ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

Size: px
Start display at page:

Download "ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions"

Transcription

1 ACMS Statistics for Life Sciences Chapter 13: Sampling Distributions

2 Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments, we cannot rule out the possibility of incorrect inferences. So we ask: How often would this method give a correct answer if we used it a large number of times?

3 Some Terminology A parameter is a number which describes some aspect of a population. In practice, we don t know the value of a parameter because we cannot directly examine/measure the entire population. A statistic is a number that can be computed from the sample data, without making use of any unknown parameters. In practice we often use statistics to estimate an unknown parameter.

4 Mnemonic Device Statistics come from Samples. Parameters come from Populations.

5 An Illustration According to the 2008 Health and Nutrition Examination Survey, the mean weight of the sample of American adult males was x = pounds is a statistic. The population: all American adult males over the age of 20. The parameter: the mean weight of all the members of the population.

6 On Means We will always use µ to represent the mean of a population. This is a fixed parameter that is unknown when we use a sample for inference. We will always write x for the mean of the sample. This is the average of the observations in the sample.

7 The Key Question If the sample mean x is rarely exactly equal to the population mean µ and can vary from sample to sample, how can we consider it a reasonable estimate of µ?

8 The Answer... If we take larger and larger samples, the statistic x is guaranteed to get closer and closer to the parameter µ. This fact is known as the Law of Large Numbers.

9 The Law of Large Numbers 1 Recall: In the long run, the proportion of occurrences of a given outcome gets closer and closer to the probability of that outcome. E.g. the proportion of heads when tossing a fair coin gets closer to 1/2 in the long run. Similarly, in the long run, the average outcome gets close to the population mean.

10 The Law of Large Numbers 2 Using the basic laws of probability, we can prove the law of large numbers. The Law of Large Numbers applet is useful for illustrating the law.

11 A Word of Caution Only in the very long run does the sample mean get really close to the population mean, and so in this respect, the Law of Large Numbers is not very practical. However, the success of certain businesses, such as casinos and insurance companies, depends on the Law of Large numbers.

12 Sampling Distributions 1 The Law of Large Numbers = If we measure enough subjects the statistic x will eventually get close to the parameter µ. What if we can only take samples of a smaller size, say 10?

13 Sampling Distributions 2 What would happen if we took many samples of 10 subjects from this population? To answer this question: Take a large number of samples of size 10 from the population Calculate the sample mean x for each sample Make a histogram of the values of x Examine the distribution in the histogram (shape, center, spread, outliers, etc.)

14 By Way of Example... 1 High levels of dimethyl sulfide (DMS) in wine causes the wine to smell bad. Winemakers are thus interested in determining the odor threshold, the lowest concentration of DMS that the human nose can detect. The threshold varies from person to person, so we d like to find the mean threshold µ in the population of all adults. An SRS of size 10 yields the values and thus we have a sample mean x = 27.4.

15 By Way of Example... 2 It turns out that the DMS odor threshold of adults follows a roughly Normal distribution with µ = 25 mg/l and standard deviation σ = 7 mg/l. By following the procedure outlined before (taking 1,000 SRS s), we produce a histogram that displays the distribution of the values of x from the 1,000 SRS s. This histogram displays the sampling distribution of the statistic x.

16 By Way of Example... 3

17 The Official Definition The sampling distribution of a statistic is the distribution of values taken by the statistic over all possible samples of some fixed size from the population. Thus, the histogram on the previous slide actually displays an approximation to the sampling distribution of the statistic x. Important point: The sample mean is a random variable! Since good samples are chosen randomly, statistics such as the sample mean x are random variables. Thus we can describe the behavior of a sample statistic by means of a probability model.

18 An Important Difference The law of large numbers describes what would happen if we took random samples of increasing size n. A sampling distribution describes what would happen if we took all random samples of a fixed size n.

19 Examining the Sampling Distribution Shape: It appears to be Normal. Center: The mean of the 1000 x s is 24.95, very close to the population mean µ = 25. Spread: The s.d. of the 1000 x s is 2.217, much smaller than the population s.d. σ = 7.

20 A General Fact When we choose many SRSs from a population, the sampling distribution of the sample means is centered at the mean of the original population. But the sampling distribution is also less spread out than the distribution of individual observations.

21 More Precisely Suppose that x is the mean of an SRS of size n drawn from a large population with mean µ and standard deviation σ. Then the sampling distribution of x has mean µ x and standard deviation σ x = σ/ n. Note that µ x = µ. This notation is simply to tell the difference between the two distributions. Because the mean of the sampling distribution of the statistic x, µ x is equal to µ, we say that the statistic x is an unbiased estimator of the parameter µ.

22 Unbiased Estimators An unbiased estimator is correct on the average over many samples. Just how close the estimator will be to the parameter in most samples is determined by the spread of the sampling distribution. If the individual observations have s.d. σ, then sample means x from samples of size n have s.d. σ/ n. Thus, averages are less variable than individual observations.

23 For a Normal Population If individual observations have the distribution N(µ, σ), then the sample mean x of an SRS of size n has the distribution N(µ, σ/ n).

24 Seeing is Believing

25 Non-Normal Distributions? We know what the values of the mean and standard deviation of x will be, regardless of the population distribution. But what can be known about the shape of the sampling distribution? Population Distribution Sampling Distribution is Normal. is Normal. Population Distribution Sampling Distribution is not Normal. is?????.

26 Central Limit Theorem Remarkably, as the sample size of a non-normal population increases, the sampling distribution of x changes shape. In fact, the sampling distribution starts to look more like a Normal distribution regardless of what the population distribution looks like. This idea is the Central Limit Theorem.

27 The Official Definition Draw an SRS of size n from any population with mean µ and standard deviation σ. When n is large, the sampling distribution of the sample mean x is approximately Normal: x is a random variable with distribuition (roughly) N(µ, σ/ n)

28 So Why Do We Care? The Central Limit Theorem allows us to use Normal probability calculations to answer questions about sample means, even if the population distribution is not Normal.

29 Central Limit in Action (a) Strongly skewed population distribution. (b) Sampling distribution of x with n = 2. (c) Sampling distribution of x with n = 10. (d) Sampling distribution of x with n = 25.

30 Warning! The CLT applies to sampling distributions, not the distribution of a sample. Now I m confused. Larger sample size more Normal distribution of a sample. Skewed population will likely have skewed random samples. The CLT only describes the distribution of averages for repeated samples.

31 Sample Sizes 1 How large does the sample need to be for the sampling distribution of x to be close to Normal? The answer depends on the population distribution. Farther from Normal More observations per sample needed

32 Sample Sizes 2 General rule of thumb for sample size n: Skewed populations Sample of size 25 is generally enough to obtain a Normal sampling distribution. Extremely skewed populations Sample of size 40 is generally enough to obtain a Normal sampling distribution.

33 Sample Sizes 3 Angle of big toe deformations in 28 patients. Population likely close to Normal, so sampling distribution should be Normal.

34 Sample Sizes 4 Servings of fruit per day for 74 adolescent girls. Population likely skewed, but sampling distribution should be Normal due to large sample size.

35 CLT and Sampling Distributions There are a few helpful facts that come out of the Central Limit Theorem. These are always true, regardless of population distribution. Means of random samples are less variable than individual observations. Means of random samples are more Normal than individual observations.

36 Sampling Distributions for Probabilities We have seen that sampling distributions are useful for analyzing the means of quantitative variables. But what if we have a categorical variable instead? Fortunately, we can use the sampling distribution of ˆp.

37 Probability and Categorical Variables Categorical variables can take any of a finite number of possible outcomes. We choose one such outcome and call it a success. All other outcomes are then non-successes or failures. Note: This is an arbitrary choice, not a moral judgment.

38 Terminology An experiment finds that 6 of 20 birds exposed to an avian flu strain develop flu symptoms. We say the random variable X = the number of birds with flu symptoms. Recall: X is a count of the successes of this categorical variable in a fixed number of observations.

39 Terminology If the number of observations is labeled as n, then the sample proportion is ˆp = count of successes in sample size of sample = X n Similar to the sample average x, we can find the sampling distribution for ˆp.

40 Recall: Binomial Distribution As we saw last week, a binomial distribution consists of n observations and constant probability of success p for each observation. Here we will rely heavily on the fact that the binomial distribution (which is discrete) can be approximated by a Normal distribution.

41 Recall: Normal Approximation to Binomial Distribution Suppose a count X has a binomial distribution with n observations and success probability p. When n is large, the distribution of X is approximately Normal with distribution N(np, np(1 p)) As a rule of thumb, n should be large enough for the count of successes and failures to be at least 10 each.

42 Sampling Distribution of a Sample Proportion A count of successes has limited use when comparing different studies (as the sample sizes may differ drastically). Instead if we consider the sample proportion ˆp as our preferred sample statistic, this is much more informative. How good is the statistic ˆp as an estimate of the parameter p? Again we ask: What happens with many samples?

43 The Official Definition Choose an SRS of size n from a large population that has proportion p of successes. Let ˆp be the sample proportion of successes, Then: ˆp = count of successes in the sample n The mean of the sampling distribution is p. The standard deviation of the sampling distribution is p(1 p)/n. As the sample size increases, the sampling distribution of ˆp becomes approximately Normal.

44 Summary in Picture Form

45 Warning! Do not use the Normal approximation for the sampling distribution of ˆp when the sample size is small. Also, the population should be much larger than the sample. We ll say, at least 20 times larger, as a rule of thumb. This approximation is least accurate when p is close to 0 or 1. (Our sample would contain only successes or failures unless n is very large.)

46 Example: Who Gets the Flu? Suppose that we know that 2.5% of all American adults were sick with the flu on a given day of January The Gallup-Healthways survey interviewed a random sample of 29,483 people and asked them this question. What is the probability that at least 2.3% of such a sample would answer yes in the survey?

47 Example: Who Gets the Flu? The population proportion is about p = and n = 29, 483. So the sample proportion ˆp has mean and standard deviation p(1 p) = n (0.025)(0.975) 29, 483 =

48 Example: Who Gets the Flu? We want the probability that ˆp is or greater. First we standardize ˆp and call the corresponding statistic z. z = ˆp Now finish the calculation. P(ˆp 0.023) = P ( ˆp = P(z 2.20) = = )

49 Example: Who Gets the Flu? There is a more than 98% chance that any sample the Gallup-Healthways survey conducts will contain at least 2.3% who say yes.

Notice that these facts about the mean and standard deviation of X are true no matter what shape the population distribution has

Notice that these facts about the mean and standard deviation of X are true no matter what shape the population distribution has 7.3.1 The Sampling Distribution of x- bar: Mean and Standard Deviation The figure above suggests that when we choose many SRSs from a population, the sampling distribution of the sample mean is centered

More information

Sampling Distribution Models. Chapter 17

Sampling Distribution Models. Chapter 17 Sampling Distribution Models Chapter 17 Objectives: 1. Sampling Distribution Model 2. Sampling Variability (sampling error) 3. Sampling Distribution Model for a Proportion 4. Central Limit Theorem 5. Sampling

More information

13. Sampling distributions

13. Sampling distributions 13. Sampling distributions The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 13) Sampling distributions Parameter versus statistic Sampling

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models Chapter 18 Sampling Distribution Models The histogram above is a simulation of what we'd get if we could see all the proportions from all possible samples. The distribution has a special name. It's called

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

Chapter 15 Sampling Distribution Models

Chapter 15 Sampling Distribution Models Chapter 15 Sampling Distribution Models 1 15.1 Sampling Distribution of a Proportion 2 Sampling About Evolution According to a Gallup poll, 43% believe in evolution. Assume this is true of all Americans.

More information

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N Probability Distributions Normal Probability Distribution N Chapter 6 Inference It was reported that the 2008 Super Bowl was watched by 97.5 million people. But how does anyone know that? They certainly

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny March 1 Patrick Breheny STA 580: Biostatistics I 1/23 Kerrich s experiment A South African mathematician named John Kerrich was visiting Copenhagen in 1940 when

More information

Sampling Distribution Models. Central Limit Theorem

Sampling Distribution Models. Central Limit Theorem Sampling Distribution Models Central Limit Theorem Thought Questions 1. 40% of large population disagree with new law. In parts a and b, think about role of sample size. a. If randomly sample 10 people,

More information

Statistic: a that can be from a sample without making use of any unknown. In practice we will use to establish unknown parameters.

Statistic: a that can be from a sample without making use of any unknown. In practice we will use to establish unknown parameters. Chapter 9: Sampling Distributions 9.1: Sampling Distributions IDEA: How often would a given method of sampling give a correct answer if it was repeated many times? That is, if you took repeated samples

More information

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions ACMS 20340 Statistics for Life Sciences Chapter 11: The Normal Distributions Introducing the Normal Distributions The class of Normal distributions is the most widely used variety of continuous probability

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 1 CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 Outline 2 Sampling Distribution for Proportions Sample Proportions The mean The standard deviation The Distribution Model Assumptions and Conditions Sampling

More information

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability ACMS 20340 Statistics for Life Sciences Chapter 9: Introducing Probability Why Consider Probability? We re doing statistics here. Why should we bother with probability? As we will see, probability plays

More information

Lecture 10A: Chapter 8, Section 1 Sampling Distributions: Proportions

Lecture 10A: Chapter 8, Section 1 Sampling Distributions: Proportions Lecture 10A: Chapter 8, Section 1 Sampling Distributions: Proportions Typical Inference Problem Definition of Sampling Distribution 3 Approaches to Understanding Sampling Dist. Applying 68-95-99.7 Rule

More information

Stat 101: Lecture 12. Summer 2006

Stat 101: Lecture 12. Summer 2006 Stat 101: Lecture 12 Summer 2006 Outline Answer Questions More on the CLT The Finite Population Correction Factor Confidence Intervals Problems More on the CLT Recall the Central Limit Theorem for averages:

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

CHAPTER. Sampling Distributions. Parameters and statistics. In this chapter we cover...

CHAPTER. Sampling Distributions. Parameters and statistics. In this chapter we cover... Gandee Vasan/Getty Images Sampling Distributions How much on the average do American households earn? The government s Current Population Survey contacted a sample of 113,146 households in March 2005.

More information

Sampling Distribution: Week 6

Sampling Distribution: Week 6 Sampling Distribution: Week 6 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 27, 2015 Kwonsang Lee STAT111 February 27, 2015 1 / 16 Sampling Distribution: Sample Mean If X 1,

More information

One-sample categorical data: approximate inference

One-sample categorical data: approximate inference One-sample categorical data: approximate inference Patrick Breheny October 6 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction It is relatively easy to think about the distribution

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny September 27 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 31 Kerrich s experiment Introduction 10,000 coin flips Expectation and

More information

Topics for Today. Sampling Distribution. The Central Limit Theorem. Stat203 Page 1 of 28 Fall 2011 Week 5 Lecture 2

Topics for Today. Sampling Distribution. The Central Limit Theorem. Stat203 Page 1 of 28 Fall 2011 Week 5 Lecture 2 Topics for Today Sampling Distribution The Central Limit Theorem Stat203 Page 1 of 28 Law of Large Numbers Draw at from any population with mean μ. As the number of individuals, the mean,, of the sample

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic Section 8.1A What Is a Sampling Distribution? Learning Objectives After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution DISTINGUISH between

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 19, 2018 CS 361: Probability & Statistics Random variables Markov s inequality This theorem says that for any random variable X and any value a, we have A random variable is unlikely to have an

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li)

Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li) Carolyn Anderson & YoungShil Paek (Slide contributors: Shuai Wang, Yi Zheng, Michael Culbertson, & Haiyan Li) Department of Educational Psychology University of Illinois at Urbana-Champaign 1 Inferential

More information

Chapter 18: Sampling Distributions

Chapter 18: Sampling Distributions Chapter 18: Sampling Distributions All random variables have probability distributions, and as statistics are random variables, they too have distributions. The random phenomenon that produces the statistics

More information

Sampling Distributions. Introduction to Inference

Sampling Distributions. Introduction to Inference Sampling Distributions Introduction to Inference Parameter A parameter is a number that describes the population. A parameter always exists but in practice we rarely know it s value because we cannot examine

More information

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari DATA 8 Spring 2018 Lecture 27 Sample Averages Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Announcements Questions for This Week How can we quantify natural

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

7.1: What is a Sampling Distribution?!?!

7.1: What is a Sampling Distribution?!?! 7.1: What is a Sampling Distribution?!?! Section 7.1 What Is a Sampling Distribution? After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution

More information

Lecture 8 Continuous Random Variables

Lecture 8 Continuous Random Variables Lecture 8 Continuous Random Variables Example: The random number generator will spread its output uniformly across the entire interval from 0 to 1 as we allow it to generate a long sequence of numbers.

More information

Essentials of Statistics and Probability

Essentials of Statistics and Probability May 22, 2007 Department of Statistics, NC State University dbsharma@ncsu.edu SAMSI Undergrad Workshop Overview Practical Statistical Thinking Introduction Data and Distributions Variables and Distributions

More information

Lecture 7: Confidence interval and Normal approximation

Lecture 7: Confidence interval and Normal approximation Lecture 7: Confidence interval and Normal approximation 26th of November 2015 Confidence interval 26th of November 2015 1 / 23 Random sample and uncertainty Example: we aim at estimating the average height

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Sampling Distribution and Central Limit Theorem Monia Ranalli monia.ranalli@uniroma3.it Ranalli M. Theoretical Foundations - Sampling Distribution and Central Limit Theorem Lesson

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Chapter 7 Sampling Distributions

Chapter 7 Sampling Distributions Statistical inference looks at how often would this method give a correct answer if it was used many many times. Statistical inference works best when we produce data by random sampling or randomized comparative

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean Confidence Intervals Confidence interval for sample mean The CLT tells us: as the sample size n increases, the sample mean is approximately Normal with mean and standard deviation Thus, we have a standard

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

Statistical Experiment A statistical experiment is any process by which measurements are obtained.

Statistical Experiment A statistical experiment is any process by which measurements are obtained. (التوزيعات الا حتمالية ( Distributions Probability Statistical Experiment A statistical experiment is any process by which measurements are obtained. Examples of Statistical Experiments Counting the number

More information

Two-sample Categorical data: Testing

Two-sample Categorical data: Testing Two-sample Categorical data: Testing Patrick Breheny April 1 Patrick Breheny Introduction to Biostatistics (171:161) 1/28 Separate vs. paired samples Despite the fact that paired samples usually offer

More information

CONTENTS OF DAY 2. II. Why Random Sampling is Important 10 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

CONTENTS OF DAY 2. II. Why Random Sampling is Important 10 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 4 Problems with small populations 9 II. Why Random Sampling is Important 10 A myth,

More information

THE SAMPLING DISTRIBUTION OF THE MEAN

THE SAMPLING DISTRIBUTION OF THE MEAN THE SAMPLING DISTRIBUTION OF THE MEAN COGS 14B JANUARY 26, 2017 TODAY Sampling Distributions Sampling Distribution of the Mean Central Limit Theorem INFERENTIAL STATISTICS Inferential statistics: allows

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

Descriptive statistics

Descriptive statistics Patrick Breheny February 6 Patrick Breheny to Biostatistics (171:161) 1/25 Tables and figures Human beings are not good at sifting through large streams of data; we understand data much better when it

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

(A) Incorrect! A parameter is a number that describes the population. (C) Incorrect! In a Random Sample, not just a sample.

(A) Incorrect! A parameter is a number that describes the population. (C) Incorrect! In a Random Sample, not just a sample. AP Statistics - Problem Drill 15: Sampling Distributions No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper 1. Which one of the following

More information

Introduction to Measurement Physics 114 Eyres

Introduction to Measurement Physics 114 Eyres 1 Introduction to Measurement Physics 114 Eyres 6/5/2016 Module 1: Measurement 1 2 Significant Figures Count all non-zero digits Count zeros between non-zero digits Count zeros after the decimal if also

More information

MATH Chapter 21 Notes Two Sample Problems

MATH Chapter 21 Notes Two Sample Problems MATH 1070 - Chapter 21 Notes Two Sample Problems Recall: So far, we have dealt with inference (confidence intervals and hypothesis testing) pertaining to: Single sample of data. A matched pairs design

More information

Stat 135 Fall 2013 FINAL EXAM December 18, 2013

Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Name: Person on right SID: Person on left There will be one, double sided, handwritten, 8.5in x 11in page of notes allowed during the exam. The exam is closed

More information

Ch18 links / ch18 pdf links Ch18 image t-dist table

Ch18 links / ch18 pdf links Ch18 image t-dist table Ch18 links / ch18 pdf links Ch18 image t-dist table ch18 (inference about population mean) exercises: 18.3, 18.5, 18.7, 18.9, 18.15, 18.17, 18.19, 18.27 CHAPTER 18: Inference about a Population Mean The

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 1 Activity 9A, pp. 486-487 2 We ve just begun a sampling distribution! Strictly speaking, a sampling distribution is: A theoretical distribution of the values of a statistic

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

Chapter 4: An Introduction to Probability and Statistics

Chapter 4: An Introduction to Probability and Statistics Chapter 4: An Introduction to Probability and Statistics 4. Probability The simplest kinds of probabilities to understand are reflected in everyday ideas like these: (i) if you toss a coin, the probability

More information

What is a parameter? What is a statistic? How is one related to the other?

What is a parameter? What is a statistic? How is one related to the other? Chapter Seven: SAMPLING DISTRIBUTIONS 7.1 Sampling Distributions Read 424 425 What is a parameter? What is a statistic? How is one related to the other? Example: Identify the population, the parameter,

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

Last few slides from last time

Last few slides from last time Last few slides from last time Example 3: What is the probability that p will fall in a certain range, given p? Flip a coin 50 times. If the coin is fair (p=0.5), what is the probability of getting an

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Section 1.3 with Numbers The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE Chapter 1 Exploring Data Introduction: Data Analysis: Making Sense of Data 1.1

More information

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Overview Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Confidence Intervals When a random variable lies in an interval a X b with a specified

More information

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Bernoulli Distribution. Binomial Distribution. Poisson Distribution. Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem Math/Stat 352 Lecture 10 Section 4.11 The Central Limit Theorem 1 Summing random variables Summing random variables Summing random variables Generally summation changes the shape of the distribution: range

More information

What is a parameter? What is a statistic? How is one related to the other?

What is a parameter? What is a statistic? How is one related to the other? 7.1 Sampling Distributions Read 424 425 What is a parameter? What is a statistic? How is one related to the other? Alternate Example: Identify the population, the parameter, the sample, and the statistic:

More information

Probability. Hosung Sohn

Probability. Hosung Sohn Probability Hosung Sohn Department of Public Administration and International Affairs Maxwell School of Citizenship and Public Affairs Syracuse University Lecture Slide 4-3 (October 8, 2015) 1/ 43 Table

More information

Probability Distributions.

Probability Distributions. Probability Distributions http://www.pelagicos.net/classes_biometry_fa18.htm Probability Measuring Discrete Outcomes Plotting probabilities for discrete outcomes: 0.6 0.5 0.4 0.3 0.2 0.1 NOTE: Area within

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Suppose n tickets are drawn at random with replacement from a box of numbered tickets. The central limit theorem says that when the probability histogram for the sum of the draws

More information

Performance of fourth-grade students on an agility test

Performance of fourth-grade students on an agility test Starter Ch. 5 2005 #1a CW Ch. 4: Regression L1 L2 87 88 84 86 83 73 81 67 78 83 65 80 50 78 78? 93? 86? Create a scatterplot Find the equation of the regression line Predict the scores Chapter 5: Understanding

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Lab 5 for Math 17: Sampling Distributions and Applications

Lab 5 for Math 17: Sampling Distributions and Applications Lab 5 for Math 17: Sampling Distributions and Applications Recall: The distribution formed by considering the value of a statistic for every possible sample of a given size n from the population is called

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers Random processes Lecture 17: Probability, Part 1 Statistics 10 Colin Rundel March 26, 2012 A random process is a situation in which we know what outcomes could happen, but we don t know which particular

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Review Our objective: to make confident statements about a parameter (aspect) in

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Chapter 8: Sampling Distributions. A survey conducted by the U.S. Census Bureau on a continual basis. Sample

Chapter 8: Sampling Distributions. A survey conducted by the U.S. Census Bureau on a continual basis. Sample Chapter 8: Sampling Distributions Section 8.1 Distribution of the Sample Mean Frequently, samples are taken from a large population. Example: American Community Survey (ACS) A survey conducted by the U.S.

More information

University of Jordan Fall 2009/2010 Department of Mathematics

University of Jordan Fall 2009/2010 Department of Mathematics handouts Part 1 (Chapter 1 - Chapter 5) University of Jordan Fall 009/010 Department of Mathematics Chapter 1 Introduction to Introduction; Some Basic Concepts Statistics is a science related to making

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

Resistant Measure - A statistic that is not affected very much by extreme observations.

Resistant Measure - A statistic that is not affected very much by extreme observations. Chapter 1.3 Lecture Notes & Examples Section 1.3 Describing Quantitative Data with Numbers (pp. 50-74) 1.3.1 Measuring Center: The Mean Mean - The arithmetic average. To find the mean (pronounced x bar)

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Week 11 Sample Means, CLT, Correlation

Week 11 Sample Means, CLT, Correlation Week 11 Sample Means, CLT, Correlation Slides by Suraj Rampure Fall 2017 Administrative Notes Complete the mid semester survey on Piazza by Nov. 8! If 85% of the class fills it out, everyone will get a

More information

Sections 5.1 and 5.2

Sections 5.1 and 5.2 Sections 5.1 and 5.2 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) 1 / 19 Sampling variability A random sample

More information

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G.

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright Arthur G. Werschulz, 2017.

More information

Section 7.1 How Likely are the Possible Values of a Statistic? The Sampling Distribution of the Proportion

Section 7.1 How Likely are the Possible Values of a Statistic? The Sampling Distribution of the Proportion Section 7.1 How Likely are the Possible Values of a Statistic? The Sampling Distribution of the Proportion CNN / USA Today / Gallup Poll September 22-24, 2008 www.poll.gallup.com 12% of Americans describe

More information

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10 Chapter 18 Sampling Distribution Models Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 10 Population VS Sample Example 18.1 Suppose a total of 10,000 patients in a hospital and

More information

Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions + Chapter 7: Sampling Distributions Section 7.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Chapter 7 Sampling Distributions n 7.1 What is a Sampling Distribution? n 7.2 n

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Probability Distributions

Probability Distributions Probability Distributions Probability This is not a math class, or an applied math class, or a statistics class; but it is a computer science course! Still, probability, which is a math-y concept underlies

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics Key Words Sampling Distributions Distribution of the Sample Mean Distribution of the difference between Two Sample Means

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information