Some appications of free stochastic calculus to II 1 factors.

Size: px
Start display at page:

Download "Some appications of free stochastic calculus to II 1 factors."

Transcription

1 Some appications of free stochastic calculus to II 1 factors. Dima Shlyakhtenko UCLA

2 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

3 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

4 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

5 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

6 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

7 Free Entropy Dimension (Voiculescu) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

8 Denition of δ(g) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

9 Denition of δ(g) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

10 Denition of δ(g) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

11 Denition of δ(g) G = S nitely generated discrete group, τ G : CF S C. ω Mn n = M 1 k=1 k k/{(x k ) : lim k ω k Tr(x k x k) = 0} Γ(G) = τ G -preserving homomorhisms G ω M n n

12 Properties of δ(g) You can think of Γ(G) as an analog of the set A(G) = {homomorphisms G Aut(X, µ)}.

13 Properties of δ(g) You can think of Γ(G) as an analog of the set A(G) = {homomorphisms G Aut(X, µ)}.

14 Properties of δ(g) You can think of Γ(G) as an analog of the set A(G) = {homomorphisms G Aut(X, µ)}.

15 More on δ(g)

16 More on δ(g)

17 More on δ(g)

18 More on δ(g)

19 Vanishing results. There are by now many theorems that imply that under some conditions, δ must be 1.

20 Vanishing results. There are by now many theorems that imply that under some conditions, δ must be 1.

21 Vanishing results. There are by now many theorems that imply that under some conditions, δ must be 1.

22 Vanishing results. There are by now many theorems that imply that under some conditions, δ must be 1.

23 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

24 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

25 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

26 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

27 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

28 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. To prove the conjecture one needs: G) dim L(G) {space of l 2 (G)-valued cocycles} (i on-cojugate actions in Γ(G), then there are nondim L(G) {space of l 2 (G)-va es, to produce many non-con

29 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. On the other hand, the second direction: δ(g) dim L(G) {space of l 2 (G)-valued cocycles} looks constructive/easy. Given c : G l 2 (G) construct elements in Γ(G).

30 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. On the other hand, the second direction: looks constructive/easy. δ(g) dim L(G) {space of l 2 (G)-valued cocycles}

31 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. On the other hand, the second direction: looks constructive/easy. δ(g) dim L(G) {space of l 2 (G)-valued cocycles}

32 δ(g) = β (2) 1 (G) β(2) 0 (G) + 1. On the other hand, the second direction: looks constructive/easy. δ(g) dim L(G) {space of l 2 (G)-valued cocycles}

33 Deformations and estimate on δ. Let S 1,..., S m be a free semicircular family in L(F ).

34 Deformations and estimate on δ. Let S 1,..., S m be a free semicircular family in L(F ).

35 Deformations and estimate on δ. Let S 1,..., S m be a free semicircular family in L(F ).

36 Stochastic Calculus Main input: Brownian motion process: family of random variables B([s, t)), t > s 0 so that B([s, t)) are Gaussian, B([s, t)) + B([t, r)) = B([s, r)) if s < t < r and B([s, t)) is independent from B([s, t )) if [s, t) [s, t ] =. Then one can write B([0, t)) = ˆ t 0 db t. Furthermore, for nice enough probability measures µ, there exists a process X t with the properties that: X t is stationary, i.e., X t has distribution µ for all t X t satises the stochastic dierential equation dx t = ϕ(x t ) db t ζ(x t )dt (Note: db t O(t 1/2 )). Dima Shlyakhtenko (UCLA) Some appications of free stochastic calculus to II 1 factors. 10 / 16

37 dxt = ϕ(xt) dbt ζ(xt)dt Very roughly, this means that In particular, the map X t+ϵ = X t + ϕ(x t )B[t, t + ϵ] ζ(x t )ϵ + O(ϵ 3/2 ) }{{} O(ε 1/2 ) f (X ) f (X t 2) gives rise to an isomoprhism α t : L (R, µ) W (X t ) W (X, B[s, t] : s < t) which satises α t (f (X )) = f (X ) + ϕ(x )f (X )B([0, t 2 )) +O(t 2 ) }{{} O(t) (i.e., it exponentiates the derivation (f ) = ϕf, : polynomials L 2 (R, µ)). Dima Shlyakhtenko (UCLA) Some appications of free stochastic calculus to II 1 factors. 11 / 16

38 Free Stochastic Dierential Equations Main fact: L(F ) is generated by a family of self-adjoint elements S([0, t)) = {Sk ([0, t))} n associated to intervals [0, t) R, t 0. For all t, k=1 S([0, t)) is a free semicircular family and S([0, t)) is free from S([0, t )) S([0, t)) if t > t. S([0, t)) is the free analog of Brownian motion on R n measured at time t.

39 Free Stochastic Dierential Equations Main fact: L(F ) is generated by a family of self-adjoint elements S([0, t)) = {Sk ([0, t))} n associated to intervals [0, t) R, t 0. For all t, k=1 S([0, t)) is a free semicircular family and S([0, t)) is free from S([0, t )) S([0, t)) if t > t.

40 Free Stochastic Dierential Equations Main fact: L(F ) is generated by a family of self-adjoint elements S([0, t)) = {Sk ([0, t))} n associated to intervals [0, t) R, t 0. For all t, k=1 S([0, t)) is a free semicircular family and S([0, t)) is free from S([0, t )) S([0, t)) if t > t.

41 Stationary solutions. If X t is a stationary solution (this means that t τ(f ( X t )) = 0 for all non-commutative polynomials f ), then the map α t 2 : f ( X ) f ( X t 2) extends to an isomorphism from W ( X ) to W (X t ) W ( X, S([s, t)) : s < t). Moreover, α t (X j ) = X j + (X j )#d S t 2 + O(t 2 ). so we can apply the estimate on δ.

42 Existence of stationary solutions.... is a somewhat subtle problem in the non-commutative case.

43 Existence of stationary solutions. at subtle problem in the non-commutative case.

44 Existence of stationary solutions. at subtle problem in the non-commutative case.

45 Existence of stationary solutions. at subtle problem in the non-commutative case.

46 Group case. As a corollary you get: δ(g) = β (2) (G) β(2) (G) provided that H 1 (G; l 2 (G)) can be generated by a cocycle whose values at the generators of G are analytic (i.e., are convergent non-commutative power series rather than arbitrary elements of l 2 ).

47 Group case. As a corollary you get: δ(g) = β (2) (G) β(2) (G) provided that H 1 (G; l 2 (G)) can be generated by a cocycle whose values at the generators of G are analytic (i.e., are convergent non-commutative power series rather than arbitrary elements of l 2 ).

48 Group case. As a corollary you get: δ(g) = β (2) (G) β(2) (G) provided that H 1 (G; l 2 (G)) can be generated by a cocycle whose values at the generators of G are analytic (i.e., are convergent non-commutative power series rather than arbitrary elements of l 2 ).

49 Group case. As a corollary you get: δ(g) = β (2) (G) β(2) (G) provided that H 1 (G; l 2 (G)) can be generated by a cocycle whose values at the generators of G are analytic (i.e., are convergent non-commutative power series rather than arbitrary elements of l 2 ).

50 Deformations The lower estimate we get this way on δ is (with few exceptions) the best known so far.

51 Deformations The lower estimate we get this way on δ is (with few exceptions) the best known so far.

52 Deformations The lower estimate we get this way on δ is (with few exceptions) the best known so far.

53 Deformations The lower estimate we get this way on δ is (with few exceptions) the best known so far.

54 Deformations The lower estimate we get this way on δ is (with few exceptions) the best known so far.

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

An Introduction to Stochastic Partial Dierential Equations

An Introduction to Stochastic Partial Dierential Equations An Introduction to Stochastic Partial Dierential Equations Herry Pribawanto Suryawan Dept. of Mathematics, Sanata Dharma University, Yogyakarta 29. August 2014 Herry Pribawanto Suryawan (Math USD) SNAMA

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich From random matrices to free groups, through non-crossing partitions Michael Anshelevich March 4, 22 RANDOM MATRICES For each N, A (N), B (N) = independent N N symmetric Gaussian random matrices, i.e.

More information

From Fractional Brownian Motion to Multifractional Brownian Motion

From Fractional Brownian Motion to Multifractional Brownian Motion From Fractional Brownian Motion to Multifractional Brownian Motion Antoine Ayache USTL (Lille) Antoine.Ayache@math.univ-lille1.fr Cassino December 2010 A.Ayache (USTL) From FBM to MBM Cassino December

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Differential of the Exponential Map

Differential of the Exponential Map Differential of the Exponential Map Ethan Eade May 20, 207 Introduction This document computes ɛ0 log x + ɛ x ɛ where and log are the onential mapping and its inverse in a Lie group, and x and ɛ are elements

More information

Limit Laws for Random Matrices from Traffic Probability

Limit Laws for Random Matrices from Traffic Probability Limit Laws for Random Matrices from Traffic Probability arxiv:1601.02188 Slides available at math.berkeley.edu/ bensonau Benson Au UC Berkeley May 9th, 2016 Benson Au (UC Berkeley) Random Matrices from

More information

CGP INTENSIVE LECTURE SERIES ATSUSHI TAKAHASHI

CGP INTENSIVE LECTURE SERIES ATSUSHI TAKAHASHI CGP INTENSIVE LECTURE SERIES ATSUSHI TAKAHASHI GABRIEL C. DRUMMOND-COLE. May : On entropies of autoequivalences on smooth projective varieties I d like to thank Jae-Suk but unfortunately he isn t here.

More information

C*-algebras, composition operators and dynamics

C*-algebras, composition operators and dynamics University of Florida SEAM 23, March 9, 2007 The setting: D = fjzj < 1g C T = @D = fjzj = 1g dm=normalized Lebesgue measure on T ' : D! D holomorphic (' 6= const.) H 2 = Hardy space, P : L 2! H 2 Riesz

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Lecture III: Applications of Voiculescu s random matrix model to operator algebras

Lecture III: Applications of Voiculescu s random matrix model to operator algebras Lecture III: Applications of Voiculescu s random matrix model to operator algebras Steen Thorbjørnsen, University of Aarhus Voiculescu s Random Matrix Model Theorem [Voiculescu]. For each n in N, let X

More information

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1].

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1]. THEOREM OF OSELEDETS We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets []. 0.. Cocycles over maps. Let µ be a probability measure

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-Field SDE s with Irregular Drift Thilo Meyer-Brandis University of Munich joint with M. Bauer, University of Munich Conference for the 1th Anniversary

More information

Von Neumann algebras and ergodic theory of group actions

Von Neumann algebras and ergodic theory of group actions Von Neumann algebras and ergodic theory of group actions CEMPI Inaugural Conference Lille, September 2012 Stefaan Vaes Supported by ERC Starting Grant VNALG-200749 1/21 Functional analysis Hilbert space

More information

UCLA UCLA Electronic Theses and Dissertations

UCLA UCLA Electronic Theses and Dissertations UCLA UCLA Electronic Theses and Dissertations Title Approximations in Operator Theory and Free Probability Permalink https://escholarship.org/uc/item/9wv6f1z6 Author Skoufranis, Paul Daniel Publication

More information

1 The Classical Theory [in brief]

1 The Classical Theory [in brief] An Introduction to Modular Symbols This is a preparatory talk for Rob Harron's talk; he will talk about overconvergent modular symbols and families of p-adic modular forms. The goal of this talk is to

More information

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g

Letting p shows that {B t } t 0. Definition 0.5. For λ R let δ λ : A (V ) A (V ) be defined by. 1 = g (symmetric), and. 3. g 4 Contents.1 Lie group p variation results Suppose G, d) is a group equipped with a left invariant metric, i.e. Let a := d e, a), then d ca, cb) = d a, b) for all a, b, c G. d a, b) = d e, a 1 b ) = a

More information

FREE PROBABILITY THEORY

FREE PROBABILITY THEORY FREE PROBABILITY THEORY ROLAND SPEICHER Lecture 4 Applications of Freeness to Operator Algebras Now we want to see what kind of information the idea can yield that free group factors can be realized by

More information

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams.

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams. CONTINUITY Abstract. Continuity, tensor products, complete lattices, the Tarski Fixed Point Theorem, existence of adjoints, Freyd s Adjoint Functor Theorem 1. Continuity 1.1. Preserving limits and colimits.

More information

Combinatorial Aspects of Free Probability and Free Stochastic Calculus

Combinatorial Aspects of Free Probability and Free Stochastic Calculus Combinatorial Aspects of Free Probability and Free Stochastic Calculus Roland Speicher Saarland University Saarbrücken, Germany supported by ERC Advanced Grant Non-Commutative Distributions in Free Probability

More information

Free Probability Theory and Non-crossing Partitions. Roland Speicher Queen s University Kingston, Canada

Free Probability Theory and Non-crossing Partitions. Roland Speicher Queen s University Kingston, Canada Free Probability Theory and Non-crossing Partitions Roland Speicher Queen s University Kingston, Canada Freeness Definition [Voiculescu 1985]: Let (A, ϕ) be a non-commutative probability space, i.e. A

More information

De Rham Cohomology. Smooth singular cochains. (Hatcher, 2.1)

De Rham Cohomology. Smooth singular cochains. (Hatcher, 2.1) II. De Rham Cohomology There is an obvious similarity between the condition d o q 1 d q = 0 for the differentials in a singular chain complex and the condition d[q] o d[q 1] = 0 which is satisfied by the

More information

ANALYSIS & PDE. mathematical sciences publishers DIMITRI SHLYAKHTENKO LOWER ESTIMATES ON MICROSTATES FREE ENTROPY DIMENSION

ANALYSIS & PDE. mathematical sciences publishers DIMITRI SHLYAKHTENKO LOWER ESTIMATES ON MICROSTATES FREE ENTROPY DIMENSION ANALYSIS & PDE Volume 2 No. 2 2009 DIMITRI SHLYAKHTENKO LOWER ESTIMATES ON MICROSTATES FREE ENTROPY DIMENSION mathematical sciences publishers ANALYSIS AND PDE Vol. 2, No. 2, 2009 LOWER ESTIMATES ON MICROSTATES

More information

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that ALGEBRAIC GROUPS 33 3. Lie algebras Now we introduce the Lie algebra of an algebraic group. First, we need to do some more algebraic geometry to understand the tangent space to an algebraic variety at

More information

Mixed q-gaussian algebras and free transport

Mixed q-gaussian algebras and free transport Mixed q-gaussian algebras and free transport Qiang Zeng (Northwestern University) Joint with Marius Junge (Urbana) and Brent Nelson (Berkeley) Free probability and large N limit, V Berkeley, March 2016

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Open Markov processes and reaction networks

Open Markov processes and reaction networks Open Markov processes and reaction networks Blake S. Pollard Department of Physics and Astronomy University of California, Riverside Thesis Defense June 1, 2017 Committee: Prof. John C. Baez (Chair) Prof.

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

On the classification and modular extendability of E 0 -semigroups on factors Joint work with Daniel Markiewicz

On the classification and modular extendability of E 0 -semigroups on factors Joint work with Daniel Markiewicz On the classification and modular extendability of E 0 -semigroups on factors Joint work with Daniel Markiewicz Panchugopal Bikram Ben-Gurion University of the Nagev Beer Sheva, Israel pg.math@gmail.com

More information

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium 1/ 22 A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium I. Gentil CEREMADE, Université Paris-Dauphine International Conference on stochastic Analysis and Applications Hammamet, Tunisia,

More information

An adaptive numerical scheme for fractional differential equations with explosions

An adaptive numerical scheme for fractional differential equations with explosions An adaptive numerical scheme for fractional differential equations with explosions Johanna Garzón Departamento de Matemáticas, Universidad Nacional de Colombia Seminario de procesos estocásticos Jointly

More information

De Nugis Groebnerialium 5: Noether, Macaulay, Jordan

De Nugis Groebnerialium 5: Noether, Macaulay, Jordan De Nugis Groebnerialium 5: Noether, Macaulay, Jordan ACA 2018 Santiago de Compostela Re-reading Macaulay References Macaulay F. S., On the Resolution of a given Modular System into Primary Systems including

More information

On different notions of timescales in molecular dynamics

On different notions of timescales in molecular dynamics On different notions of timescales in molecular dynamics Origin of Scaling Cascades in Protein Dynamics June 8, 217 IHP Trimester Stochastic Dynamics out of Equilibrium Overview 1. Motivation 2. Definition

More information

Factorizable completely positive maps and quantum information theory. Magdalena Musat. Sym Lecture Copenhagen, May 9, 2012

Factorizable completely positive maps and quantum information theory. Magdalena Musat. Sym Lecture Copenhagen, May 9, 2012 Factorizable completely positive maps and quantum information theory Magdalena Musat Sym Lecture Copenhagen, May 9, 2012 Joint work with Uffe Haagerup based on: U. Haagerup, M. Musat: Factorization and

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

(g 1, g 2 ) g 1 g 2. i : G G

(g 1, g 2 ) g 1 g 2. i : G G 1 Lie Groups Definition (4.1 1 A Lie Group G is a set that is a group a differential manifold with the property that and are smooth. µ : G G G (g 1, g 2 g 1 g 2 i : G G g g 1 Definition (4.1 2 A Lie Subgroup

More information

Quantum Symmetric States

Quantum Symmetric States Quantum Symmetric States Ken Dykema Department of Mathematics Texas A&M University College Station, TX, USA. Free Probability and the Large N limit IV, Berkeley, March 2014 [DK] K. Dykema, C. Köstler,

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivalence, and Dual Frames University of Maryland June 11, 2015 Overview Twisted Gap Labeling Outline Twisted Gap Labeling Physical Quasicrystals

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

An overview of D-modules: holonomic D-modules, b-functions, and V -filtrations

An overview of D-modules: holonomic D-modules, b-functions, and V -filtrations An overview of D-modules: holonomic D-modules, b-functions, and V -filtrations Mircea Mustaţă University of Michigan Mainz July 9, 2018 Mircea Mustaţă () An overview of D-modules Mainz July 9, 2018 1 The

More information

Tensor product systems of Hilbert spaces

Tensor product systems of Hilbert spaces Tensor product systems of Hilbert spaces B. V. Rajarama Bhat, Indian Statistical Institute, Bangalore. January 14, 2016 Indo-French Program for Mathematics Matscience, Chennai, 11-24, January 2016 Acknowledgements

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM ANG LI Abstract. In this paper, we start with the definitions and properties of the fundamental group of a topological space, and then proceed to prove Van-

More information

Error estimation for Quasi Monte Carlo Methods

Error estimation for Quasi Monte Carlo Methods Error estimation for Quasi Monte Carlo Methods Introduction of an algorithm for integration relying on the fast transform coecients decay Lluís Antoni Jiménez Rugama July 11, 2013 Index 1 Introduction

More information

The Free Central Limit Theorem: A Combinatorial Approach

The Free Central Limit Theorem: A Combinatorial Approach The Free Central Limit Theorem: A Combinatorial Approach by Dennis Stauffer A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honour s Seminar)

More information

3. The Sheaf of Regular Functions

3. The Sheaf of Regular Functions 24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

More information

Stochastic Dynamical System for SDE driven by Nonlinear Brownian Motion

Stochastic Dynamical System for SDE driven by Nonlinear Brownian Motion Stochastic Dynamical System for SDE driven by Nonlinear Brownian Motion Peng Shige Shandong University, China peng@sdu.edu.cn School of Stochastic Dynamical Systems and Ergodicity Loughborough University,

More information

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior Boundary conditions In a domain Ω one has to add boundary conditions to the heat (or diffusion) equation: 1. u(x, t) = φ for x Ω. Temperature given at the boundary. Also density given at the boundary.

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

Stochastic Processes

Stochastic Processes Introduction and Techniques Lecture 4 in Financial Mathematics UiO-STK4510 Autumn 2015 Teacher: S. Ortiz-Latorre Stochastic Processes 1 Stochastic Processes De nition 1 Let (E; E) be a measurable space

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

Non commutative Khintchine inequalities and Grothendieck s theo

Non commutative Khintchine inequalities and Grothendieck s theo Non commutative Khintchine inequalities and Grothendieck s theorem Nankai, 2007 Plan Non-commutative Khintchine inequalities 1 Non-commutative Khintchine inequalities 2 µ = Uniform probability on the set

More information

Fifty Years in the Model Theory of Differential Fields. ASL Winter Meeting 2019 JMM Baltimore

Fifty Years in the Model Theory of Differential Fields. ASL Winter Meeting 2019 JMM Baltimore Fifty Years in the Model Theory of Differential Fields ASL Winter Meeting 2019 JMM Baltimore David Marker Mathematics, Statistics, and Computer Science University of Illinois at Chicago January 20, 2019

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

From Random Variables to Random Processes. From Random Variables to Random Processes

From Random Variables to Random Processes. From Random Variables to Random Processes Random Processes In probability theory we study spaces (Ω, F, P) where Ω is the space, F are all the sets to which we can measure its probability and P is the probability. Example: Toss a die twice. Ω

More information

Malliavin Calculus: Analysis on Gaussian spaces

Malliavin Calculus: Analysis on Gaussian spaces Malliavin Calculus: Analysis on Gaussian spaces Josef Teichmann ETH Zürich Oxford 2011 Isonormal Gaussian process A Gaussian space is a (complete) probability space together with a Hilbert space of centered

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Topological Groupoids and Exponentiability

Topological Groupoids and Exponentiability Topological Groupoids and Exponentiability Susan Niefield (joint with Dorette Pronk) July 2017 Overview Goal: Study exponentiability in categories of topological groupoid. Starting Point: Consider exponentiability

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

LINEAR PRESERVER PROBLEMS: generalized inverse

LINEAR PRESERVER PROBLEMS: generalized inverse LINEAR PRESERVER PROBLEMS: generalized inverse Université Lille 1, France Banach Algebras 2011, Waterloo August 3-10, 2011 I. Introduction Linear preserver problems is an active research area in Matrix,

More information

LECTURE 6: THE BOUSFIELD-KUHN FUNCTOR

LECTURE 6: THE BOUSFIELD-KUHN FUNCTOR LECTURE 6: THE BOUSFIELD-KUHN FUNCTOR Let V be a finite space of type n, equipped with a v n -self map v Σ t V V. In the previous lecture, we defined the spectrum Φ v (X), where X is a pointed space. By

More information

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Group 4: Bertan Yilmaz, Richard Oti-Aboagye and Di Liu May, 15 Chapter 1 Proving Dynkin s formula

More information

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Lecture 11 Andrei Antonenko February 6, 003 1 Examples of bases Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Example 1.1. Consider the vector space P the

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Mock modular forms and their shadows

Mock modular forms and their shadows Mock modular forms and their shadows Zachary A. Kent Emory University Classical Eichler-Shimura Theory Modular Forms Basic Definitions Classical Eichler-Shimura Theory Modular Forms Basic Definitions Notation:

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato June 23, 2015 This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a more direct connection

More information

Session 1: Probability and Markov chains

Session 1: Probability and Markov chains Session 1: Probability and Markov chains 1. Probability distributions and densities. 2. Relevant distributions. 3. Change of variable. 4. Stochastic processes. 5. The Markov property. 6. Markov finite

More information

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a WHEN IS A MAP POISSON N.G.Bean, D.A.Green and P.G.Taylor Department of Applied Mathematics University of Adelaide Adelaide 55 Abstract In a recent paper, Olivier and Walrand (994) claimed that the departure

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato September 10, 2015 ABSTRACT. This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras

Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras Fréchet differentiability of the norm of L p -spaces associated with arbitrary von Neumann algebras (Part I) Fedor Sukochev (joint work with D. Potapov, A. Tomskova and D. Zanin) University of NSW, AUSTRALIA

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

Rough paths methods 1: Introduction

Rough paths methods 1: Introduction Rough paths methods 1: Introduction Samy Tindel Purdue University University of Aarhus 216 Samy T. (Purdue) Rough Paths 1 Aarhus 216 1 / 16 Outline 1 Motivations for rough paths techniques 2 Summary of

More information

On k-groups and Tychonoff k R -spaces (Category theory for topologists, topology for group theorists, and group theory for categorical topologists)

On k-groups and Tychonoff k R -spaces (Category theory for topologists, topology for group theorists, and group theory for categorical topologists) On k-groups and Tychonoff k R -spaces 0 On k-groups and Tychonoff k R -spaces (Category theory for topologists, topology for group theorists, and group theory for categorical topologists) Gábor Lukács

More information

Numerical treatment of stochastic delay differential equations

Numerical treatment of stochastic delay differential equations Numerical treatment of stochastic delay differential equations Evelyn Buckwar Department of Mathematics Heriot-Watt University, Edinburgh Evelyn Buckwar Roma, 16.10.2007 Overview An example: machine chatter

More information

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

LOCAL CONVERGENCE OF GRAPHS AND ENUMERATION OF SPANNING TREES. 1. Introduction

LOCAL CONVERGENCE OF GRAPHS AND ENUMERATION OF SPANNING TREES. 1. Introduction LOCAL CONVERGENCE OF GRAPHS AND ENUMERATION OF SPANNING TREES MUSTAZEE RAHMAN 1 Introduction A spanning tree in a connected graph G is a subgraph that contains every vertex of G and is itself a tree Clearly,

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

SEA s workshop- MIT - July 10-14

SEA s workshop- MIT - July 10-14 Matrix-valued Stochastic Processes- Eigenvalues Processes and Free Probability SEA s workshop- MIT - July 10-14 July 13, 2006 Outline Matrix-valued stochastic processes. 1- definition and examples. 2-

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

Lecture 7.3: Ring homomorphisms

Lecture 7.3: Ring homomorphisms Lecture 7.3: Ring homomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 7.3:

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

A class of non-convex polytopes that admit no orthonormal basis of exponentials

A class of non-convex polytopes that admit no orthonormal basis of exponentials A class of non-convex polytopes that admit no orthonormal basis of exponentials Mihail N. Kolountzakis and Michael Papadimitrakis 1 Abstract A conjecture of Fuglede states that a bounded measurable set

More information

Homework #11 Solutions

Homework #11 Solutions Homework #11 Solutions p 166, #18 We start by counting the elements in D m and D n, respectively, of order 2. If x D m and x 2 then either x is a flip or x is a rotation of order 2. The subgroup of rotations

More information

Convergence of Star Products and the Nuclear Weyl Algebr

Convergence of Star Products and the Nuclear Weyl Algebr Convergence of Star Products and the Nuclear Weyl Algebra Institut für Mathematik, Universität Würzburg, Germany Bayrischzell 2013 Beiser, S., Waldmann, S.: Fréchet algebraic deformation quantization of

More information