0, ), then X + µ g( µ, ). 2.2 Eamples. Gaussian: Take ψ() = e 2 /2, the standard normal density. Then g( µ, ) = ( ) µ ψ = ( e µ ) 2/2 = e ( µ)2 2 2, < <

2 is the pdf of a N(µ, 2 ) distribution. 2. Cauchy: Take ψ() = π + 2, Then g( µ, ) = ψ ( µ ) = π + ( µ ) 2, < < defines the Cauchy L-S family. Note: for this family of distributions, µ is not the mean and is not the standard deviation. Same remark applies in the net eample 3. Uniform: Take ψ() = I (0,) () =, if 0 < < 0, otherwise. ψ is the pdf of the Unif(0, ) distribution. g( µ, ) = ( ) µ ψ = ( ) µ I (0,) = I (µ,µ+)() where the last equality follows from the fact that µ is the pdf of the of the Unif(µ, µ + ). (0, ) iff (µ, µ + ). This 3 Location / Scale Family Let ψ be a pdf. Definition 2. A scale family of distributions has densities of the form g( ) = ψ( ) where > 0. is the scale parameter. Definition 3. A location family of distributions has densities of the form g( µ) = ψ( µ) where < µ <. 3. Eamples. The N(µ, ) distributions form a location family and N(0, 2 ) distributions form a scale family. Take ψ() = e 2 /2. Then ψ( µ) = e ( µ)2 /2, which is the pdf of N(µ, ) and ψ( ) = e 2 /2 2, which is the pdf of N(0, 2 ). 2

3 2. The family of Gamma(α 0, β) distributions (where α 0 is any fied value of α forms a scale family. Take ψ() = α 0 e Γ(α 0 ), > 0. Then ( ) ψ = ( ) α0 e / Γ(α 0 ) = α 0 e / α 0 Γ(α0 ) which is the pdf of the Gamma(α 0, ) distribution. Note: If we permit both α and β to vary, the family of Gamma(α, β) distributions does not form a location-scale family. (α is a shape parameter). Suppose g( µ, ) is a location-scale family of density and X g( µ, ), Z g( 0, ). Then so that X µ d = Z, X d = Z + µ P (X > b) = ( X µ P > b µ ) ( = P Z > b µ ) E(X) = E(Z + µ) = EZ + µ, if EZ is finite V ar(x) = V ar(z + µ) = 2 V ar(z) if V ar(z) is finite Similar facts hold for location families and scale families. Erase µ (set µ = 0) for facts for scale families. Erase (set = ) for facts about location families. 3.2 Eamples. The N(, 2 ), > 0, distributions form a scale family. The density of the N(, 2 ) distribution is: [ ] ( µ) 2 ep 2 2 = ep ( ) 2 2 where ψ is the N(, ) pdf. 2. The N(, λ), λ > 0, distributions do not form a scale family. One way to see this is to note that if X N(, λ) then EX = for all λ (it is constant). But a scale family with scale parameter satisfies EX = EZ which cannot be constant (unless EZ = 0). 3

4 4 Eponential families Definition 4. The family of pdf s or pmf s f( θ) : θ Θ, where Θ is the parameter space and θ can represent a single parameter or a vector of parameters is an eponential family if we can write k f( θ) = h() ep w i (θ)t i () for real valued functions, h(),, t() with, h() 0 for all and all θ Θ. In addition > 0 for all θ Θ. This is the general k-parameter eponential family(kpef). For k =, the general one parameter eponential family(pef) has the form i= f( θ) = h() ep t() for all and all θ Θ. Note: We allow h to be degenerate (constant), but require all the other functions to be nondegenerate (nonconstant). 4. Eamples of pef s. Eponential Distributions: The pdf is given by f( β) = β e /β, > 0, β > 0. In this eample, θ = β and Θ = (0, ) and f( β) = I (0, ) ().. ep β h() β. t() This f( β) forms a pef with the parts as identified above. 2. Binomial distributions: The family of Binomial(n, p) distributions with n known (fied) is a pef. The pmf is ( ) n f( p) = p ( p) n, = 0,,..., n, 0 < p < ) ( p) n ( p p 4

5 In this eample, θ = p and Θ = (0, ) and ( ) n f( p) = I 0,,...,n (). ( p) n h(). ep t() This f( p) forms a pef with the parts as identified above. p. log p 4.2 Eamples of 2pef s. The family of N(µ, 2 ) distributions: The pdf is given by f( µ, 2 ) = e ( µ)2 /2 2, < < valid for > 0 and < µ <. In this eample, θ = (µ, 2 ) and Θ = (µ, 2 ) : 2 > 0, and < µ <. f( µ, 2 ) = = ep µ 2 µ2 h() 2 2. ( ) ep µ ep 2 2 w (θ). 2 t () + µ 2 w 2 (θ). t 2 () This f( µ, 2 ) forms a 2pef with the parts as identified above. 4.3 Non-eponential families There are many families of distributions which are not eponential families. The Cauchy L-S family family f( µ, ) =. ( π + µ cannot be written as an eponential family. (Try it!). ) 2, < < A trickier Eample: Consider this shifted eponential distribution with pdf β f( µ, β) = e ( µ)/β, > µ 0, otherwise. 5

6 Note that f( µ, β) = h(). eµ/β β ep β. t(), Is it correct? This is not valid for all, but only for > µ. To get an epression valid for all, we need an indicator function. f( µ, β) = ep This is not an eponential family. I (µ, ) () not a function of alone. eµ/β β β.. t() Definition 5. The support of an eponential family of a pdf or pmf f() is the set : f() > 0. Fact: The support of an eponential family of pdf s (pmf s) f( θ) is the same for all θ. Proof. (For pef) The support of f( θ) = h() ept() is : h() > 0 which does not involve θ. Fact: If f( θ) is pef, then for any 4 distinct points, 2, 3 and 4 in the support, g(, θ) = logf( θ)/h() satisfies independent of θ. Proof. Observe that if f( θ) is pef and the proof follows immediately. g(, θ) g( 2, θ) g( 3, θ) g( 4, θ) g(, θ) g( 2, θ) g( 3, θ) g( 4, θ) = t( ) t( 2 ) t( 3 ) t( 4 ) 6

7 4.4 Eamples. The pdf f( µ, β) = β e ( µ)/β, > µ 0, otherwise. has support : > µ which depends on θ = (µ, β) through the value µ. Thus (without further work) we know that this is not an eponential family. 2. The family of Unif(a, b) distributions with < a < b < is not an eponential family. The Unif(a, b) density f( a, b) = b a, for a < < b 0, otherwise has support : a < < b which depends on θ = (a, b). Thus (without further work) we know that this is not an eponential family. 3. The Cauchy L-S family is not an eponential family, but its support is the same for all θ = (µ, ). 7

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 11, 2016 Debdeep Pati 1 Probability Model Model: A family of distributions {P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

ECON 5350 Class Notes Review of Probability and Distribution Theory

ECON 5350 Class Notes Review of Probability and Distribution Theory ECON 535 Class Notes Review of Probability and Distribution Theory 1 Random Variables Definition. Let c represent an element of the sample space C of a random eperiment, c C. A random variable is a one-to-one

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Introduction to Probability Theory for Graduate Economics Fall 2008

Introduction to Probability Theory for Graduate Economics Fall 2008 Introduction to Probability Theory for Graduate Economics Fall 008 Yiğit Sağlam October 10, 008 CHAPTER - RANDOM VARIABLES AND EXPECTATION 1 1 Random Variables A random variable (RV) is a real-valued function

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, x. X s. Real Line

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, x. X s. Real Line Random Variable Random variable is a mapping that maps each outcome s in the sample space to a unique real number,. s s : outcome Sample Space Real Line Eamples Toss a coin. Define the random variable

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Homework 3 solution (100points) Due in class, 9/ (10) 1.19 (page 31)

Homework 3 solution (100points) Due in class, 9/ (10) 1.19 (page 31) Homework 3 solution (00points) Due in class, 9/4. (0).9 (page 3) (a) The density curve forms a rectangle over the interval [4, 6]. For this reason, uniform densities are also called rectangular densities

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

Statistics 3657 : Moment Generating Functions

Statistics 3657 : Moment Generating Functions Statistics 3657 : Moment Generating Functions A useful tool for studying sums of independent random variables is generating functions. course we consider moment generating functions. In this Definition

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 003, 2018 Page 0 Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 3, 216 Page Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative function

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 3 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a)

More information

MODULE 6 LECTURE NOTES 1 REVIEW OF PROBABILITY THEORY. Most water resources decision problems face the risk of uncertainty mainly because of the

MODULE 6 LECTURE NOTES 1 REVIEW OF PROBABILITY THEORY. Most water resources decision problems face the risk of uncertainty mainly because of the MODULE 6 LECTURE NOTES REVIEW OF PROBABILITY THEORY INTRODUCTION Most water resources decision problems ace the risk o uncertainty mainly because o the randomness o the variables that inluence the perormance

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf)

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf) Lecture Notes 2 Random Variables Definition Discrete Random Variables: Probability mass function (pmf) Continuous Random Variables: Probability density function (pdf) Mean and Variance Cumulative Distribution

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, < x <. ( ) X s. Real Line

Random variable X is a mapping that maps each outcome s in the sample space to a unique real number x, < x <. ( ) X s. Real Line Random Variable Random variable is a mapping that maps each outcome s in the sample space to a unique real number, <

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

Laplace Distribution

Laplace Distribution Laplace Distribution Raminta Stockute and Paul Johnson June 10, 2013 1 Introduction This is a continuous probability distribution. It is named after a French mathematician. Wikipedia points out that it

More information

Transform Techniques - CF

Transform Techniques - CF Transform Techniques - CF [eview] Moment Generating Function For a real t, the MGF of the random variable is t t M () t E[ e ] e Characteristic Function (CF) k t k For a real ω, the characteristic function

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

1 A brief primer on probability distributions

1 A brief primer on probability distributions Inference, Models and Simulation for Comple Systems CSCI 7- Lecture 3 August Prof. Aaron Clauset A brief primer on probability distributions. Probability distribution functions A probability density function

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Assume X P θ, θ Θ, with joint pdf (or pmf) f(x θ). Suppose we observe X = x. The Likelihood function is L(θ x) = f(x θ) as a function of θ (with the data x held fixed). The

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Transform Techniques - CF

Transform Techniques - CF Transform Techniques - CF [eview] Moment Generating Function For a real t, the MGF of the random variable is t t M () t E[ e ] e Characteristic Function (CF) k t k For a real ω, the characteristic function

More information

Today s Outline. Biostatistics Statistical Inference Lecture 01 Introduction to BIOSTAT602 Principles of Data Reduction

Today s Outline. Biostatistics Statistical Inference Lecture 01 Introduction to BIOSTAT602 Principles of Data Reduction Today s Outline Biostatistics 602 - Statistical Inference Lecture 01 Introduction to Principles of Hyun Min Kang Course Overview of January 10th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 01 January

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

Transform Techniques - CF

Transform Techniques - CF Transform Techniques - CF [eview] Moment Generating Function For a real t, the MGF of the random variable is t e k p ( k) discrete t t k M () t E[ e ] e t e f d continuous Characteristic Function (CF)

More information

Chapter 3.3 Continuous distributions

Chapter 3.3 Continuous distributions Chapter 3.3 Continuous distributions In this section we study several continuous distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more.

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization

Gaussian integrals. Calvin W. Johnson. September 9, The basic Gaussian and its normalization Gaussian integrals Calvin W. Johnson September 9, 24 The basic Gaussian and its normalization The Gaussian function or the normal distribution, ep ( α 2), () is a widely used function in physics and mathematical

More information

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002 EE/CpE 345 Modeling and Simulation Class 5 September 30, 2002 Statistical Models in Simulation Real World phenomena of interest Sample phenomena select distribution Probabilistic, not deterministic Model

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

ECS /1 Part IV.2 Dr.Prapun

ECS /1 Part IV.2 Dr.Prapun Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology ECS35 4/ Part IV. Dr.Prapun.4 Families of Continuous Random Variables

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machine learning Mid-term eam October 8, 6 ( points) Your name and MIT ID: .5.5 y.5 y.5 a).5.5 b).5.5.5.5 y.5 y.5 c).5.5 d).5.5 Figure : Plots of linear regression results with different types of

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Modeling Revision Questions Set 1

Modeling Revision Questions Set 1 Modeling Revision Questions Set. In an eperiment researchers found that a specific culture of bacteria increases in number according to the formula N = 5 2 t, where N is the number of bacteria present

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

1 Introduction. P (n = 1 red ball drawn) =

1 Introduction. P (n = 1 red ball drawn) = Introduction Exercises and outline solutions. Y has a pack of 4 cards (Ace and Queen of clubs, Ace and Queen of Hearts) from which he deals a random of selection 2 to player X. What is the probability

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2 1 Gaussian Processes Definition 1.1 A Gaussian process { i } over sites i is defined by its mean function and its covariance function E( i ) = µ i c ij = Cov( i, j ) plus joint normality of the finite

More information

Severity Models - Special Families of Distributions

Severity Models - Special Families of Distributions Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 2010 EDITION.

ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 2010 EDITION. A self published manuscript ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 21 EDITION. M I G U E L A R C O N E S Miguel A. Arcones, Ph. D. c 28. All rights reserved. Author Miguel A.

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

QUADRATIC EQUATIONS. + 6 = 0 This is a quadratic equation written in standard form. x x = 0 (standard form with c=0). 2 = 9

QUADRATIC EQUATIONS. + 6 = 0 This is a quadratic equation written in standard form. x x = 0 (standard form with c=0). 2 = 9 QUADRATIC EQUATIONS A quadratic equation is always written in the form of: a + b + c = where a The form a + b + c = is called the standard form of a quadratic equation. Eamples: 5 + 6 = This is a quadratic

More information

Expectation Maximization Deconvolution Algorithm

Expectation Maximization Deconvolution Algorithm Epectation Maimization Deconvolution Algorithm Miaomiao ZHANG March 30, 2011 Abstract In this paper, we use a general mathematical and eperimental methodology to analyze image deconvolution. The main procedure

More information

MATH : EXAM 2 INFO/LOGISTICS/ADVICE

MATH : EXAM 2 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 2 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (03/11) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

Exponential and Logarithmic Functions. Exponential Functions. Example. Example

Exponential and Logarithmic Functions. Exponential Functions. Example. Example Eponential and Logarithmic Functions Math 1404 Precalculus Eponential and 1 Eample Eample Suppose you are a salaried employee, that is, you are paid a fied sum each pay period no matter how many hours

More information

Lecture Notes 2 Random Variables. Random Variable

Lecture Notes 2 Random Variables. Random Variable Lecture Notes 2 Random Variables Definition Discrete Random Variables: Probability mass function (pmf) Continuous Random Variables: Probability density function (pdf) Mean and Variance Cumulative Distribution

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Gaussian Process Vine Copulas for Multivariate Dependence

Gaussian Process Vine Copulas for Multivariate Dependence Gaussian Process Vine Copulas for Multivariate Dependence José Miguel Hernández-Lobato 1,2 joint work with David López-Paz 2,3 and Zoubin Ghahramani 1 1 Department of Engineering, Cambridge University,

More information

Chapter 6: Functions of Random Variables

Chapter 6: Functions of Random Variables Chapter 6: Functions of Random Variables We are often interested in a function of one or several random variables, U(Y 1,..., Y n ). We will study three methods for determining the distribution of a function

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25 Approimate inference, Sampling & Variational inference Fall 2015 Cours 9 November 25 Enseignant: Guillaume Obozinski Scribe: Basile Clément, Nathan de Lara 9.1 Approimate inference with MCMC 9.1.1 Gibbs

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

1. Poisson distribution is widely used in statistics for modeling rare events.

1. Poisson distribution is widely used in statistics for modeling rare events. Discrete probability distributions - Class 5 January 20, 2014 Debdeep Pati Poisson distribution 1. Poisson distribution is widely used in statistics for modeling rare events. 2. Ex. Infectious Disease

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

3.6 Conditional Distributions

3.6 Conditional Distributions STAT 42 Lecture Notes 58 3.6 Conditional Distributions Definition 3.6.. Suppose that X and Y have a discrete joint distribution with joint p.f. f and let f 2 denote the marginal p.f. of Y. For each y such

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Statistical Inference: Maximum Likelihood and Bayesian Approaches

Statistical Inference: Maximum Likelihood and Bayesian Approaches Statistical Inference: Maximum Likelihood and Bayesian Approaches Surya Tokdar From model to inference So a statistical analysis begins by setting up a model {f (x θ) : θ Θ} for data X. Next we observe

More information

Continuous Variables Chris Piech CS109, Stanford University

Continuous Variables Chris Piech CS109, Stanford University Continuous Variables Chris Piech CS109, Stanford University 1906 Earthquak Magnitude 7.8 Learning Goals 1. Comfort using new discrete random variables 2. Integrate a density function (PDF) to get a probability

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

CVAR REDUCED FUZZY VARIABLES AND THEIR SECOND ORDER MOMENTS

CVAR REDUCED FUZZY VARIABLES AND THEIR SECOND ORDER MOMENTS Iranian Journal of Fuzzy Systems Vol., No. 5, (05 pp. 45-75 45 CVAR REDUCED FUZZY VARIABLES AND THEIR SECOND ORDER MOMENTS X. J. BAI AND Y. K. LIU Abstract. Based on credibilistic value-at-risk (CVaR of

More information

Linear differential equation Expansion at irregular singular point

Linear differential equation Expansion at irregular singular point Linear differential equation Epansion at irregular singular point Epansion around 0 for y'' 1 y 0. Eample in Bender & Orszag Section.4. Initial change of variable y e s If we replace y by e s : y[_]:=ep[s[]]

More information

Summary of Random Variable Concepts March 17, 2000

Summary of Random Variable Concepts March 17, 2000 Summar of Random Variable Concepts March 17, 2000 This is a list of important concepts we have covered, rather than a review that devives or eplains them. Tpes of random variables discrete A random variable

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

IMGS-261 Solution Set #7

IMGS-261 Solution Set #7 IMGS-6 Solution Set #7. Sketch the following functions and evaluate their continuous Fourier transforms 0 if > (a) f [] if if < Solution: Another way to write this is in the form f [] h i So this is really

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5 Stochastic processes Lecture : Multiple Random Variables Ch. 5 Dr. Ir. Richard C. Hendriks 26/04/8 Delft University of Technology Challenge the future Organization Plenary Lectures Book: R.D. Yates and

More information

Compute f(x θ)f(θ) dθ

Compute f(x θ)f(θ) dθ Bayesian Updating: Continuous Priors 18.05 Spring 2014 b a Compute f(x θ)f(θ) dθ January 1, 2017 1 /26 Beta distribution Beta(a, b) has density (a + b 1)! f (θ) = θ a 1 (1 θ) b 1 (a 1)!(b 1)! http://mathlets.org/mathlets/beta-distribution/

More information

Chapter 6: Large Random Samples Sections

Chapter 6: Large Random Samples Sections Chapter 6: Large Random Samples Sections 6.1: Introduction 6.2: The Law of Large Numbers Skip p. 356-358 Skip p. 366-368 Skip 6.4: The correction for continuity Remember: The Midterm is October 25th in

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

ebay/google short course: Problem set 2

ebay/google short course: Problem set 2 18 Jan 013 ebay/google short course: Problem set 1. (the Echange Parado) You are playing the following game against an opponent, with a referee also taking part. The referee has two envelopes (numbered

More information