Laws of Motion Friction More Problem Solving

Size: px
Start display at page:

Download "Laws of Motion Friction More Problem Solving"

Transcription

1 Laws of Motion Friction More Problem olving Lana heridan De Anza College Feb 1, 2019

2 Last time pulleys friction

3 Overview friction Problem solving with forces

4 Friction friction The force caused by small-scale roughness of surfaces or even electrostatic attractions between surfaces. It dissipates energy and resists motion. Kinetic friction is the friction force that acts on moving objects. It is given by: f k = µ k #» n = µ k n tatic friction is the friction force that acts on objects that are at rest: f s µ s n f s f s,max f s,max = µ s n

5 Friction Example According to the textbook, for waxed wood on wet snow µ s = 0.14 and µ k = 0.1. You pull on a sled of mass 10 kg that is at rest initially. How much force do you need to apply to get the sled moving? If you continue to apply that force, what will the magnitude of sled s acceleration be once it is moving?

6 Friction Question Quick Quiz You are playing with your daughter in the snow. he sits on a sled and asks you to slide her across a flat, horizontal field. You have a choice of: (A) pushing her from behind by applying a force downward on her shoulders at 30 below the horizontal or (B) attaching a rope to the front of the sled and pulling with a force at 30 above the horizontal. Which would be easier for you and why? 2 erway & Jewett, page 132. a b F F Figure 5.17 (Quick Quiz 5.7) A father slides his daughter on a sled either by (a) pushing down on her shoulders or (b) pulling up on a rope. Rubb tee Alum Glas Cop Woo Wax Wax Meta Teflo Ice o yno Note: can e Q u yo b Q u a ch sh th (F

7 ome More Force Problems We already considered many different situations where we could analyze forces to determine motion. Now, we can mix some of those situations into more complex cases.

8 the med emergency, what is the minimum time interval in which a person starting from rest can move 3.00 m on the tile surface if she is wearing (a) footwear meeting the Postal ervice minimum and (b) a typical athletic shoe? Tension and Force: #60, pg 144 ntal een iniat is m s 5 surset e of contion the 0-kg seat the netic m/h 61. Review. A 3.00-kg block starts from rest at the top of a M 30.0 incline and slides a distance of 2.00 m down the incline in 1.50 s. Find (a) the magnitude of the acceler- 60. A woman at an airport is towing W her 20.0-kg suitcase at constant speed by pulling on a strap at an angle u above the horizontal (Fig. P5.60). he pulls on the u strap with a 35.0-N force, and the friction force on the suitcase is 20.0 N. (a) Draw a freebody diagram of the suitcase. Figure P5.60 (b) What angle does the strap make with the horizontal? (c) What is the magnitude of the normal force that the ground exerts on the suitcase?

9 choose the x direction as u north of east and the y direction as u west of north. (c) Compare Tension and your Force solutions Meters: to parts (a) and #28, (b). Do the page results agree? 141 Is one method significantly easier? 28. The systems shown in Figure P5.28 are in equilibrium. W If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline in Figure P5.28d are frictionless kg a 5.00 kg 5.00 kg b t s. 33. A bag of cemen AMT hangs in eq W three wires as ure P5.33. Two angles u with the horiz the system is find the tensio in the wires. 34. A bag of ceme is F g hangs in e three wires as P5.33. Two of angles u 1 and u tem is in equili hand wire is c 5.00 kg kg 5.00 kg d Figure P Two people pu ropes attached If they pull in acceleration of opposite direc m/s 2 to t force each per other horizonta

10 nalysis Models Using Newton s econd Law 129 Pulley with an Incline ected by a Cord Let s change up our Atwood machine apparatus so that one of the masses is on a slanted surface with no friction: y tweight cord igure 5.15a. agnitude of. a m 1 AM m 2 a u T m 1 x g If m 2 moves cts are conccelerations a n y b

11 jects Pulley Connected with an by Incline a Cord AM 5.7 Analysis Models Using Newton s econd Law y 129 hed by a lightweight cord e mass as in Figure 5.15a. cceleration of Two Objects Connected by a Cord AM u. Find the magnitude of m T 2 y n block in the of mass cord. m 2 are attached by a lightweight cord x m ionless pulley of negligible mass as in a Figure a. a m 1 g ictionless d Law incline of angle u. 129 Find the magnitude of u m T 2 two objects and the tension in the cord. x 5 in motion. If m 2 moves a u b use the Weobjects can still are consider conetch), the objects their in accelerations Figure 5.15 in motion. If m 2 moves a b each object separately: y e n m n oordinate 1 moves upward. Because axes in y the objects are conch we assume does not stretch), their accelerations y Figure ck in Figure 5.15c. T n ude. Notice the normal coordinate axes in Figure he tilted axes for the block e two objects and we are m 2 g sin u T in Figure 5.15c. T entify objects forces as on particles each of under the two a objects and we are m 2 g sin u tion, so we categorize the objects the x9 direction. In the y9 2 g cos u x x as particles m under ua u x this model is only valid for the x9 direction. In the y9 m2g cos u el particle because in equilibrium the block model mdoes 1 gbecause the block does m 2 g m 2 g irection. c c Acceleration? Tension? free-body diagrams shown in Figures 5.15b and n in Figures 5.15b and Figure 5.15 (Example 5.10) (a) Two objects a m 1 m 1 g

12 Pulley with an Incline

13 er from behind by applying a force downward on her the Incline horizontal with (Fig. Friction 5.17a) or (b) attaching a rope to d pulling with a force at 30 above the horizontal ld be easier for you and why? Given a block of mass m = 1 kg on an incline of θ = 30 with a M coefficient of static friction of µ s = 0.3, will the block slide? s and M k AM ts of friction. uppose e horizontal as shown k starts to move. how hich this slipping just e block tends to slide te the situation, place begins to slide. Notice is no friction on an ject to begin moving. e object for angles less fs mg cos u u mg n y mg sin u Figure 5.18 (Example 5.11) The external forces exerted on a block lying on a rough incline are the gravitational force mg, the normal force n, and the force of friction fs. For convenience, the gravitational force u x

14 Incline with Friction AM nation of M s and M k coefficients of friction. uppose lative to the horizontal as shown til the block starts to move. how angle u c at which this slipping just ne that the block tends to slide. To simulate the situation, place il the coin begins to slide. Notice hen there is no friction on an tionary object to begin moving. ment of the object for angles less ces. Because we are raising the y to begin to move but is not movrium. rces on the block: the gravitational force mg, the normal force n, and parallel to the plane and y perpendicular to it. quation 5.8 (1) o F x 5 mg sin u 2 f s 5 0 (2) o F y 5 n 2 mg cos u 5 0 fs mg cos u u mg n y mg sin u Figure 5.18 (Example 5.11) The external forces exerted on a block lying on a rough incline are the gravitational force mg, the normal force n, and the force of friction fs. For convenience, the gravitational force is resolved into a component mg sin u along the incline and a component mg cos u perpendicular to the incline. If the net force is not zero, it will be downward parallel to the slope. u x

15 Pulley ystem: #85, page 147 move, determine (d) the sum of the magnitudes of the forces of friction acting on the blocks. 85. An object of mass M is held in place by an applied force F and a pulley system as shown in Figure P5.85. The pulleys are massless and frictionless. (a) Draw diagrams showing the forces on each pulley. Find (b) the tension in each section of rope, T 1, T 2, T 3, T 4, and T 5 and (c) the magnitude of F. 86. Any device that allows you to increase the force you exert is a kind of machine. F T 1 T 4 T 2 T 3 M T 5 Figure P5.85

16 ummary friction more practice with force problems (Uncollected) Homework erway & Jewett, Work through Example 5.13 on page 134 and understand it. Ch 5, onward from page 136. Obj.Q 1; Problems: 61, 65, 89, 103

Laws of Motion Friction More Problem Solving

Laws of Motion Friction More Problem Solving Laws of Motion riction More Problem olving Lana heridan De Anza College Oct 16, 2017 Last time elevators pulleys Overview riction Problem solving with forces Pulleys and the Atwood Machine The Atwood Machine

More information

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College Mechanics riction Lana heridan De Anza College Oct 23, 2018 Last time Types of forces and new scenarios contact forces tension pulleys Overview finish Atwood machine friction Recap: Pulleys and the Atwood

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Mar 6, 2018 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Dynamics Laws of Motion Elevators, Pulleys, and Friction

Dynamics Laws of Motion Elevators, Pulleys, and Friction Dynamics Laws of Motion Elevators, Pulleys, and riction Lana heridan De Anza College Oct 12, 2017 Last time equilibrium nonequilibrium Problem solving with tensions inclines Overview Problem solving with

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Nov 9, 2017 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Dynamics Laws of Motion More About Forces

Dynamics Laws of Motion More About Forces Dynamics Laws of Motion More About Forces Lana heridan De Anza College Oct 10, 2017 Overview Newton s first and second laws Warm Up: Newton s econd Law Implications Question. If an object is not accelerating,

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated

More information

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9 Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 3 Lecture 9 f N k = µ k f N s < µ s Atwood s machine Consider the Atwood

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Webreview practice test. Forces (again)

Webreview practice test. Forces (again) Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections 3.2 3.6 Lecture 4 Purdue University, Physics 220 1 Last Lecture Constant Acceleration x = x 0 + v 0 t + ½ at 2 v = v 0 + at Overview v

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

PHYS-2010: General Physics I Course Lecture Notes Section V

PHYS-2010: General Physics I Course Lecture Notes Section V PHYS-2010: General Physics I Course Lecture Notes Section V Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and students

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion

Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion Static and Kinetic Friction, Normals, Equilibrium and Accelerated Motion 1. A baseball player slides into home base with an initial speed of 7.90 m/s. If the coefficient of kinetic friction between the

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Nov 1, 2017 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law examples

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College tatic Equilibrium Lana heridan De Anza College Dec 5, 2016 Last time simple harmonic motion Overview Introducing static equilibrium center of gravity tatic Equilibrium: ystem in Equilibrium Knowing that

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

Example. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2

Example. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2 Physic 3 Lecture 7 Newton s 3 d Law: When a body exerts a force on another, the second body exerts an equal oppositely directed force on the first body. Frictional forces: kinetic friction: fk = μk N static

More information

An Accelerating Hockey Puck

An Accelerating Hockey Puck Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

More information

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity.

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 2. A 15 kg bag of bananas hangs from a taunt line strung between

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit.

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit. Dynamics Assignment 3 Name: Multiple Choice. Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit. 1. Which statement is always true regarding

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces -- All of these are derived from the electroweak force: normal or support forces friction tension

More information

Physics 111: Mechanics Lecture 5

Physics 111: Mechanics Lecture 5 Physics 111: Mechanics Lecture 5 Bin Chen NJIT Physics Department Forces of Friction: f q When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion.

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

Dynamics Notes 1 Newton s Laws

Dynamics Notes 1 Newton s Laws Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:

More information

SPH3U1 - Dynamics Problems Set 3

SPH3U1 - Dynamics Problems Set 3 SPH3U1 - Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting

More information

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015 Physics 2210 Fall 2015 Review for Midterm Exam 2 10/07/2015 Problem 1 (1/3) A spring of force constant k = 800 N/m and a relaxed length L 0 = 1.10 m has its upper end fixed/attached to a pivot in the ceiling.

More information

Core Mathematics M1. Dynamics (Planes)

Core Mathematics M1. Dynamics (Planes) Edexcel GCE Core Mathematics M1 Dynamics (Planes) Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Introduction to Mechanics Dynamics Forces Applying Newton s Laws

Introduction to Mechanics Dynamics Forces Applying Newton s Laws Introduction to Mechanics Dynamics Forces Applying Newton s Laws Lana heridan De Anza College Feb 21, 2018 Last time force diagrams Newton s second law examples Overview Newton s second law examples Newton

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Forces & Newton s Laws FR Practice Problems

Forces & Newton s Laws FR Practice Problems 1) A drag-racing car speeds up from rest to 22 m/s in 2 s. The car has mass 800 kg; the driver has mass 80 kg. a) Calculate the acceleration of the car. b) Calculate the net force on the car. c) Which

More information

Previewer Tools Hide All

Previewer Tools Hide All Assignment Previewer Forces & Newton's Laws of Motion (496767) Previewer Tools Show All Hide All In View: Key Close this window Hidden: Assignment Score Mark Help/Hints Solution Show New Randomization

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date. Newton s Laws B FR Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Energy Work vs Potential Energy Energy and Friction

Energy Work vs Potential Energy Energy and Friction Energy Work vs Potential Energy Energy and Friction Lana heridan De Anza College Feb 19, 2019 Last time conservation Overview work vs. potential kinetic friction and Two Views: Isolated vs Nonisolated

More information

Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line

Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Physics 4A Chapter 5: Force and Motion and Chapter 6: Dynamics I: Motion Along a Line Conceptual Questions and Example Problems from Chapters 5 and 6 Conceptual Question 5.7 An object experiencing a constant

More information

Solution of HW4. and m 2

Solution of HW4. and m 2 Solution of HW4 9. REASONING AND SOLUION he magnitude of the gravitational force between any two of the particles is given by Newton's law of universal gravitation: F = Gm 1 m / r where m 1 and m are the

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Slide. King Saud University College of Science Physics & Astronomy Dept.

Slide. King Saud University College of Science Physics & Astronomy Dept. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: THE LAWS OF MOTION (PART 2) LECTURE NO. 8 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR

More information

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. A/Prof Tay Seng Chuan PC1221 Fundamentals of Physics I Lectures 9 and 10 The Laws of Motion A/Prof Tay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana heridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS DYNAMICS L (P.77-83) To avoid using complex mathematical analysis, you can make several assumptions about cables and ropes that support loads. The mass of the rope or cable is

More information

Newton s Laws Pre-Test

Newton s Laws Pre-Test Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

More information

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

9/20/11. Physics 101 Tuesday 9/20/11 Class 8 Chapter  Weight and Normal forces Frictional Forces Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information