Utility Maximizing Routing to Data Centers

Size: px
Start display at page:

Download "Utility Maximizing Routing to Data Centers"

Transcription

1 0-0 Utility Maximizing Routing to Data Centers M. Sarwat, J. Shin and S. Kapoor (Presented by J. Shin) Sep 26, 2011

2 Sep 26, Outline 1. Problem Definition - Data Center Allocation 2. How to construct Data Center Allocation 3. Mathematical Model 4. Greedy Approach - single server (GA-I) 5. Greedy Approach - multiple server (GA-II) 6. Auction Algorithm (Auction) 7. Simulation Results : utility, congestion, exe. time 8. Conclusion

3 Sep 26, Problem Definition Objective : Maximize the utility of users. Constraint : 1. Supply Constraint : Each source (or data/service center) i has a supply of goods, bounded by a capacity function a i. 2. Budget Constraint : Each sink (or user) j has a bound on the incoming set of data, specified by a budget b j.

4 Sep 26, Problem Definition - Example Figure 1: One instance of Data Center Allocation Problem

5 Sep 26, Network Topology for Simulation Figure 2: AT&T Network Topology

6 Sep 26, To Data Center Allocation Problem Convert the original problem into Data Center Allocation Problem Defined on a Weighted Bipartite Graph. Given a pair of data center i and user j, add edge e ij between i and j with p ij (p ij represents the price of utilizing the path). One such measure is the number of hops between i and j. u ij represents the benefit of using the path. One such benefit is the minimum capacity amongst of edges on the path.

7 Sep 26, Mathematical Model - Primal P: Maximize u ij f ij subject to i S,j T j T f ij a i i S (1) i S p ijf ij b j j T (2) f ij 0 i S, j T (3) u ij, p ij : utility and price using i by j f ij : amount of data from i to j a i, b j : capacity function of i and budget function of j

8 Sep 26, Mathematical Model - Dual The dual of (P) is as follows denoted by (D). D: Minimize i S α i a i + j T β j b j subject to α i u ij p ij β j i S, j T (4) α i 0 i S (5) β j 0 j T (6) α i and β j represent dual variables.

9 Sep 26, GA-I - High Level Idea Objective : Selects a data center which maximizes their utility. Constraint: Each user uses at most a single path. 1: Let us start with j = 1 in a round robin way. 2: Pick i s.t. utility is maximized. 3: Calculate current amount of data from i. 4: Calculate budget of user j. 5: Assign i to j under those constraints. The algorithm iterates at most n u times.

10 Sep 26, GA-I - Pseudocode 1: for j = 1 n u do 2: i := max k u kj /p kj 3: t f := k f ik 4: t p := k p kjf kj 5: x := min(a i t f, (b j t p )/p ij ) 6: end for

11 Sep 26, GA-II - High Level Idea Objective : Selects a data center maximizing their utility. Constraint: Each user is able to access multiple servers. 1: Find (i, j) s.t. maximizing utility. 2: Calculate current amount of data from i. 3: Calculate budget of user j. 4: Assign i to j under those constraints. The algorithm may iterate for all pairs.

12 Sep 26, : i, j : visited ij := false 2: for i = 1 n d do 3: for j = 1 n u do GA-II - Pseudocode 4: (s i, t j ) := arg max (i,j) visitedij =false u ij /p ij 5: visited si t j := true 6: f s := k f s i k and p t := k p kt j f ktj 7: f si,t j := min(a si f s, (b tj p t )/p si t j ) 8: end for 9: end for

13 Sep 26, Greedy Approach is Not Enough! Figure 3: A counter example of Auction vs. GA-I Let a 1 = a 2 = 1, b 1 = b 2 = 1, p 11 = p 12 = p 21 = p 22 = 1. Let u 11 = u 22 = 9, u 12 = 10 and u 21 = i=1 j=1 u ijf ij = 11 vs. 2 2 i=1 j=1 u ijf ij = 18

14 Sep 26, What is Auction? An auction algorithm is an intuitive method for solving the classical assignment problem. Suppose there are n agents with budget e i and m goods. At each iteration, an agent will increment his bid to acquire his preferred good, and it terminates when each agent are satisfied. Users bid up to their own budget allowed to maximize their utility. Data centers assigns a user an edge with available supply (capacity).

15 Sep 26, Auction - 1 1: while i s.t. α i > 0 and j f ij < a i do 2: Pick j : max j (u ij p ij β j ) 3: if i p ijf ij = b j then 4: Find a source i : y i j = β j 5: Shift flow from i to i 6: else 7: Sink is unsaturated, push max. flow possible 8: Under supply and demand constraint 9: end if 10: end while

16 Sep 26, : if β j = 0 then Auction - 2 2: β j ϵ max i u ij /p ij 3: else if i : f ij > 0, y ij = β j then 4: β j β j 5: β j β j (1 + ϵ) 6: else 7: //no update required 8: end if

17 Sep 26, Simulation Results - Environment Environment : A Intel Core 2 Duo(2 GHZ) processor, 2 GB memory and Windows 32-bit operating system. Compiler : Visual Studio 2008 on a Windows operating system. Parameters : Given a i, b j, p ij, u ij and ϵ = Output : average 10 different instances of the same parameter(utility,congestion,exetime)

18 Sep 26, Simulation Results - E-I Figure 4: Auction vs. GA-II vs. GA-I -Utility

19 Sep 26, Simulation Results - E-I Figure 5: Auction vs. GA-II - Congestion

20 Sep 26, Simulation Results - E-I Figure 6: Execution Time of Auction in Seconds

21 Sep 26, Simulation Results - E-II Figure 7: Auction vs. GA-II vs. GA-I - Utility

22 Sep 26, Simulation Results - E-II Figure 8: Auction vs. GA-II - Congestion

23 Sep 26, Simulation Results - E-II Figure 9: Execution Time of Auction in Seconds

24 Sep 26, Conclusion 1. Greedy approach is easy to implement and fast, but as expected the method does not match up to the optimal. 2. Since the auction approach is quite efficient, the usage of the method for optimally routing data center traffic is also practical. 3. Further improvements in the efficiency of the algorithm are possible. 4. Future work would extend the algorithm to non-linear objective functions.

Market Equilibrium using Auctions for a Class of Gross-Substitute Utilities

Market Equilibrium using Auctions for a Class of Gross-Substitute Utilities Market Equilibrium using Auctions for a Class of Gross-Substitute Utilities Rahul Garg 1 and Sanjiv Kapoor 2 1 IBM T.J. Watson Research Center,USA. 2 Illinois Institute of Technology, Chicago, USA Abstract.

More information

Lecture 6: Communication Complexity of Auctions

Lecture 6: Communication Complexity of Auctions Algorithmic Game Theory October 13, 2008 Lecture 6: Communication Complexity of Auctions Lecturer: Sébastien Lahaie Scribe: Rajat Dixit, Sébastien Lahaie In this lecture we examine the amount of communication

More information

Introduction 1.1 PROBLEM FORMULATION

Introduction 1.1 PROBLEM FORMULATION Introduction. PROBLEM FORMULATION This book deals with a single type of network optimization problem with linear cost, known as the transshipment or minimum cost flow problem. In this section, we formulate

More information

Node-based Distributed Optimal Control of Wireless Networks

Node-based Distributed Optimal Control of Wireless Networks Node-based Distributed Optimal Control of Wireless Networks CISS March 2006 Edmund M. Yeh Department of Electrical Engineering Yale University Joint work with Yufang Xi Main Results Unified framework for

More information

Routing. Topics: 6.976/ESD.937 1

Routing. Topics: 6.976/ESD.937 1 Routing Topics: Definition Architecture for routing data plane algorithm Current routing algorithm control plane algorithm Optimal routing algorithm known algorithms and implementation issues new solution

More information

Minimum cost transportation problem

Minimum cost transportation problem Minimum cost transportation problem Complements of Operations Research Giovanni Righini Università degli Studi di Milano Definitions The minimum cost transportation problem is a special case of the minimum

More information

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks distributed approaches For Proportional and max-min fairness in random access ad-hoc networks Xin Wang, Koushik Kar Rensselaer Polytechnic Institute OUTline Introduction Motivation and System model Proportional

More information

Gross Substitutes Tutorial

Gross Substitutes Tutorial Gross Substitutes Tutorial Part I: Combinatorial structure and algorithms (Renato Paes Leme, Google) Part II: Economics and the boundaries of substitutability (Inbal Talgam-Cohen, Hebrew University) Three

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Friday, September 21, Flows

Friday, September 21, Flows Flows Building evacuation plan people to evacuate from the offices corridors and stairways capacity 10 10 5 50 15 15 15 60 60 50 15 10 60 10 60 15 15 50 For each person determine the path to follow to

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions CS 598RM: Algorithmic Game Theory, Spring 2017 1. Answer the following. Practice Exam Solutions Agents 1 and 2 are bargaining over how to split a dollar. Each agent simultaneously demands share he would

More information

Combinatorial Auction-Based Allocation of Virtual Machine Instances in Clouds

Combinatorial Auction-Based Allocation of Virtual Machine Instances in Clouds Combinatorial Auction-Based Allocation of Virtual Machine Instances in Clouds Sharrukh Zaman and Daniel Grosu Department of Computer Science Wayne State University Detroit, Michigan 48202, USA sharrukh@wayne.edu,

More information

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games 6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Asu Ozdaglar MIT March 2, 2010 1 Introduction Outline Review of Supermodular Games Reading: Fudenberg and Tirole, Section 12.3.

More information

An Auction-Based Market Equilbrium Algorithm for the Separable Gross Substitutibility Case

An Auction-Based Market Equilbrium Algorithm for the Separable Gross Substitutibility Case An Auction-Based Market Equilbrium Algorithm for the Separable Gross Substitutibility Case Rahul Garg Sanjiv Kapoor Vijay Vazirani Abstract In this paper we study the problem of market equilibrium. Firstly

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Flow-level performance of wireless data networks

Flow-level performance of wireless data networks Flow-level performance of wireless data networks Aleksi Penttinen Department of Communications and Networking, TKK Helsinki University of Technology CLOWN seminar 28.8.08 1/31 Outline 1. Flow-level model

More information

NETS 412: Algorithmic Game Theory March 28 and 30, Lecture Approximation in Mechanism Design. X(v) = arg max v i (a)

NETS 412: Algorithmic Game Theory March 28 and 30, Lecture Approximation in Mechanism Design. X(v) = arg max v i (a) NETS 412: Algorithmic Game Theory March 28 and 30, 2017 Lecture 16+17 Lecturer: Aaron Roth Scribe: Aaron Roth Approximation in Mechanism Design In the last lecture, we asked how far we can go beyond the

More information

Revenue Maximization in a Cloud Federation

Revenue Maximization in a Cloud Federation Revenue Maximization in a Cloud Federation Makhlouf Hadji and Djamal Zeghlache September 14th, 2015 IRT SystemX/ Telecom SudParis Makhlouf Hadji Outline of the presentation 01 Introduction 02 03 04 05

More information

Resource Allocation and Pricing. R. Srikant University of Illinois

Resource Allocation and Pricing. R. Srikant University of Illinois Resource Allocation and Pricing R. Srikant University of Illinois References The Mathematics of Internet Congestion Control, Birkhauser, 2004. Pricing: Kelly Distributed Resource Allocation: Kelly, Mauloo

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {, 2, 3,,,, 7, 8 } E

More information

CSE QM N Network Flows: Transshipment Problem Slide Slide Transshipment Networks The most general pure network is the transshipment network, an extension of the transportation model that permits intermediate

More information

Multi-object auctions (and matching with money)

Multi-object auctions (and matching with money) (and matching with money) Introduction Many auctions have to assign multiple heterogenous objects among a group of heterogenous buyers Examples: Electricity auctions (HS C 18:00), auctions of government

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

CO759: Algorithmic Game Theory Spring 2015

CO759: Algorithmic Game Theory Spring 2015 CO759: Algorithmic Game Theory Spring 2015 Instructor: Chaitanya Swamy Assignment 1 Due: By Jun 25, 2015 You may use anything proved in class directly. I will maintain a FAQ about the assignment on the

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

1 Submodular functions

1 Submodular functions CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 16, 2010 1 Submodular functions We have already encountered submodular functions. Let s recall

More information

A Note on Symmetry Reduction for Circular Traveling Tournament Problems

A Note on Symmetry Reduction for Circular Traveling Tournament Problems Mainz School of Management and Economics Discussion Paper Series A Note on Symmetry Reduction for Circular Traveling Tournament Problems Timo Gschwind and Stefan Irnich April 2010 Discussion paper number

More information

Fair Scheduling in Input-Queued Switches under Inadmissible Traffic

Fair Scheduling in Input-Queued Switches under Inadmissible Traffic Fair Scheduling in Input-Queued Switches under Inadmissible Traffic Neha Kumar, Rong Pan, Devavrat Shah Departments of EE & CS Stanford University {nehak, rong, devavrat@stanford.edu Abstract In recent

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples February 24, 2011 Summary: We introduce the Nash Equilibrium: an outcome (action profile) which is stable in the sense that no player

More information

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1 A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case 1 Abhay K Parekh 2 3 and Robert G Gallager 4 Laboratory for Information and Decision Systems

More information

Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions

Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions Algorithm Design CS 515 Fall 2015 Sample Final Exam Solutions Copyright c 2015 Andrew Klapper. All rights reserved. 1. For the functions satisfying the following three recurrences, determine which is the

More information

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 12: Approximate Mechanism Design in Multi-Parameter Bayesian Settings Instructor: Shaddin Dughmi Administrivia HW1 graded, solutions on website

More information

Dominating Set. Chapter 26

Dominating Set. Chapter 26 Chapter 26 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET 294 CHAPTER 26. DOMINATING SET 26.1 Sequential Greedy Algorithm Chapter 26 Dominating Set Intuitively, to end up with a small dominating set S, nodes in S need to cover as many neighbors as possible. It

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer Outline Agents that

More information

Efficiency and Braess Paradox under Pricing

Efficiency and Braess Paradox under Pricing Efficiency and Braess Paradox under Pricing Asuman Ozdaglar Joint work with Xin Huang, [EECS, MIT], Daron Acemoglu [Economics, MIT] October, 2004 Electrical Engineering and Computer Science Dept. Massachusetts

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

On the Complexity of Computing an Equilibrium in Combinatorial Auctions

On the Complexity of Computing an Equilibrium in Combinatorial Auctions On the Complexity of Computing an Equilibrium in Combinatorial Auctions Shahar Dobzinski Hu Fu Robert Kleinberg April 8, 2014 Abstract We study combinatorial auctions where each item is sold separately

More information

Graphs and Network Flows IE411. Lecture 12. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 12. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 12 Dr. Ted Ralphs IE411 Lecture 12 1 References for Today s Lecture Required reading Sections 21.1 21.2 References AMO Chapter 6 CLRS Sections 26.1 26.2 IE411 Lecture

More information

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem Ryutsu Keizai University Naoto KATAYAMA Problems 2006 1 Multi-Commodity Network Design Problem The basic model for

More information

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities.

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities. Greedy Algorithm 1 Introduction Similar to dynamic programming. Used for optimization problems. Not always yield an optimal solution. Make choice for the one looks best right now. Make a locally optimal

More information

Combinatorial Algorithms for Market Equilibria

Combinatorial Algorithms for Market Equilibria CHAPTER 5 Combinatorial Algorithms for Market Equilibria Vijay V. Vazirani Abstract Combinatorial polynomial time algorithms are presented for finding equilibrium prices and allocations for the linear

More information

Description of the ED library Basic Atoms

Description of the ED library Basic Atoms Description of the ED library Basic Atoms Simulation Software / Description of the ED library BASIC ATOMS Enterprise Dynamics Copyright 2010 Incontrol Simulation Software B.V. All rights reserved Papendorpseweg

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Xin Wang, Koushik Kar Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute,

More information

PRAM lower bounds. 1 Overview. 2 Definitions. 3 Monotone Circuit Value Problem

PRAM lower bounds. 1 Overview. 2 Definitions. 3 Monotone Circuit Value Problem U.C. Berkeley CS273: Parallel and Distributed Theory PRAM lower bounds. Professor Satish Rao October 16, 2006 Lecturer: Satish Rao Last revised Scribe so far: Satish Rao cribbing from previous years lectures

More information

Maximum flow problem (part I)

Maximum flow problem (part I) Maximum flow problem (part I) Combinatorial Optimization Giovanni Righini Università degli Studi di Milano Definitions A flow network is a digraph D = (N,A) with two particular nodes s and t acting as

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018 Congestion Control In The Internet Part 1: Theory JY Le Boudec 2018 1 Contents 1. What is the problem; congestion collapse 2. Efficiency versus Fairness 3. Definitions of fairness 4. Additive Increase

More information

Max Flow: Algorithms and Applications

Max Flow: Algorithms and Applications Max Flow: Algorithms and Applications Outline for today Quick review of the Max Flow problem Applications of Max Flow The Ford-Fulkerson (FF) algorithm for Max Flow Analysis of FF, and the Max Flow Min

More information

Flows and Cuts. 1 Concepts. CS 787: Advanced Algorithms. Instructor: Dieter van Melkebeek

Flows and Cuts. 1 Concepts. CS 787: Advanced Algorithms. Instructor: Dieter van Melkebeek CS 787: Advanced Algorithms Flows and Cuts Instructor: Dieter van Melkebeek This lecture covers the construction of optimal flows and cuts in networks, their relationship, and some applications. It paves

More information

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

P214 Efficient Computation of Passive Seismic Interferometry

P214 Efficient Computation of Passive Seismic Interferometry P214 Efficient Computation of Passive Seismic Interferometry J.W. Thorbecke* (Delft University of Technology) & G.G. Drijkoningen (Delft University of Technology) SUMMARY Seismic interferometry is from

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming Dynamic Programming Arijit Bishnu arijit@isical.ac.in Indian Statistical Institute, India. August 31, 2015 Outline 1 Maximum sum contiguous subsequence 2 Longest common subsequence 3 Matrix chain multiplication

More information

CS364B: Frontiers in Mechanism Design Lecture #3: The Crawford-Knoer Auction

CS364B: Frontiers in Mechanism Design Lecture #3: The Crawford-Knoer Auction CS364B: Frontiers in Mechanism Design Lecture #3: The Crawford-Knoer Auction Tim Roughgarden January 15, 2014 1 The Story So Far Our current theme is the design of ex post incentive compatible (EPIC) ascending

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Lecture 13: Polynomial-Time Algorithms for Min Cost Flows. (Reading: AM&O Chapter 10)

Lecture 13: Polynomial-Time Algorithms for Min Cost Flows. (Reading: AM&O Chapter 10) Lecture 1: Polynomial-Time Algorithms for Min Cost Flows (Reading: AM&O Chapter 1) Polynomial Algorithms for Min Cost Flows Improvements on the two algorithms for min cost flow: Successive Shortest Path

More information

On Influential Node Discovery in Dynamic Social Networks

On Influential Node Discovery in Dynamic Social Networks On Influential Node Discovery in Dynamic Social Networks Charu Aggarwal Shuyang Lin Philip S. Yu Abstract The problem of maximizing influence spread has been widely studied in social networks, because

More information

Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem

Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem Optimization Letters manuscript No. (will be inserted by the editor) Integer Programming Formulations for the Minimum Weighted Maximal Matching Problem Z. Caner Taşkın Tınaz Ekim Received: date / Accepted:

More information

INVERSE SPANNING TREE PROBLEMS: FORMULATIONS AND ALGORITHMS

INVERSE SPANNING TREE PROBLEMS: FORMULATIONS AND ALGORITHMS INVERSE SPANNING TREE PROBLEMS: FORMULATIONS AND ALGORITHMS P. T. Sokkalingam Department of Mathematics Indian Institute of Technology, Kanpur-208 016, INDIA Ravindra K. Ahuja Dept. of Industrial & Management

More information

Topics in Data Mining Fall Bruno Ribeiro

Topics in Data Mining Fall Bruno Ribeiro Network Utility Maximization Topics in Data Mining Fall 2015 Bruno Ribeiro 2015 Bruno Ribeiro Data Mining for Smar t Cities Need congestion control 2 Supply and Demand (A Dating Website [China]) Males

More information

Lecture 14 Transportation Algorithm. October 9, 2009

Lecture 14 Transportation Algorithm. October 9, 2009 Transportation Algorithm October 9, 2009 Outline Lecture 14 Revisit the transportation problem Simplex algorithm for the balanced problem Basic feasible solutions Selection of the initial basic feasible

More information

A LAGRANGIAN RELAXATION FOR CAPACITATED SINGLE ALLOCATION P-HUB MEDIAN PROBLEM WITH MULTIPLE CAPACITY LEVELS

A LAGRANGIAN RELAXATION FOR CAPACITATED SINGLE ALLOCATION P-HUB MEDIAN PROBLEM WITH MULTIPLE CAPACITY LEVELS A LAGRANGIAN RELAXATION FOR CAPACITATED SINGLE ALLOCATION P-HUB MEDIAN PROBLEM WITH MULTIPLE CAPACITY LEVELS Ching-Jung Ting Department of Industrial Engineering and Management, Yuan Ze University Kuo-Rui

More information

Designing Survivable Networks: A Flow Based Approach

Designing Survivable Networks: A Flow Based Approach Designing Survivable Networks: A Flow Based Approach Prakash Mirchandani 1 University of Pittsburgh This is joint work with Anant Balakrishnan 2 of the University of Texas at Austin and Hari Natarajan

More information

On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP

On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP Deeparnab Chakrabarty Gagan Goel Accepted to the SIAM Journal of Computing Abstract

More information

6. Linear Programming

6. Linear Programming Linear Programming 6-1 6. Linear Programming Linear Programming LP reduction Duality Max-flow min-cut, Zero-sum game Integer Programming and LP relaxation Maximum Bipartite Matching, Minimum weight vertex

More information

Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook

Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook TSP Randomization Outlook Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook Marc Uetz University of Twente m.uetz@utwente.nl Lecture 12: sheet 1 / 29 Marc Uetz Discrete Optimization Outline TSP

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2 ex-5.-5. Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving

More information

Ateneo de Manila, Philippines

Ateneo de Manila, Philippines Ideal Flow Based on Random Walk on Directed Graph Ateneo de Manila, Philippines Background Problem: how the traffic flow in a network should ideally be distributed? Current technique: use Wardrop s Principle:

More information

CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications

CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications Instructor: Mohammad T. Hajiaghayi Scribe: Rajesh Chitnis September 15, 2010 1 Overview We will look at MARKET CLEARING or

More information

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling Department of Mathematics, Linköping University Jessika Boberg LiTH-MAT-EX 2017/18 SE Credits: Level:

More information

Channel-Relay Price Pair: Towards Arbitrating Incentives in Wireless Ad hoc Networks

Channel-Relay Price Pair: Towards Arbitrating Incentives in Wireless Ad hoc Networks 1 Channel-Relay Price Pair: Towards Arbitrating Incentives in Wireless Ad hoc Networks Yuan Xue, Baochun Li, Klara Nahrstedt Abstract Cooperation in wireless ad hoc networks has two-fold implications.

More information

Vickrey Auction. Mechanism Design. Algorithmic Game Theory. Alexander Skopalik Algorithmic Game Theory 2013 Mechanism Design

Vickrey Auction. Mechanism Design. Algorithmic Game Theory. Alexander Skopalik Algorithmic Game Theory 2013 Mechanism Design Algorithmic Game Theory Vickrey Auction Vickrey-Clarke-Groves Mechanisms Mechanisms with Money Player preferences are quantifiable. Common currency enables utility transfer between players. Preference

More information

The evacuation plan design under uncertain times of transportation

The evacuation plan design under uncertain times of transportation Urban Transport XVI 83 The evacuation plan design under uncertain times of transportation J. Janáček Faculty of Management Science and Informatics, University of Žilina, Slovak Republic Abstract When the

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur

Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur Branch Prediction based attacks using Hardware performance Counters IIT Kharagpur March 19, 2018 Modular Exponentiation Public key Cryptography March 19, 2018 Branch Prediction Attacks 2 / 54 Modular Exponentiation

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Dominating Set. Chapter 7

Dominating Set. Chapter 7 Chapter 7 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Designing Competitive Online Algorithms via a Primal-Dual Approach. Niv Buchbinder

Designing Competitive Online Algorithms via a Primal-Dual Approach. Niv Buchbinder Designing Competitive Online Algorithms via a Primal-Dual Approach Niv Buchbinder Designing Competitive Online Algorithms via a Primal-Dual Approach Research Thesis Submitted in Partial Fulfillment of

More information

Lecture 8 Network Optimization Algorithms

Lecture 8 Network Optimization Algorithms Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 8 Network Optimization Algorithms 1 21/01/14 Introduction Network models have

More information

OPERATIONS RESEARCH. Transportation and Assignment Problems

OPERATIONS RESEARCH. Transportation and Assignment Problems OPERATIONS RESEARCH Chapter 2 Transportation and Assignment Problems Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Optimality

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2)

Algorithms and Theory of Computation. Lecture 13: Linear Programming (2) Algorithms and Theory of Computation Lecture 13: Linear Programming (2) Xiaohui Bei MAS 714 September 25, 2018 Nanyang Technological University MAS 714 September 25, 2018 1 / 15 LP Duality Primal problem

More information

Sparse Support Vector Machines by Kernel Discriminant Analysis

Sparse Support Vector Machines by Kernel Discriminant Analysis Sparse Support Vector Machines by Kernel Discriminant Analysis Kazuki Iwamura and Shigeo Abe Kobe University - Graduate School of Engineering Kobe, Japan Abstract. We discuss sparse support vector machines

More information

DIMACS Workshop on Parallelism: A 2020 Vision Lattice Basis Reduction and Multi-Core

DIMACS Workshop on Parallelism: A 2020 Vision Lattice Basis Reduction and Multi-Core DIMACS Workshop on Parallelism: A 2020 Vision Lattice Basis Reduction and Multi-Core Werner Backes and Susanne Wetzel Stevens Institute of Technology 29th March 2011 Work supported through NSF Grant DUE

More information

A Merchant Mechanism for Electricity Transmission Expansion

A Merchant Mechanism for Electricity Transmission Expansion A Merchant Mechanism for Electricity Transmission Expansion Tarjei Kristiansen, Norwegian University of Science and Technology. Tarjei.Kristiansen@elkraft.ntnu.no Juan Rosellon, Harvard University/CIDE.

More information

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) Integer Linear Programming (ILP) Zdeněk Hanzálek, Přemysl Šůcha hanzalek@fel.cvut.cz CTU in Prague March 8, 2017 Z. Hanzálek (CTU) Integer Linear Programming (ILP) March 8, 2017 1 / 43 Table of contents

More information

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time

directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time Network Flow 1 The Maximum-Flow Problem directed weighted graphs as flow networks the Ford-Fulkerson algorithm termination and running time 2 Maximum Flows and Minimum Cuts flows and cuts max flow equals

More information

The SAB Medium Term Sales Forecasting System : From Data to Planning Information. Kenneth Carden SAB : Beer Division Planning

The SAB Medium Term Sales Forecasting System : From Data to Planning Information. Kenneth Carden SAB : Beer Division Planning The SAB Medium Term Sales Forecasting System : From Data to Planning Information Kenneth Carden SAB : Beer Division Planning Planning in Beer Division F Operational planning = what, when, where & how F

More information

Utility, Fairness and Rate Allocation

Utility, Fairness and Rate Allocation Utility, Fairness and Rate Allocation Laila Daniel and Krishnan Narayanan 11th March 2013 Outline of the talk A rate allocation example Fairness criteria and their formulation as utilities Convex optimization

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017 Fall 2017 Qualifier Exam: OPTIMIZATION September 18, 2017 GENERAL INSTRUCTIONS: 1 Answer each question in a separate book 2 Indicate on the cover of each book the area of the exam, your code number, and

More information

Fisher Equilibrium Price with a Class of Concave Utility Functions

Fisher Equilibrium Price with a Class of Concave Utility Functions Fisher Equilibrium Price with a Class of Concave Utility Functions Ning Chen 1, Xiaotie Deng 2, Xiaoming Sun 3, and Andrew Chi-Chih Yao 4 1 Department of Computer Science & Engineering, University of Washington

More information