Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Size: px
Start display at page:

Download "Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion"

Transcription

1 Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion

2 Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the same downward acceleration) regardless of mass. This theory was tested and found to be true. The weight force (F g ) exerted on a mass, m, was found to be g, (the ball s acceleration) so Newton s 2 nd Law becomes F g = mg.

3 Mass vs Weight Your MASS is the amount of MATTER that composes you. Your WEIGHT is the response of that mass to the pull of gravity. (No air resistance in this free fall). Though your WEIGHT will vary planet to planet due to a varying g, your mass will remain constant.

4 Weighing in an Elevator Look at the example problem on pg 128. In your coordinate system, positive direction is UP, so acceleration due to gravity is NEGATIVE. F net = sum of positive force of scale on you, F scale and negative weight force, F g. So F net = F scale F g. Solve for F scale and substitute ma for F net and mg for F g. F scale = ma + mg, F scale = m(a+g)

5 Practice Problem A 50-kg bucket is being lifted by a rope. The rope is guaranteed not to break if the tension is 500N or less. The bucket started at rest, and after being lifted 3.0m, it is moving 3.0m/s. Assuming that the acceleration is constant, is the rope in danger of breaking? Draw free body diagram and label all forces

6 Solution Known: Unknown: m = 50kg v = 3.0m/s F T =? v 0 =0m/s d= 3.0m Strategy: net force = vector sum F net = F T F g so, F T = F net + F g F T = ma + mg Because v 0 = 0m/s, then a = v 2 /2d F T = 570N, the rope is in danger of breaking.

7 Apparent Weight Typically a scale reads the support force of an object (the object s weight which is due to mass and gravity). If other forces are exerted on the object to increase or decrease the downward force, the scale reads the support which is the apparent weight. Example- stand on a scale and push up on the sink at the same time is your weight more or less?

8 Weightlessness If support (upward push) opposes gravity (downward pull), when the support becomes zero, as in an elevator falling at 9.8m/s2, a scale cannot push up on the object so the reading goes to zero. This is apparent weightlessness and does NOT mean the object has no weight. Normal Force- F N is the force pushing one surface against another. (The support of the object?) Perpendicular to the surface.

9 Proportionality Constants A constant that depends on the material used in the objects and the conditions of their movement (stationary or moving). For Friction, the constants are: μ s for the static coefficient of friction and μ k for the kinetic coefficient of friction.

10 How hard can you be pushed? A stationary object can only be pushed so hard, before it will move. Static friction force, F f, can grow, but has a limit. ( s F N ) This is the max friction before the object starts to move. Could you push harder on an object and it still NOT move? What does that do to the amount of friction to keep F net = 0?

11 Friction Due to surface irregularities between objects, a force of FRICTION opposes moving objects. Static Friction- a force existing between objects that don t move relative to each other. 0 F f static s F N Kinetic Friction- a force existing between objects that MOVE relative to each other. F f, kinetic k F N

12 Forces as Vectors It is important to note that the normal force, F N, and the force of friction, F f, are at right angles to each other. F push Use table p. 131 for friction coefficients. F N F f

13 Practice Problems A boy exerts a 36-N horizontal force as he pulls a 52-N sled across a cement sidewalk at a constant speed. What is the coefficient of kinetic friction between the sidewalk and the metal sled runners? Ignore air resistance.

14 Solution Draw a free body diagram There is not net horizontal or vertical force Since speed is constant, F f = force exerted by the boy, 36-N, but F f = μ k F N so, Ff 36N μ k = = = 0.69 FN 52N

15 Practice Problem #2 Suppose the sled runs on packed snow. The coefficient of friction is now only If a person weighing 650-N sits on the sled, what force is needed to pull the sled across the snow at constant speed?

16 Solution At constant speed, applied force = friction force, so F f = μ k F N F f = (0.12) (52 N N) F f = 84 N

17 Your turn to Practice Open your textbook to pg Do Ch 6 Rev. #s 26,27,29, 30-35*, 37, & 38

18 Air Drag and Terminal Velocity Fluids (liquids and gases) exert a friction force on moving objects. Amount of fluid friction depends on speed of the object, size and shape of the object, density, and the kind of fluid. Fluid force is called drag. When drag force = force of gravity, the object stops accelerating and reaches T.V. How can you change the terminal velocity an object reaches?

19 Periodic Motion As an object moves back and forth when disturbed, it has one position where it is in equilibrium and net force = zero. As disturbed by a net force, the object is pulled back toward equilibrium. This is Simple Harmonic Motion and the object is described in 2 areas: Period (T)- the time needed for one complete back and forth cycle. Amplitude- maximum displacement from equilibrium.

20 Pendulums The period of oscillation depends on the mass of the object and the strength of the spring, but NOT on the amplitude of the swing A pendulum bob swings back and forth with a period that depends on the length, l, of the string. T 2 l g Note: period does not depend on mass of the bob or amplitude of swing.

21 Resonance Applying a force to an object to cause it to vibrate is a Forced vibration. All objects have a natural frequency. Causing a vibrating object to vibrate at its natural frequency increases the AMPLITUDE of the vibration. This is called RESONANCE. Examples: coins in your car ashtray vibrate at a certain speed, a swing will only oscillate at it s natural freq. If you push 1x/ cycle it will go the highest.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

PHY131 Summer 2011 Class 5 Notes

PHY131 Summer 2011 Class 5 Notes PHY131 Summer 2011 Class 5 Notes 5/31/11 PHY131H1F Summer Class 5 Today: Equilibrium Mass, Weight, Gravity Friction, Drag Rolling without slipping Examples of Newton s Second Law Pre-class Reading Quiz.

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015 Forces Newton s Three Laws of Motion Types of Forces Weight Friction Terminal Velocity Periodic Motion Forces Defined as a push or a pull Types of Forces 1) Gravitational - attractive force that exists

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. To use

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration Chapter FOUR: Forces in One Dimension 4.1 Force and Motion force: a push or pull exerted on an object forces cause objects to: speed up slow down change direction = change in velocity therefore, a force

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

PHY131H1S Class 10. Preparation for Practicals this week: Today: Equilibrium Mass, Weight, Gravity Weightlessness

PHY131H1S Class 10. Preparation for Practicals this week: Today: Equilibrium Mass, Weight, Gravity Weightlessness PHY131H1S Class 10 Today: Equilibrium Mass, Weight, Gravity Weightlessness Preparation for Practicals this week: Take a ride on the Burton Tower elevators! All 4 elevators in the 14-storey tower of McLennan

More information

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. VISUAL PHYSICS ONLINE DYNAMICS TYPES O ORCES 1 Electrostatic force orce mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. AB A

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

+F N = -F g. F g = m٠a g

+F N = -F g. F g = m٠a g Force Normal = F N Force Normal (or the Normal Force, abbreviated F N ) = F N = The contact force exerted by a surface on an object. The word Normal means perpendicular to Therefore, the Normal Force is

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

SPH3U1 - Dynamics Problems Set 3

SPH3U1 - Dynamics Problems Set 3 SPH3U1 - Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting

More information

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i Chapter 3 continued b. Since the rocket takes off from the ground, d i 0.0 m, and at its highest point, v f 0.0 m/s. v f v i a t f (d f d i ) 0 v i a t f d f v i d f a t f (450 m/s) ( 9.80 m/s )(4.6 s)

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

F 2 = 26 N.What third force will cause the object to be in equilibrium (acceleration equals zero)?

F 2 = 26 N.What third force will cause the object to be in equilibrium (acceleration equals zero)? FLEX Physical Science AP Physics C Mechanics - Midterm 1) If you set the cruise control of your car to a certain speed and take a turn, the speed of the car will remain the same. Is the car accelerating?

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4. Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Chapter Goal: To establish a connection between force and motion. Slide 4-2 Chapter 4 Preview

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Review: Newton s Laws

Review: Newton s Laws More force was needed to stop the rock Review: Newton s Laws F r 1 F r F r 3 F r 4 2 Newton s First Law The velocity of an object does not change unless a force acts on the object Newton s Second Law:

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Look at the text on page 134 for the answer.

Look at the text on page 134 for the answer. Going Down You might expect a sky diver to plummet to Earth in a rapid, uncontrolled descent. Yet a group of sky divers can perform beautiful maneuvers as they drop toward Earth at high speeds. How do

More information

Chapter 6. Applications of Newton s Laws

Chapter 6. Applications of Newton s Laws Chapter 6 Applications of Newton s Laws P. Lam 7_11_2018 Learning Goals for Chapter 5 Learn how to apply Newton s First Law & Second Law. Understand the cause of apparent weight and weightlessness Learn

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

PHYSICS 231 Laws of motion PHY 231

PHYSICS 231 Laws of motion PHY 231 PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Chapter 4 NEWTONS LAWS Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Force: a push or a pull Measured in Newton Vector Quantity Contact Force: applied by direct contact Field Force:

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

9/20/11. Physics 101 Tuesday 9/20/11 Class 8 Chapter  Weight and Normal forces Frictional Forces Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.

More information

Physics 1A Lecture 4B. "Fig Newton: The force required to accelerate a fig inches per second. --J. Hart

Physics 1A Lecture 4B. Fig Newton: The force required to accelerate a fig inches per second. --J. Hart Physics 1A Lecture 4B "Fig Newton: The force required to accelerate a fig 39.37 inches per second. --J. Hart Types of Forces There are many types of forces that we will apply in this class, let s discuss

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

FORCE. Definition: Combining Forces (Resultant Force)

FORCE. Definition: Combining Forces (Resultant Force) 1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Solution of HW4. and m 2

Solution of HW4. and m 2 Solution of HW4 9. REASONING AND SOLUION he magnitude of the gravitational force between any two of the particles is given by Newton's law of universal gravitation: F = Gm 1 m / r where m 1 and m are the

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

Question 13.1a Harmonic Motion I

Question 13.1a Harmonic Motion I Question 13.1a Harmonic Motion I A mass on a spring in SHM has a) 0 amplitude A and period T. What b) A/2 is the total distance traveled by c) A the mass after a time interval T? d) 2A e) 4A Question 13.1a

More information

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag PHY131H1F - Class 9 Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag Microscopic bumps and holes crash into each other, causing a frictional force. Kinetic

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act?

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act? Quest Chapter 05 1 How would your mass change if you took a trip to the space station? 1. decreases; you weigh less. 2. increases; you weigh more. 3. no change in mass 2 (part 1 of 3) You are driving a

More information

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on " % e bottom block?

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on  % e bottom block? 1. Which one ofthe following terms is used to indicate the natural tendency of an object to remain at rest or in motion at a constant speed along a straight line? A) force B) acceleration C) equilibrium

More information

LECTURE 11 FRICTION AND DRAG

LECTURE 11 FRICTION AND DRAG LECTURE 11 FRICTION AND DRAG 5.5 Friction Static friction Kinetic friction 5.6 Drag Terminal speed Penguins travel on ice for miles by sliding on ice, made possible by small frictional force between their

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

4.2. The Normal Force, Apparent Weight and Hooke s Law

4.2. The Normal Force, Apparent Weight and Hooke s Law 4.2. The Normal Force, Apparent Weight and Hooke s Law Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth. When you weigh yourself, the scale gives

More information

Net Force and Acceleration

Net Force and Acceleration NEWTON'S SECOND LAW Net Force and Acceleration According to Newton: v A constant velocity is the natural state of motion To accelerate a physical system requires a force F The amount of force required

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion 1st Law Law of Inertia - An object in CONSTANT motion remains in CONSTANT motion and an object at rest remains at rest UNLESS acted

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Ch 10 HW: Problem Spring Force

Ch 10 HW: Problem Spring Force Ch 10 HW: Problem 10.1 - Spring Force A 3.40-kg block is held against a vertical wall by a spring force in the setup shown below. The spring has a spring constant k = 725 N/m. Someone pushes on the end

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Assignment 4 due Friday like almost every Friday Pre-class due 15min before class like every class Help Room: Here, 6-9pm Wed/Thurs SI: Morton 222, M&W 7:15-8:45pm Office Hours: 204 EAL, 10-11am Wed or

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information