maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2

Size: px
Start display at page:

Download "maxz = 3x 1 +4x 2 2x 1 +x 2 6 2x 1 +3x 2 9 x 1,x 2"

Transcription

1 ex Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound Given the integer linear program maxz = x +x x +x 6 x +x 9 x,x integer solve it via the Branch-and-Bound method (solving graphically the continuous relaxation of each subproblem encountered in the enumeration tree). Branch on the fractional variable with fractional value closest to. Among the set of active nodes, pick that with the most promising bound. 5. Branch-and-Bound for - knapsack A bank has million Euro, which can be invested into stocks of four companies (,,, and ). The table reports, for each company, the net revenue and the amount of money that must be invested into it. Company Revenue 6 8 Money 5 7 Give an Integer Linear Programming formulation for the problem of choosing a set of companies so as to maximize the total revenue. Note that no partial investment can be done, i.e., for each company we can either invest into it or not. Solve the problem with a Branch-and- Bound algorithm. Show that the continuous relaxation of the original problem and the resulting subproblems can be solved to optimality with a simple greedy algorithm. 5. Cutting plane algorithm Given the integer linear program min x x x +6x 9 x +x x,x solve it via Gomory s cutting plane method. integer Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio

2 ex Foundations of Operations Research Prof. E. Amaldi Solution 5. Branch-and-Bound The enumeration tree is reported in Figure. The graphical solution of each subproblem is reported. The subproblems are solved in the following order: P, P, P, P, P5, P6, P7. Note that when the optimal value z of a subproblem is fractional, we can round the upper bound given by the subproblem to z. For instance, in P we obtain the bound 5 =. After solving P7, we observe that P6 yields an integer solution which is worse than that of P7, which is therefore discarded. We also observe that P yields an upper bound which is smaller than the value of the best feasible solution found so far (in P7). The node is therefore pruned. The optimal solution (found in P7) is x = (,) with objective function value z =. Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio

3 ex Foundations of Operations Research Prof. E. Amaldi () () P: x = () () { x = x +6 x = x + x = ( 9, ), z = 5. x x () () () () () () P: x = () () { x = x +6 x = x = ( 5,), z =..5 < : stop P: x = () () { x = x + x = x = (,), z = 5. x x () () () () () P: x = () () { x = x + () P5: infeasible () () x = x = (, ) 7, z = 7. x x () () () () () P6: x = () () x = (,), z =. () () () P7: x = () () x = (,), z =. Figure : Enumeration tree for problem 5. Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio

4 ex Foundations of Operations Research Prof. E. Amaldi 5. Branch-and-Bound for - knapsack The integer linear programming formulation for the problem is and its linear programming relaxation is max6x +x +x +8x 5x +7x +x +x x,x,x,x {,} max6x +x +x +8x 5x +7x +x +x x i i {,,,}. To find an optimal solution to the linear programming relaxation of the knapsack problem, there is no need to use the two-phase Simplex method. We can use the following simple greedy algorithm. First, sort the variables by nonincreasing revenue and cost ratio. Note that in our case (6/5,/7,/,8/) = (.,.,,.66) and the variables are already ordered appropriately. Then, consider the variables in that order and assign the largest possible value to the variable under consideration x i as long as i<i c i B. More precisely, we set x i = if i i c i B and x i = B i<i c i c i all the other variables to zero. if i<i c i +c i > B, and For instance, at node we have: x = (5 units are used), x = (7 units), x = (/=/ units). Since, ateachbranchingiteration, wesetavariableeithertoor, thisgreedyprocedure for solving the linear programming relaxation of the knapsack problem can be applied in any node of the enumeration tree, by fixing the approriate variables. The enumeration tree is given in Figure. Some observations: The index t indicates the order by which the subproblems are solved. Since all variables are integer, whenever a subproblem yields a solution with fractional value, we round it to z. The lower bounds (LB) is not computed at each node (to do this, a heuristic should be applied). We update it whenever a subproblem yields a feasible solution. Note that this value is NOT related to the specific subproblem, as it depends only on the iteration. Indeed, at each iteration t, LB corresponds to the value of the best feasible solution found so far in any part of the enumeration tree. For instance, in subproblem we find a feasible solution of value z = 6. Since it is the first that is found and LB still has the initial value of, we set LB to 6. In subproblem 6 an integer solution is found and the node is pruned by feasibility. Subproblem 7 is infeasible, since x = x = x = require a budget of 6 >. The node is pruned by infeasibility. Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio

5 ex Foundations of Operations Research Prof. E. Amaldi Subproblem 8 yields an upper bound of z = 8 which is strictly smaller than the current LB of. The node is pruned by bound. The same happens for subproblem 9, where z = The upper bound is z =, which is strictly smaller than the current LB of value. Node 9 is pruned by bound. The final optimal solution, which is found in node 6, is x = (,,,), of value. t = z = x = (,,,) UB= LB= t = 7 x = x = z = + z = + 5 x = (,,, ) 7 x = (, t = 5 7,,) UB= UB= LB= LB= 8 z = 8 x = (,,,) UB=8 LB= x = x = x = x = 9 z = x = (, 6 7,,) UB= LB= t = 8 t = 9 z = 6 x = (,,,) UB=6 LB=6 6 7 z = x = (,,,) UB= LB=, Opt. sol. 5 z = + 5 x = ( 5,,,) UB= LB=6 t = t = x = x = Not feasible t = 5 t = 6 Figure : Enumeration tree for problem 5. Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 5

6 ex Foundations of Operations Research Prof. E. Amaldi 5. Cutting plane algorithm The continuous relaxation of the the problem at hand, reduced to standard form, reads min x x x +6x +x = 9 x +x +x = x,x,x,x, were x,x are slack variables. We solve it via the primal simplex method. The initial feasible basic solution is x B = (x,x ). We obtain the following sequence of tableaus, where the pivot element is denoted by the symbol. x x x x x x x x x x x x The optimal solution to the relaxation is x = (, 5 ), where x = x = (see Figure ). x () () Figure : Graphical solution to problem 5. We derive a Gomory cut from the first row of the optimal tableau x + x + 5 x = 5. The cut is defined as x i + j F ā ij x j b i, () Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 6

7 ex Foundations of Operations Research Prof. E. Amaldi where F is the set of the indices of the nonbasic variables and i is the index of the basic variable corresponding to the tableau row that is chosen. We obtain the cut x (see Figure (constraint ()). The cut is to be added to the tableau. Note that, in the current form, it is not a function of the nonbasic variables x,x. Instead of adding it to the tableau and performing some pivot operations to restore the correct for of the tableau, we can write the fractional form of the cut. We obtain by taking the ith row of the optimal tableau x i + j F ā ij x j = b i and subtracting from it the cut (), obtaining (ā ij ā ij )x j ( b i b i ). j F In our case, we have x + 5 x which, by introducing a surplus variable x 5 becomes x + 5 x x 5 =. Observe that x 5 only occurs in the new row. Therefore, it is directly added to the set of basic variables. We multiply the cut by -, obtaining x 5 x +x 5 =. We obtain the new tableau x x x x x We reoptimize the tableau via the dual simplex algorithm. We perform pivoting on the highlighted element x x x x x obtaining the tableau Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 7

8 ex Foundations of Operations Research Prof. E. Amaldi x x () () () Figure : First Gomory cut for problem 5. x x x x x with a solution x = (,). Since it is not integer, we perform another iteration of the cutting plane method. We pick the second row x x + x 5 =, from which we deduce the Gomory cut x x + x 5 which, in the space of the original variable, amounts to x,x è x +5x 7. Its fractional version is We obtain the tableau x + x 5. x x x x x 5 x Performing the pivot operation Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 8

9 ex Foundations of Operations Research Prof. E. Amaldi x x x x x 5 x we obtain the tableau x x x x x 5 x which yields the integer solution x = (,), shown in Figure 5 (together with the last Gomory cut that was added). x () () x x () () Figure 5: Last Gomory cut for problem 5. Document prepared by L. Liberti, S. Bosio, S. Coniglio, and C. Iuliano. Translation to English by S. Coniglio 9

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

2.13 Maximum flow with a strictly positive initial feasible flow

2.13 Maximum flow with a strictly positive initial feasible flow ex-.-. Foundations of Operations Research Prof. E. Amaldi. Maximum flow and minimum cut iven the following network with capacities on the arcs find a maximum (feasible) flow from node to node, and determine

More information

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique.

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique. IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, 31 14. You wish to solve the IP below with a cutting plane technique. Maximize 4x 1 + 2x 2 + x 3 subject to 14x 1 + 10x 2 + 11x 3 32 10x 1 +

More information

Foundations of Operations Research

Foundations of Operations Research Solved exercises for the course of Foundations of Operations Research Roberto Cordone The dual simplex method Given the following LP problem: maxz = 5x 1 +8x 2 x 1 +x 2 6 5x 1 +9x 2 45 x 1,x 2 0 1. solve

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Sensitivity Analysis

Sensitivity Analysis Dr. Maddah ENMG 500 /9/07 Sensitivity Analysis Changes in the RHS (b) Consider an optimal LP solution. Suppose that the original RHS (b) is changed from b 0 to b new. In the following, we study the affect

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Simplex Method Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X 3 20 3x 1 + 4x 2 + X 3 15 2X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2

More information

Simplex Method for LP (II)

Simplex Method for LP (II) Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Foundations of Operations Research

Foundations of Operations Research Solved exercises for the course of Foundations of Operations Research Roberto Cordone Gomory cuts Given the ILP problem maxf = 4x 1 +3x 2 2x 1 +x 2 11 x 1 +2x 2 6 x 1,x 2 N solve it with the Gomory cutting

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Integer Programming. The focus of this chapter is on solution techniques for integer programming models.

Integer Programming. The focus of this chapter is on solution techniques for integer programming models. Integer Programming Introduction The general linear programming model depends on the assumption of divisibility. In other words, the decision variables are allowed to take non-negative integer as well

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Points: The first problem is worth 10 points, the others are worth 15. Maximize z = x y subject to 3x y 19 x + 7y 10 x + y = 100.

Points: The first problem is worth 10 points, the others are worth 15. Maximize z = x y subject to 3x y 19 x + 7y 10 x + y = 100. Math 5 Summer Points: The first problem is worth points, the others are worth 5. Midterm # Solutions Find the dual of the following linear programming problem. Maximize z = x y x y 9 x + y x + y = x, y

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

Written Exam Linear and Integer Programming (DM545)

Written Exam Linear and Integer Programming (DM545) Written Exam Linear and Integer Programming (DM545) Department of Mathematics and Computer Science University of Southern Denmark Monday, June 22, 2015, 10:00 14:00, Festsalen, Niels Bohr Allé 1 The exam

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

Week_4: simplex method II

Week_4: simplex method II Week_4: simplex method II 1 1.introduction LPs in which all the constraints are ( ) with nonnegative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=)

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Special cases of linear programming

Special cases of linear programming Special cases of linear programming Infeasible solution Multiple solution (infinitely many solution) Unbounded solution Degenerated solution Notes on the Simplex tableau 1. The intersection of any basic

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

Integer Linear Programming

Integer Linear Programming Integer Linear Programming Solution : cutting planes and Branch and Bound Hugues Talbot Laboratoire CVN April 13, 2018 IP Resolution Gomory s cutting planes Solution branch-and-bound General method Resolution

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

If the above problem is hard to solve, we might try to break it into smaller problems which are easier to solve.

If the above problem is hard to solve, we might try to break it into smaller problems which are easier to solve. 8 Branch and Bound 8.1 Divide and Conquer uppose that we would like to solve the problem { z = max c T x : x. If the above problem is hard to solve, we might try to break it into smaller problems which

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form The Simplex Method 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard Form Convert to Canonical Form Set Up the Tableau and the Initial Basic Feasible Solution

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Optimization Exercise Set n.5 :

Optimization Exercise Set n.5 : Optimization Exercise Set n.5 : Prepared by S. Coniglio translated by O. Jabali 2016/2017 1 5.1 Airport location In air transportation, usually there is not a direct connection between every pair of airports.

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

Written Exam Linear and Integer Programming (DM554)

Written Exam Linear and Integer Programming (DM554) Written Exam Linear and Integer Programming (DM554) Department of Mathematics and Computer Science University of Southern Denmark Monday, June 22, 2015, 10:00 14:00, Festsalen, Niels Bohr Allé 1 The exam

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

Optimization Exercise Set n. 4 :

Optimization Exercise Set n. 4 : Optimization Exercise Set n. 4 : Prepared by S. Coniglio and E. Amaldi translated by O. Jabali 2018/2019 1 4.1 Airport location In air transportation, usually there is not a direct connection between every

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

The dual simplex method with bounds

The dual simplex method with bounds The dual simplex method with bounds Linear programming basis. Let a linear programming problem be given by min s.t. c T x Ax = b x R n, (P) where we assume A R m n to be full row rank (we will see in the

More information

(includes both Phases I & II)

(includes both Phases I & II) (includes both Phases I & II) Dennis ricker Dept of Mechanical & Industrial Engineering The University of Iowa Revised Simplex Method 09/23/04 page 1 of 22 Minimize z=3x + 5x + 4x + 7x + 5x + 4x subject

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

March 13, Duality 3

March 13, Duality 3 15.53 March 13, 27 Duality 3 There are concepts much more difficult to grasp than duality in linear programming. -- Jim Orlin The concept [of nonduality], often described in English as "nondualism," is

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

Gomory Cuts. Chapter 5. Linear Arithmetic. Decision Procedures. An Algorithmic Point of View. Revision 1.0

Gomory Cuts. Chapter 5. Linear Arithmetic. Decision Procedures. An Algorithmic Point of View. Revision 1.0 Chapter 5 Linear Arithmetic Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Cutting planes Recall that in Branch & Bound we first solve a relaxed problem (i.e., no

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

DM545 Linear and Integer Programming. Lecture 13 Branch and Bound. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 13 Branch and Bound. Marco Chiarandini DM545 Linear and Integer Programming Lecture 13 Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 2 Exam Tilladt Håndscanner/digital pen og ordbogsprogrammet

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP:

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Dual Basic Solutions Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Observation 5.7. AbasisB yields min c T x max p T b s.t. A x = b s.t. p T A apple c T x 0 aprimalbasicsolutiongivenbyx

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 9: Duality and Complementary Slackness Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

Introduction to optimization and operations research

Introduction to optimization and operations research Introduction to optimization and operations research David Pisinger, Fall 2002 1 Smoked ham (Chvatal 1.6, adapted from Greene et al. (1957)) A meat packing plant produces 480 hams, 400 pork bellies, and

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

Week 3: Simplex Method I

Week 3: Simplex Method I Week 3: Simplex Method I 1 1. Introduction The simplex method computations are particularly tedious and repetitive. It attempts to move from one corner point of the solution space to a better corner point

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

CPS 616 ITERATIVE IMPROVEMENTS 10-1

CPS 616 ITERATIVE IMPROVEMENTS 10-1 CPS 66 ITERATIVE IMPROVEMENTS 0 - APPROACH Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change

More information

3 The Simplex Method. 3.1 Basic Solutions

3 The Simplex Method. 3.1 Basic Solutions 3 The Simplex Method 3.1 Basic Solutions In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of the feasible set. This was not a coincidence. Consider an LP in general form,

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

(includes both Phases I & II)

(includes both Phases I & II) Minimize z=3x 5x 4x 7x 5x 4x subject to 2x x2 x4 3x6 0 x 3x3 x4 3x5 2x6 2 4x2 2x3 3x4 x5 5 and x 0 j, 6 2 3 4 5 6 j ecause of the lack of a slack variable in each constraint, we must use Phase I to find

More information

Optimization 4. GAME THEORY

Optimization 4. GAME THEORY Optimization GAME THEORY DPK Easter Term Saddle points of two-person zero-sum games We consider a game with two players Player I can choose one of m strategies, indexed by i =,, m and Player II can choose

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

4.7 Sensitivity analysis in Linear Programming

4.7 Sensitivity analysis in Linear Programming 4.7 Sensitivity analysis in Linear Programming Evaluate the sensitivity of an optimal solution with respect to variations in the data (model parameters). Example: Production planning max n j n a j p j

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Lecture 5. x 1,x 2,x 3 0 (1)

Lecture 5. x 1,x 2,x 3 0 (1) Computational Intractability Revised 2011/6/6 Lecture 5 Professor: David Avis Scribe:Ma Jiangbo, Atsuki Nagao 1 Duality The purpose of this lecture is to introduce duality, which is an important concept

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 2nd February 2005 Boring Stuff Extra Linux Class: 8AM 11AM, Wednesday February 9. Room??? Accounts and Passwords

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

MATH 373 Section A1. Final Exam. Dr. J. Bowman 17 December :00 17:00

MATH 373 Section A1. Final Exam. Dr. J. Bowman 17 December :00 17:00 MATH 373 Section A1 Final Exam Dr. J. Bowman 17 December 2018 14:00 17:00 Name (Last, First): Student ID: Email: @ualberta.ca Scrap paper is supplied. No notes or books are permitted. All electronic equipment,

More information

Ω R n is called the constraint set or feasible set. x 1

Ω R n is called the constraint set or feasible set. x 1 1 Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize subject to f(x) x Ω Ω R n is called the constraint set or feasible set. any point x Ω is called a feasible point We

More information