Lecture 8 Sampling Theory

Size: px
Start display at page:

Download "Lecture 8 Sampling Theory"

Transcription

1 Lecture 8 Sampling Theory Thais Paiva STA Summer 2013 Term II July 11, / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

2 Lecture Plan 1 Sampling Distributions 2 Law of Large Numbers 3 Central Limit Theorem 2 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

3 Statistical Inference We want to study some quantities of interest (parameter) in a large population. Example: Obama s approval rating. But we cannot observe the whole population. What do we do? Design a study to sample individuals from the population. Example: eligible voters Study the quantity of interest on your sample Infer (conclude) about the unknown parameter. Example: 1 Determine a range that will include the parameter of interest: 0.45 < approval rating < Test a hypothesis: is the approval rating > 0.5? 3 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

4 Statistical Inference A statistic refers to a characteristic of the sample (e.g., sample mean, sample deviation, sample maximum) A parameter refers to a characteristic of the population (e.g., population mean, population standard deviation, population proportion that votes for republicans) Our goal is to use statistics to infer the parameter in the population (e.g., what is the relation between the sample mean and the population mean?) The sampling distribution is the bridge! 4 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

5 Example Population: STA 111 Heights Distribution of students height Density Height (in) Let s assume this is the true population with parameter µ = 68.4 σ 2 = 18.6 We wish to take a sample to estimate µ and σ 2. 5 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

6 Samples size = 4 Let s say we take a sample of size 4 and repeat it 5 times. For each sample, we calculate the sample mean x and the variance s 2. Sample # x 1 x 2 x 3 x 4 x s We see that the x s are pretty close around µ = There is quite some variability in s 2 across samples. 6 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

7 Sampling Distribution (n = 4) What if I carry on and repeat it 1000 times? Frequency Some x s are quite extreme! But most of them seem to hover around the population mean (red vertical line) Sample Mean (n=4) 7 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

8 Sampling Distribution What if we change the sample size? Frequency Sample Mean (n=4) Frequency Sample Mean (n=15) Frequency Sample Mean (n=50) Frequency Sample Mean (n=100) 8 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

9 Sampling Distribution The previous histograms are examples of Sampling Distributions Distributions of a statistic calculated from a random sample Each individual in the population is equally likely to be chosen every time we draw an observation A statistic is random because each sample is different: if the data have not been recorded yet, the statistic is simply a function of same random elements Viewing a statistic as a random variable, we can define its mean and variance. For example, E( X ) = µ X V ( X ) = σ 2 X (Tricky notation: Population mean µ of a statistic X!!) 9 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

10 Estimator We saw that The sampling distribution of x is centered around µ The variability of x becomes smaller with larger sample size If we use x to infer about µ, we call x an estimator of µ. There are many other potential estimators for µ. For example, if the underlying population is Normal, we can use the sample median. In the next lecture, we will discuss ways to evaluate and compare estimators. 10 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

11 Combination of Random Variables There are two important properties of random variables that are useful in studying estimators. If we let X and Y be two independent random variables, then E(X + Y ) = E(X ) + E(Y ) Var(X + Y ) = Var(X ) + Var(Y ) We will discuss these properties later in the class. 11 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

12 Mean and Variance of the Sample Mean Let X 1,..., X n be independent and identically distributed random variables. The above assumption says X 1,..., X n are randomly sampled from the same distribution (= random sample). Then ( ) X X n E( X ) = E n ( ) Var( X X X n ) = Var n = E(X 1) E(X n ) n = Var(X 1) Var(X n ) n 2 = nµ n = µ = nσ2 n 2 = σ2 n 12 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

13 Mean and Variance of the Sample Mean E( X ) = µ says If I repeatedly collect my sample, the overall average of X is µ, the true population mean In reality, we usually only collect the sample once This holds for any sample size! V ( X ) = σ2 n says The variability in X decreases as the sample size increases. Specifically, it goes down by a rate of 1/n The variability also depends on the underlying population s variability! 13 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

14 Mean and Variance of the Sample Mean However, E( X ) = µ by itself does not guarantee that X = µ! Luckily, V ( X ) = σ2 n says that the variance of X decreases toward zero as the sample size increases. So, when the sample is large, the uncertainty goes to zero, and therefore lim Var( X ) = 0 n lim X = µ n 14 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

15 Mean and Variance of the Sample Mean Recall our first example: Frequency Sample Mean (n=4) Frequency Sample Mean (n=15) Frequency Sample Mean (n=50) Frequency Sample Mean (n=100) 15 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

16 Law of Large Numbers: Interpretation Suppose you want to estimate µ on a specific population What you can do is to extract a sample from the population and estimate the sample mean x If the sample is big enough, x will be close to µ If you increase the sample size, x should get closer to µ The more you increase the sample size, the closer x to µ 16 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

17 Central Limit Theorem The Law of Large Numbers tells me how X behaves in terms of central tendency and variability. That is useful information, but it does not tell me its actual distribution! The Central Limit Theorem says: when n is large, X is approximately normally distributed ( σ X 2 ) N µ, n Important: the CLT holds regardless of the underlying distribution of X! No matter what the shape of the original distribution is, the sampling distribution of the mean approaches a normal distribution. 17 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

18 Central Limit Theorem Density X Here is a weird distribution with parameter By CLT, µ = 6.5 σ = 2.9 if n = 10: ( X N if n = 50: ( X N 6.5, , ) ) 18 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

19 Central Limit Theorem Sample Mean (n = 10) Sample Mean (n = 50) Density Density Amazing. 19 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

20 Using CLT: Height Example Assume the distribution of height in our class has a mean of 70 (inches) and a variance of 100 (inches 2 ). In my study, I will obtain measurements of 20 individuals. What is the probability that X will be between 65 and 75? By CLT, X N (µ, ), σ2 where µ = 70 and σ2 n n = = 5. ( ) P(65 < X < 75) = P < Z < 5 5 ( = P 5 < Z < ) 5 = / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

21 Using CLT: Height example Note: in the previous example we calculated P(65 < X < 75) = NOT ( ) P(65 < X < 75) = P < Z < = P ( 0.5 < Z < 0.5) = 0.38 The first one is the sample average; the second one is just one actual height!!! 21 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

22 Using CLT: Sample Size Assume the distribution of height in our class has a mean of 70 (inches) and a variance of 100 (inches 2 ). In designing my study, what sample size should I use so that the probability that my sample average X is between 69 and 71 is equal to 90%? P(69 < X < 71) = P ( ) < Z < 100/n 100/n ( n = P ( P Z > ) n 10 < Z < = ) ( n = P Z < 10 Because Z is symmetric: n = 1.64 n = ) n = / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

23 Sample Percentage The sample percentage is defined to be the ratio between the number of successes over the number of trials n i=1 P = X i n For example, the batting averages (P) are estimates of the unknown proportion of successful batting in the whole career (π) If we could observe the data for the whole career, then we would know the true value 23 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

24 Sample Percentage n i=1 P = X i n E(P) = E[X 1] E[X n ] n = π π n = π Var(P) = Var[X1]+...+Var[Xn] n 2 Law of Large Numbers: Central Limit Theory: = π(1 π)+...+π(1 π) n 2 lim P = π n [ P N π, ] π(1 π) n = π(1 π) n 24 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

25 Sample Percentage Suppose tossing a fair coin 1,000 times. What is the probability of observing heads less than half of the times? Fair coin means that π = 0.5 ( P P < 500 ) ( = P Z < 0.5 ) (1 0.5)/1000 = P(Z < 0) = 0.5 We could also try to work with Binomial distribution probabilities but n is very large here 25 / 25 Thais Paiva STA Summer 2013 Term II Lecture 8, 07/11/2013

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny September 27 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 31 Kerrich s experiment Introduction 10,000 coin flips Expectation and

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Last few slides from last time

Last few slides from last time Last few slides from last time Example 3: What is the probability that p will fall in a certain range, given p? Flip a coin 50 times. If the coin is fair (p=0.5), what is the probability of getting an

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

ST 371 (IX): Theories of Sampling Distributions

ST 371 (IX): Theories of Sampling Distributions ST 371 (IX): Theories of Sampling Distributions 1 Sample, Population, Parameter and Statistic The major use of inferential statistics is to use information from a sample to infer characteristics about

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny March 1 Patrick Breheny STA 580: Biostatistics I 1/23 Kerrich s experiment A South African mathematician named John Kerrich was visiting Copenhagen in 1940 when

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models Chapter 18 Sampling Distribution Models The histogram above is a simulation of what we'd get if we could see all the proportions from all possible samples. The distribution has a special name. It's called

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

Continuous Expectation and Variance, the Law of Large Numbers, and the Central Limit Theorem Spring 2014

Continuous Expectation and Variance, the Law of Large Numbers, and the Central Limit Theorem Spring 2014 Continuous Expectation and Variance, the Law of Large Numbers, and the Central Limit Theorem 18.5 Spring 214.5.4.3.2.1-4 -3-2 -1 1 2 3 4 January 1, 217 1 / 31 Expected value Expected value: measure of

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

Are data normally normally distributed?

Are data normally normally distributed? Standard Normal Image source Are data normally normally distributed? Sample mean: 66.78 Sample standard deviation: 3.37 (66.78-1 x 3.37, 66.78 + 1 x 3.37) (66.78-2 x 3.37, 66.78 + 2 x 3.37) (66.78-3 x

More information

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem Math/Stat 352 Lecture 10 Section 4.11 The Central Limit Theorem 1 Summing random variables Summing random variables Summing random variables Generally summation changes the shape of the distribution: range

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

Sections 5.1 and 5.2

Sections 5.1 and 5.2 Sections 5.1 and 5.2 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) 1 / 19 Sampling variability A random sample

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

1 MA421 Introduction. Ashis Gangopadhyay. Department of Mathematics and Statistics. Boston University. c Ashis Gangopadhyay

1 MA421 Introduction. Ashis Gangopadhyay. Department of Mathematics and Statistics. Boston University. c Ashis Gangopadhyay 1 MA421 Introduction Ashis Gangopadhyay Department of Mathematics and Statistics Boston University c Ashis Gangopadhyay 1.1 Introduction 1.1.1 Some key statistical concepts 1. Statistics: Art of data analysis,

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means 1 Supporting Australian Mathematics Project 2 3 4 6 7 8 9 1 11 12 A guide for teachers Years 11 and 12 Probability and statistics: Module 2 Inference for means Inference for means A guide for teachers

More information

Ch. 5 Joint Probability Distributions and Random Samples

Ch. 5 Joint Probability Distributions and Random Samples Ch. 5 Joint Probability Distributions and Random Samples 5. 1 Jointly Distributed Random Variables In chapters 3 and 4, we learned about probability distributions for a single random variable. However,

More information

Homework for 1/13 Due 1/22

Homework for 1/13 Due 1/22 Name: ID: Homework for 1/13 Due 1/22 1. [ 5-23] An irregularly shaped object of unknown area A is located in the unit square 0 x 1, 0 y 1. Consider a random point distributed uniformly over the square;

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Topic 7: Convergence of Random Variables

Topic 7: Convergence of Random Variables Topic 7: Convergence of Ranom Variables Course 003, 2016 Page 0 The Inference Problem So far, our starting point has been a given probability space (S, F, P). We now look at how to generate information

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

Sampling Distribution Models. Chapter 17

Sampling Distribution Models. Chapter 17 Sampling Distribution Models Chapter 17 Objectives: 1. Sampling Distribution Model 2. Sampling Variability (sampling error) 3. Sampling Distribution Model for a Proportion 4. Central Limit Theorem 5. Sampling

More information

Stat 101: Lecture 12. Summer 2006

Stat 101: Lecture 12. Summer 2006 Stat 101: Lecture 12 Summer 2006 Outline Answer Questions More on the CLT The Finite Population Correction Factor Confidence Intervals Problems More on the CLT Recall the Central Limit Theorem for averages:

More information

Conditional distributions (discrete case)

Conditional distributions (discrete case) Conditional distributions (discrete case) The basic idea behind conditional distributions is simple: Suppose (XY) is a jointly-distributed random vector with a discrete joint distribution. Then we can

More information

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

Sampling Distribution Models. Central Limit Theorem

Sampling Distribution Models. Central Limit Theorem Sampling Distribution Models Central Limit Theorem Thought Questions 1. 40% of large population disagree with new law. In parts a and b, think about role of sample size. a. If randomly sample 10 people,

More information

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals

Business Statistics: A Decision-Making Approach 6 th Edition. Chapter Goals Chapter 6 Student Lecture Notes 6-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 6 Introduction to Sampling Distributions Chap 6-1 Chapter Goals To use information from the sample

More information

Statistics, continued

Statistics, continued Statistics, continued Visual Displays of Data Since numbers often do not resonate with people, giving visual representations of data is often uses to make the data more meaningful. We will talk about a

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7 Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7 Steve Dunbar Due Mon, November 2, 2009. Time to review all of the information we have about coin-tossing fortunes

More information

The central limit theorem

The central limit theorem 14 The central limit theorem The central limit theorem is a refinement of the law of large numbers For a large number of independent identically distributed random variables X 1,,X n, with finite variance,

More information

Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions

Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions Probability versus Inference Behavior of Sample Proportions: Example Behavior of Sample Proportions: Conditions

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

CHAPTER 7. Parameters are numerical descriptive measures for populations.

CHAPTER 7. Parameters are numerical descriptive measures for populations. CHAPTER 7 Introduction Parameters are numerical descriptive measures for populations. For the normal distribution, the location and shape are described by µ and σ. For a binomial distribution consisting

More information

Topic 3 Random variables, expectation, and variance, II

Topic 3 Random variables, expectation, and variance, II CSE 103: Probability and statistics Fall 2010 Topic 3 Random variables, expectation, and variance, II 3.1 Linearity of expectation If you double each value of X, then you also double its average; that

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 19, 2018 CS 361: Probability & Statistics Random variables Markov s inequality This theorem says that for any random variable X and any value a, we have A random variable is unlikely to have an

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions 18.175: Lecture 8 Weak laws and moment-generating/characteristic functions Scott Sheffield MIT 18.175 Lecture 8 1 Outline Moment generating functions Weak law of large numbers: Markov/Chebyshev approach

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 6 Sampling and Sampling Distributions Ch. 6-1 Populations and Samples A Population is the set of all items or individuals of interest Examples: All

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 4: IT IS ALL ABOUT DATA 4a - 1 CHAPTER 4: IT

More information

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek Bhrushundi

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2 STA 248 H1S MIDTERM TEST February 26, 2008 SURNAME: SOLUTIONS GIVEN NAME: STUDENT NUMBER: INSTRUCTIONS: Time: 1 hour and 50 minutes Aids allowed: calculator Tables of the standard normal, t and chi-square

More information

Statistics and Data Analysis in Geology

Statistics and Data Analysis in Geology Statistics and Data Analysis in Geology 6. Normal Distribution probability plots central limits theorem Dr. Franz J Meyer Earth and Planetary Remote Sensing, University of Alaska Fairbanks 1 2 An Enormously

More information

Lecture 10. Variance and standard deviation

Lecture 10. Variance and standard deviation 18.440: Lecture 10 Variance and standard deviation Scott Sheffield MIT 1 Outline Defining variance Examples Properties Decomposition trick 2 Outline Defining variance Examples Properties Decomposition

More information

Probability. We will now begin to explore issues of uncertainty and randomness and how they affect our view of nature.

Probability. We will now begin to explore issues of uncertainty and randomness and how they affect our view of nature. Probability We will now begin to explore issues of uncertainty and randomness and how they affect our view of nature. We will explore in lab the differences between accuracy and precision, and the role

More information

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software Sampling: A Brief Review Workshop on Respondent-driven Sampling Analyst Software 201 1 Purpose To review some of the influences on estimates in design-based inference in classic survey sampling methods

More information

CMPT 882 Machine Learning

CMPT 882 Machine Learning CMPT 882 Machine Learning Lecture Notes Instructor: Dr. Oliver Schulte Scribe: Qidan Cheng and Yan Long Mar. 9, 2004 and Mar. 11, 2004-1 - Basic Definitions and Facts from Statistics 1. The Binomial Distribution

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

STA 291 Lecture 16. Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal

STA 291 Lecture 16. Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal STA 291 Lecture 16 Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately) normal X STA 291 - Lecture 16 1 Sampling Distributions Sampling

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 4 Student Lecture Notes 4-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 4 Using Probability and Probability Distributions Fundamentals of Business Statistics Murali Shanker

More information

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically.

(It's not always good, but we can always make it.) (4) Convert the normal distribution N to the standard normal distribution Z. Specically. . Introduction The quick summary, going forwards: Start with random variable X. 2 Compute the mean EX and variance 2 = varx. 3 Approximate X by the normal distribution N with mean µ = EX and standard deviation.

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

SCHOOL OF MATHEMATICS AND STATISTICS

SCHOOL OF MATHEMATICS AND STATISTICS RESTRICTED OPEN BOOK EXAMINATION (Not to be removed from the examination hall) Data provided: Statistics Tables by H.R. Neave MAS5052 SCHOOL OF MATHEMATICS AND STATISTICS Basic Statistics Spring Semester

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

LECTURE 1. Introduction to Econometrics

LECTURE 1. Introduction to Econometrics LECTURE 1 Introduction to Econometrics Ján Palguta September 20, 2016 1 / 29 WHAT IS ECONOMETRICS? To beginning students, it may seem as if econometrics is an overly complex obstacle to an otherwise useful

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Overview Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Confidence Intervals When a random variable lies in an interval a X b with a specified

More information

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N Probability Distributions Normal Probability Distribution N Chapter 6 Inference It was reported that the 2008 Super Bowl was watched by 97.5 million people. But how does anyone know that? They certainly

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Mathematics 47: Lecture 9 Dan Sloughter Furman University March 16, 2006 Dan Sloughter (Furman University) Sampling Distributions March 16, 2006 1 / 10 Definition We call the probability

More information

One-sample categorical data: approximate inference

One-sample categorical data: approximate inference One-sample categorical data: approximate inference Patrick Breheny October 6 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction It is relatively easy to think about the distribution

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM YOUR NAME: KEY: Answers in Blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017

STA 4321/5325 Solution to Extra Homework 1 February 8, 2017 STA 431/535 Solution to Etra Homework 1 February 8, 017 1. Show that for any RV X, V (X 0. (You can assume X to be discrete, but this result holds in general. Hence or otherwise show that E(X E (X. Solution.

More information

Stat 139 Homework 2 Solutions, Spring 2015

Stat 139 Homework 2 Solutions, Spring 2015 Stat 139 Homework 2 Solutions, Spring 2015 Problem 1. A pharmaceutical company is surveying through 50 different targeted compounds to try to determine whether any of them may be useful in treating migraine

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information