Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

Size: px
Start display at page:

Download "Slack Variable. Max Z= 3x 1 + 4x 2 + 5X 3. Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0"

Transcription

1 Simplex Method

2 Slack Variable Max Z= 3x 1 + 4x 2 + 5X 3 Subject to: X 1 + X 2 + X x 1 + 4x 2 + X X 1 + X 2 + 4X 3 10 X 1 0, X 2 0, X 3 0

3 Standard Form Max Z= 3x 1 +4x 2 +5X 3 + 0S 1 + 0S 2 +0S 3 Subject to: X 1 + X 2 + X 3 +S 1 = 20 Slack Variables 3x 1 + 4x 2 + X 3 +S 2 = 15 2X 1 + X 2 +4X 3 +S 3 = 10 X 1 0, X 2 0, X 3 0 S 1 0, S 2 0, S 3 0

4 Surplus Variables Minimize Z = 2X +3Y +4V Subject to 5X + 2Y +4V X + 5Y + 6Z X + 5Y + 4V X 0, Y 0, V 0 Standard Form Minimize Z = 2X + 3Y + 4V + 0S 1 +0S 2 + 0S 3 Subject to: 5X + 2Y +4V - S 1 = X + 5Y + 6Z -S 2 = X + 5Y + 4V -S 3 = X 0, Y 0, V 0, S 1 0, S 2 0, S 3 0, (S j = Surplus variables)

5 Slack Variables and Surplus Variables Max Z = 2X +3Y +4V Subject to 5X + 2Y +4V X + 5Y + 6Z X + 5Y + 4V X 0, Y 0, V 0 Standard Form Max Z = 2X + 3Y + 4V + 0S 1 +0S 2 + 0S 3 Subject to: 5X + 2Y +4V - S 1 = X + 5Y + 6Z +S 2 = X + 5Y + 4V -S 3 = X 0, Y 0, V 0, S 1 0, S 2 0, S 3 0, (S 1, S 3 = Surplus variables and S 2 = Slack Variable)

6 Problem I Maximize Z = 2X +3Y +4V Subject to 5X + 2Y +4V X + 5Y + 6V X + 5Y + 4V X 0, Y 0, V 0 Standard Form Maximize Z = 2X +3Y +4V +0S 1 +0S 2 +0S 3 5X + 2Y + 4V + S 1 = X + 5Y + 6V +S 2 = X + 5Y + 4V +S 3 =18000 X 0, Y 0, V 0, S 1 0, S 2 0, S 3 0 (S j =Slack variables)

7 Initial Solution Basic variable Cj x y V s1 s2 s R.H.S S1 0 S2 0 S Zj Cj-Zj

8 Basic variable Cj S1 0 Initial Solution x y V s1 s2 s Pivot element R.H.S S S3 0 Zj Cj-Zj Pivot column Pivot row

9 First Iteration X Y V S1 S2 S3 RHS V 4 S2 0 5/4 1/2 1 1/ / / S3 0 Zj Cj-zj

10 Second iteration V 4 19/ /12 0-1/ S2 0 Y 3-13/ /6 1-2/ / /3 0 1/ Zj Cj-zj 13/ /3 0 1/ / /3 0-1/3

11 Results Optimal Solution X = 0 S 1 = 0 Y = 2000 S 2 = 2000 V= 2000 S 3 = 0 Optimum value for Objective Function = 14000

12 Minimization Problem

13 Minimize Z= 22X 1 +15X 2 +9X 3 Subject to: 4X 1 + X 2 +2X 3 1 6X 1 +5X 2 + X 3 1 X 1,X 2,X 3 0 Step 1: Convert the LP model into standard form by subtracting surplus variables from the left hand side.

14 Minimize Z= 22X 1 +15X 2 +9X 3 +0S 1 +0S 2 Subject to: 4X 1 + X 2 +2X 3 - S 1 =1 6X 1 +5X 2 + X 3 - S 2 =1 X 1,X 2,X 3, S 1,S 2 0 Suppose we let the surplus variable s be the basic variable for the above equations. With X 1,X 2,and X 3 initially nonbasic, X 1 =X 2 =X 3 =0 4(0) + (0) +2(0) - S 1 =1 S 1 = -1 Which would give us a negative basic variable violating the non negativity requirement S 1 0

15 To resolve this, introduce an artificial variable into the equation as follows. 4X 1 + X 2 +2X 3 - S 1 + a 1 =1 6X 1 +5X 2 + X 3 - S 2 + a 2 =1 Initially let artificial variables a 1 and a 2 be basic variables and X 1 =X 2 =X 3 =S 1 =S 2 =0 be non basic. So a 1 =1 and a 2 =1 in the initial Simplex table.

16 In order to ensure that the artificial variable is eventually driven to 0, we Penalize it b setting its coefficient in the objective function equal to a very negative number in the case of maximization; or to a very large positive number in the case of minimization. Let M denote a very large positive number, and use either M or +M as the objective function coefficient of an artificial variable.

17 Step 2: Establish an initial feasible solution and calculate Z j and C j - Z j values. Step 3: Is the current solution optimal? Rule: Examine the C j - Z j row. Maximization problem: If all the entries of C j - Z j row are less than or equal to 0, the current solution is optimal. Minimization problem: If all the entries of C j - Z j row are greater than or equal to 0, the current solution is optimal. If not, continue on to step 4.

18 Step 4: Determine the Pivot Column and Pivot Row. Determining Pivot column Maximization problem: The non basic variable that has the largest C j - Z j value is the entering variable. The column of the simplex table corresponding to the entering variable is called Pivot column. Minimization problem: Choose the non basic variable having the most negative C j - Z j value as the entering variable. Determining Pivot row To determine the leaving variable, first devide ech positive entry of the pivot column into the corresponding entry of the right-hand-side column. The row variable corresponding to the minimum atio is the leaving variable.

19 Step 5: The intersection o the pivot row and pivot column is the Pivot element. Do the process until you get the optimal feasible solution.

20 Minimize Z= 22X 1 +15X 2 +9X 3 Subject to: 4X 1 + X 2 +2X 3 1 6X 1 +5X 2 + X 3 1 X 1,X 2,X 3 0 Minimize Z= 22X 1 +15X 2 +9X 3 +0 S 1 +0 S 2 +Ma 1 +Ma 2 Subject to: 4X 1 + X 2 +2X 3 - S 1 + a 1 =1 6X 1 +5X 2 + X 3 - S 2 + a 2 =1 X 1,X 2,X 3, S 1,S 2, a 1, a 2 0

21 X 1 X 2 X 3 S 1 S 2 a 1 a 2 Basis C j M M R.H.S. a 1 a 2 M M Z j 10M 6M 3M -M -M M M C j - Z j 22-10M 15-6M 9-3M M M 0 0 2M a 1 M X /3 4/3-1 2/ /6 1/6 0-1/6 0 Z j 22 55/3-7/3M 11/3+4/3M -M -11/3+2/3M M C j - Z j 0-10/3+7/3M 16/3-4/3M M 11/3-2/3M 0 1/3 1/6 M/3+11 /3

22 Basis C j X 1 X 2 X 3 S 1 S 2 a 1 a M M R.H.S. a 1 M X /3 4/3-1 2/ /6 1/6 0-1/6 0 Z j 22 55/3-7/3M 11/3+4/3M -M -11/3+2/3M M C j - Z j 0-10/3+7/3M 16/3-4/3M M 11/3-2/3M 0 1/3 1/6 M/3+11 /3 X 3 9 X /3 1-3/4 ½ 1 9/8 0 1/8-1/4 ¼ 1/8 Z j C j - Z j

23 Surplus Variable and Artificial Variable Max Z = 2X +3Y +4V Subject to 5X + 2Y +4V X + 5Y + 6Z X + 5Y + 4V X 0, Y 0, V 0 Standard Form Max Z = 2X + 3Y + 4V + 0S 1 +0S 2 + 0S 3 - Ma 1 - Ma 2 - Ma 3 Subject to: 5X + 2Y +4V - S 1 + a 1 = X + 5Y + 6Z -S 2 + a 2 = X + 5Y + 4V -S 3 + a 3 = X 0, Y 0, V 0, S 1 0, S 2 0, S 3 0, a 1 0, a 2 0, a 3 0 (S j = Surplus variables, a j = Artificial variables)

24 The Dual Linear Programming The number of variables of the dual equals the number of constraints of the Primal. The right-hand-side values of the primal become the coefficients of the objective function of the dual. The columns of the primal become the rows of the dual; the objective function coefficients of the primal become the right-hand-side values of the dual. The objective of maximizing is changed to minimizing.

25 The values of the dual variables equal the shadow prices of the primal. The shadow prices of the dual equal the values of the basic variables of the primal. Z for the dual equals to the Z for the primal.

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Lecture 11: Post-Optimal Analysis. September 23, 2009

Lecture 11: Post-Optimal Analysis. September 23, 2009 Lecture : Post-Optimal Analysis September 23, 2009 Today Lecture Dual-Simplex Algorithm Post-Optimal Analysis Chapters 4.4 and 4.5. IE 30/GE 330 Lecture Dual Simplex Method The dual simplex method will

More information

(includes both Phases I & II)

(includes both Phases I & II) Minimize z=3x 5x 4x 7x 5x 4x subject to 2x x2 x4 3x6 0 x 3x3 x4 3x5 2x6 2 4x2 2x3 3x4 x5 5 and x 0 j, 6 2 3 4 5 6 j ecause of the lack of a slack variable in each constraint, we must use Phase I to find

More information

Special cases of linear programming

Special cases of linear programming Special cases of linear programming Infeasible solution Multiple solution (infinitely many solution) Unbounded solution Degenerated solution Notes on the Simplex tableau 1. The intersection of any basic

More information

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis:

The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Sensitivity analysis The use of shadow price is an example of sensitivity analysis. Duality theory can be applied to do other kind of sensitivity analysis: Changing the coefficient of a nonbasic variable

More information

Farkas Lemma, Dual Simplex and Sensitivity Analysis

Farkas Lemma, Dual Simplex and Sensitivity Analysis Summer 2011 Optimization I Lecture 10 Farkas Lemma, Dual Simplex and Sensitivity Analysis 1 Farkas Lemma Theorem 1. Let A R m n, b R m. Then exactly one of the following two alternatives is true: (i) x

More information

(includes both Phases I & II)

(includes both Phases I & II) (includes both Phases I & II) Dennis ricker Dept of Mechanical & Industrial Engineering The University of Iowa Revised Simplex Method 09/23/04 page 1 of 22 Minimize z=3x + 5x + 4x + 7x + 5x + 4x subject

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP:

Dual Basic Solutions. Observation 5.7. Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Dual Basic Solutions Consider LP in standard form with A 2 R m n,rank(a) =m, and dual LP: Observation 5.7. AbasisB yields min c T x max p T b s.t. A x = b s.t. p T A apple c T x 0 aprimalbasicsolutiongivenbyx

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

Week_4: simplex method II

Week_4: simplex method II Week_4: simplex method II 1 1.introduction LPs in which all the constraints are ( ) with nonnegative right-hand sides offer a convenient all-slack starting basic feasible solution. Models involving (=)

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

Sensitivity Analysis

Sensitivity Analysis Dr. Maddah ENMG 500 /9/07 Sensitivity Analysis Changes in the RHS (b) Consider an optimal LP solution. Suppose that the original RHS (b) is changed from b 0 to b new. In the following, we study the affect

More information

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form

The Simplex Method. Formulate Constrained Maximization or Minimization Problem. Convert to Standard Form. Convert to Canonical Form The Simplex Method 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard Form Convert to Canonical Form Set Up the Tableau and the Initial Basic Feasible Solution

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

AM 121: Intro to Optimization

AM 121: Intro to Optimization AM 121: Intro to Optimization Models and Methods Lecture 6: Phase I, degeneracy, smallest subscript rule. Yiling Chen SEAS Lesson Plan Phase 1 (initialization) Degeneracy and cycling Smallest subscript

More information

Lecture 11 Linear programming : The Revised Simplex Method

Lecture 11 Linear programming : The Revised Simplex Method Lecture 11 Linear programming : The Revised Simplex Method 11.1 The Revised Simplex Method While solving linear programming problem on a digital computer by regular simplex method, it requires storing

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 03 Simplex Algorithm Lecture 15 Infeasibility In this class, we

More information

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems

OPERATIONS RESEARCH. Michał Kulej. Business Information Systems OPERATIONS RESEARCH Michał Kulej Business Information Systems The development of the potential and academic programmes of Wrocław University of Technology Project co-financed by European Union within European

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Lecture 5 Simplex Method. September 2, 2009

Lecture 5 Simplex Method. September 2, 2009 Simplex Method September 2, 2009 Outline: Lecture 5 Re-cap blind search Simplex method in steps Simplex tableau Operations Research Methods 1 Determining an optimal solution by exhaustive search Lecture

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Simplex Method for LP (II)

Simplex Method for LP (II) Simplex Method for LP (II) Xiaoxi Li Wuhan University Sept. 27, 2017 (week 4) Operations Research (Li, X.) Simplex Method for LP (II) Sept. 27, 2017 (week 4) 1 / 31 Organization of this lecture Contents:

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

"SYMMETRIC" PRIMAL-DUAL PAIR

SYMMETRIC PRIMAL-DUAL PAIR "SYMMETRIC" PRIMAL-DUAL PAIR PRIMAL Minimize cx DUAL Maximize y T b st Ax b st A T y c T x y Here c 1 n, x n 1, b m 1, A m n, y m 1, WITH THE PRIMAL IN STANDARD FORM... Minimize cx Maximize y T b st Ax

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

OPRE 6201 : 3. Special Cases

OPRE 6201 : 3. Special Cases OPRE 6201 : 3. Special Cases 1 Initialization: The Big-M Formulation Consider the linear program: Minimize 4x 1 +x 2 3x 1 +x 2 = 3 (1) 4x 1 +3x 2 6 (2) x 1 +2x 2 3 (3) x 1, x 2 0. Notice that there are

More information

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND 1 56:270 LINEAR PROGRAMMING FINAL EXAMINATION - MAY 17, 1985 SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: 1 2 3 4 TOTAL GRAND

More information

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics Dr. Said Bourazza Department of Mathematics Jazan University 1 P a g e Contents: Chapter 0: Modelization 3 Chapter1: Graphical Methods 7 Chapter2: Simplex method 13 Chapter3: Duality 36 Chapter4: Transportation

More information

March 13, Duality 3

March 13, Duality 3 15.53 March 13, 27 Duality 3 There are concepts much more difficult to grasp than duality in linear programming. -- Jim Orlin The concept [of nonduality], often described in English as "nondualism," is

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG630, The simplex method; degeneracy; unbounded solutions; infeasibility; starting solutions; duality; interpretation Ann-Brith Strömberg 2012 03 16 Summary of the simplex method Optimality condition:

More information

Summary of the simplex method

Summary of the simplex method MVE165/MMG631,Linear and integer optimization with applications The simplex method: degeneracy; unbounded solutions; starting solutions; infeasibility; alternative optimal solutions Ann-Brith Strömberg

More information

The Simplex Method of Linear Programming

The Simplex Method of Linear Programming The Simplex Method of Linear Programming Online Tutorial 3 Tutorial Outline CONVERTING THE CONSTRAINTS TO EQUATIONS SETTING UP THE FIRST SIMPLEX TABLEAU SIMPLEX SOLUTION PROCEDURES SUMMARY OF SIMPLEX STEPS

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis Ann-Brith Strömberg 2017 03 29 Lecture 4 Linear and integer optimization with

More information

Math Models of OR: Handling Upper Bounds in Simplex

Math Models of OR: Handling Upper Bounds in Simplex Math Models of OR: Handling Upper Bounds in Simplex John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 280 USA September 208 Mitchell Handling Upper Bounds in Simplex / 8 Introduction Outline

More information

THE STEPS OF THE SIMPLEX ALGORITHM

THE STEPS OF THE SIMPLEX ALGORITHM THE STEPS OF THE SIMPLEX ALGORITHM Contents 1. Introduction... 2 2. Slack and surplus variables... 2 3. Basic and nonbasic variables... 2 4. Admissible solutions... 3 5. Solution of a linear program (LP)...

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

1 Simplex and Matrices

1 Simplex and Matrices 1 Simplex and Matrices We will begin with a review of matrix multiplication. A matrix is simply an array of numbers. If a given array has m rows and n columns, then it is called an m n (or m-by-n) matrix.

More information

Brief summary of linear programming and duality: Consider the linear program in standard form. (P ) min z = cx. x 0. (D) max yb. z = c B x B + c N x N

Brief summary of linear programming and duality: Consider the linear program in standard form. (P ) min z = cx. x 0. (D) max yb. z = c B x B + c N x N Brief summary of linear programming and duality: Consider the linear program in standard form (P ) min z = cx s.t. Ax = b x 0 where A R m n, c R 1 n, x R n 1, b R m 1,and its dual (D) max yb s.t. ya c.

More information

Lecture 14 Transportation Algorithm. October 9, 2009

Lecture 14 Transportation Algorithm. October 9, 2009 Transportation Algorithm October 9, 2009 Outline Lecture 14 Revisit the transportation problem Simplex algorithm for the balanced problem Basic feasible solutions Selection of the initial basic feasible

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

CPS 616 ITERATIVE IMPROVEMENTS 10-1

CPS 616 ITERATIVE IMPROVEMENTS 10-1 CPS 66 ITERATIVE IMPROVEMENTS 0 - APPROACH Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change

More information

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur

END3033 Operations Research I Sensitivity Analysis & Duality. to accompany Operations Research: Applications and Algorithms Fatih Cavdur END3033 Operations Research I Sensitivity Analysis & Duality to accompany Operations Research: Applications and Algorithms Fatih Cavdur Introduction Consider the following problem where x 1 and x 2 corresponds

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T.

SAMPLE QUESTIONS. b = (30, 20, 40, 10, 50) T, c = (650, 1000, 1350, 1600, 1900) T. SAMPLE QUESTIONS. (a) We first set up some constant vectors for our constraints. Let b = (30, 0, 40, 0, 0) T, c = (60, 000, 30, 600, 900) T. Then we set up variables x ij, where i, j and i + j 6. By using

More information

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 13 Dr. Ted Ralphs IE406 Lecture 13 1 Reading for This Lecture Bertsimas Chapter 5 IE406 Lecture 13 2 Sensitivity Analysis In many real-world problems,

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0.

min3x 1 + 4x 2 + 5x 3 2x 1 + 2x 2 + x 3 6 x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0. ex-.-. Foundations of Operations Research Prof. E. Amaldi. Dual simplex algorithm Given the linear program minx + x + x x + x + x 6 x + x + x x, x, x. solve it via the dual simplex algorithm. Describe

More information

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

More information

Duality in LPP Every LPP called the primal is associated with another LPP called dual. Either of the problems is primal with the other one as dual. The optimal solution of either problem reveals the information

More information

Foundations of Operations Research

Foundations of Operations Research Solved exercises for the course of Foundations of Operations Research Roberto Cordone The dual simplex method Given the following LP problem: maxz = 5x 1 +8x 2 x 1 +x 2 6 5x 1 +9x 2 45 x 1,x 2 0 1. solve

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

MATH 445/545 Test 1 Spring 2016

MATH 445/545 Test 1 Spring 2016 MATH 445/545 Test Spring 06 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 545 level. Please read and follow all of these

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

3. THE SIMPLEX ALGORITHM

3. THE SIMPLEX ALGORITHM Optimization. THE SIMPLEX ALGORITHM DPK Easter Term. Introduction We know that, if a linear programming problem has a finite optimal solution, it has an optimal solution at a basic feasible solution (b.f.s.).

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

April 2003 Mathematics 340 Name Page 2 of 12 pages

April 2003 Mathematics 340 Name Page 2 of 12 pages April 2003 Mathematics 340 Name Page 2 of 12 pages Marks [8] 1. Consider the following tableau for a standard primal linear programming problem. z x 1 x 2 x 3 s 1 s 2 rhs 1 0 p 0 5 3 14 = z 0 1 q 0 1 0

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 2: Intro to LP, Linear algebra review. Yiling Chen SEAS Lecture 2: Lesson Plan What is an LP? Graphical and algebraic correspondence Problems

More information

(b) For the change in c 1, use the row corresponding to x 1. The new Row 0 is therefore: 5 + 6

(b) For the change in c 1, use the row corresponding to x 1. The new Row 0 is therefore: 5 + 6 Chapter Review Solutions. Write the LP in normal form, and the optimal tableau is given in the text (to the right): x x x rhs y y 8 y 5 x x x s s s rhs / 5/ 7/ 9 / / 5/ / / / (a) For the dual, just go

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

Non-Standard Constraints. Setting up Phase 1 Phase 2

Non-Standard Constraints. Setting up Phase 1 Phase 2 Non-Standard Constraints Setting up Phase 1 Phase 2 Maximizing with Mixed Constraints Some maximization problems contain mixed constraints, like this: maximize 3x 1 + 2x 2 subject to 2x 1 + x 2 50 (standard)

More information

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM Abstract These notes give a summary of the essential ideas and results It is not a complete account; see Winston Chapters 4, 5 and 6 The conventions and notation

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

The dual simplex method with bounds

The dual simplex method with bounds The dual simplex method with bounds Linear programming basis. Let a linear programming problem be given by min s.t. c T x Ax = b x R n, (P) where we assume A R m n to be full row rank (we will see in the

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

The Big M Method. Modify the LP

The Big M Method. Modify the LP The Big M Method Modify the LP 1. If any functional constraints have negative constants on the right side, multiply both sides by 1 to obtain a constraint with a positive constant. Big M Simplex: 1 The

More information

The augmented form of this LP is the following linear system of equations:

The augmented form of this LP is the following linear system of equations: 1 Consider the following LP given in standard form: max z = 5 x_1 + 2 x_2 Subject to 3 x_1 + 2 x_2 2400 x_2 800 2 x_1 1200 x_1, x_2 >= 0 The augmented form of this LP is the following linear system of

More information

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lecture-8 Lecture 8 Slide# 1 Today s Lecture 1. Recap of dual variables and strong duality. 2. Complementary Slackness Theorem. 3. Interpretation of dual variables.

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided:

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided: The LP formulation is Linear Programming: Graphical Method Maximize, Z = 2x + 7x 2 Subject to constraints, 2x + x 2 200...(i) x 75...(ii) x 2 00...(iii) where x, x 2 ³ 0 Example 7: Geetha Perfume Company

More information

February 17, Simplex Method Continued

February 17, Simplex Method Continued 15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

More information