Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Size: px
Start display at page:

Download "Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2"

Transcription

1 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E ( X ). c) Find the median of the probability distribution of X.. Suppose a random variable X has the following probability density function: f ( x ) = x e x, < x <, zero otherwise. a) Find P ( X < ). b) Find µ = E ( X ). c) Find the moment-generating function of X, M X ( t ). 3. Let X have the probability density function: f ( x ) = 3 x for x, f ( x ) = 3 f ( x ) = for < x, otherwise. a) Verify that f ( x ) is a probability density function. b) Find P(X.5). c) Find P(X.5). d) Find P(X =.5). e) Find the cumulative distribution function F( x ) = P(X x). f) Find the median of the probability distribution of X. g) Compute the expected value of X, E(X) = µ X.

2 4. The heights of adult males in Neverland are normally distributed with mean of 69 inches and standard deviation of 5 inches. a) What proportion of adult males in Neverland are taller than 6 feet (7 inches)? b) What proportion of adult males are between 5 and 6 feet tall. c) How tall must a male be to be among the tallest % of the population? d) How "tall" must a male be to be among the shortest third of the population? 5. The lifetime of a certain type of television tube is normally distributed with mean 3.8 years and standard deviation of. years. a) Suppose that the tube is guaranteed for two years. What proportion of TVs will require a new tube before the guarantee expires? b) If the company wishes to set the warranty period so that only 4% of the tubes would need replacement while under warranty, how long a warranty must be set? c) What proportion of TVs will last for over 5 years? 6. The lifetimes of a certain type of light bulbs follow a normal distribution. If 9% of the bulbs have lives exceeding hours and 3% have lives exceeding 6 hours, what are the mean and standard deviation of the lifetimes of this particular type of light bulbs. 7. Suppose the average daily temperature [in degrees Fahrenheit] in July in Anytown is a random variable T with mean µ T = 86 and standard deviation σ T = 9. What is the probability that the daily temperature in July in Anytown is above 33 degrees Celsius? ( Assume that T is a normal random variable. ) 9 Celsius Fahrenheit = C F Fahrenheit Celsius C = ( F 3) 5 9

3 8. If the moment-generating function of X is M ( t ) = exp ( 66 t + t ), find a) The mean of X. b) The variance of X. c) P ( 7 < X < ). d) P ( 48 < X < 7 ). From the textbook: (a) 3.3- (a), (a) 3.- (a) (b) 3.3- (b), (b) 3.- (b) (c) 3.3- (c), (c) 3.- (c)

4 Answers:. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). P ( X < 4 π ) = π 4 π 4 sin x dx = ( cos x) = cos π = b) Find µ = E ( X ). π µ = E ( X ) = x sin x dx = ( x cos x + sin x) π =. c) Find the median of the probability distribution of X. x F ( x ) = P ( X x ) = π sin y dy = cos x, < x <. Median: F ( m ) = P ( X m ) =. cos m =. m = π. 3

5 . Suppose a random variable X has the following probability density function: f ( x ) = x e x, < x <, zero otherwise. a) Find P ( X < ). P ( X < ) = x x e x dx = [ x e e ] = x e b) Find µ = E ( X ). µ = E ( X ) = x x e x dx x e x x e x + e x = [ ] = e. c) Find the moment-generating function of X, M X ( t ). M X ( t ) = e t x x e x dx = ( + x e t ) x dx = ( t ) x e t + ( t + ) ( t + ) + x x e = = e t + t+ t e + ( t + ) t+ t+ e + ( t + ) ( t + ), t. M X ( ) = x dx =.

6 3. a) ƒ(x), total area under the graph of ƒ(x) is. b) P(X.5) = /. c) P(X.5) = / 3. d) P(X =.5) =. e) F( x ) = for x, F( x ) = F( x ) = x for x, 3 x for x, 3 3 F( x ) = for x. f) median =.5. g) E(X) = / 9.

7 4. The heights of adult males in Neverland are normally distributed with mean of 69 inches and standard deviation of 5 inches. a) What proportion of adult males in Neverland are taller than 6 feet (7 inches)? 7 69 P( X > 7 ) = PZ > 5 = P( Z >.6 ) = area to the right of.6 = Φ (.6 ) =.757 =.743. b) What proportion of adult males are between 5 and 6 feet tall P( 6 < X < 7 ) = P < Z < 5 5 = P(.8 < Z <.6 ) = area between.8 and.6 = Φ (.6 ) Φ (.8 ) = = c) How tall must a male be to be among the tallest % of the population? Need x such that P( X > x ) =.. Need z such that P( Z > z ) =.. Φ ( z ) =. =.9. z =.8. x µ x 69 = z =.8. σ 5 x = = 75.4 inches. A male must to be over 75.4 inches tall.

8 d) How "tall" must a male be to be among the shortest third of the population? Need x such that P( X < x ) = Need z such that P( Z < z ) = Φ ( z ) = z =.43. x µ x 69 = z =.43. σ 5 x = (.43 ) = inches. A male must to be under inches "tall." 5. µ = 3.8 years, σ =. years. a) P ( X < ) = P ( Z <.5 ) =.933 =.668. b) z =.75; x = (.75 ) =.7 years. c) P ( X > 5 ) = P ( Z >. ) =.843 = P ( X > ) =.9 P ( Z >.8 ) =.9 P ( X > 6 ) =.3 P ( Z >.88 ) =.3 = µ.8 σ 6 = µ +.88 σ µ hours, σ hours.

9 C = = 9.4 degrees Fahrenheit P( T > 9.4 ) = P Z > = P( Z >.6 ) =.757 = OR Let X = daily temperature [in degrees Celsius] in July in Anytown. 5 =, X has Normal distribution, 9 Then X ( T 3) 5 5 μx = ( μ T 3) = ( 86 3) = 3 C, 9 9 σ 5 5 X = σ T = 9 = 5. σ X = 5 C P( X > 33 ) = Z > 5 P = P( Z >.6 ) =.757 = If the moment-generating function of X is M ( t ) = exp ( 66 t + t ), find a) The mean of X. b) The variance of X. c) P ( 7 < X < ). d) P ( 48 < X < 7 ).

10 (a) 3.3- (a), (a) 3.- (a)

11 (b) 3.3- (b), (b) 3.- (b)

12 (c) 3.3- (c), (c) 3.- (c)

13

14

15 STAT 4 Moment Generating Functions and Probability Distributions Fall 7. (i) Give the name of the distribution of X (if it has a name), (ii) find the values of and, and (iii) calculate P ( X ) when the moment-generating function of X is given by a) M ( t ) = ( e t ) 5. b) M ( t ) = e t. c) M ( t ) =.3 t e e.7 t, d) M ( t ) =.6 e t.4 e t t < ln (.7 ). t < ln (.4 )., e) M ( t ) =.3 e t +.4 e t +. e 3 t +. e 4 t. f) M ( t ) =. x t 3 g) M ( t ) e = t x e. e. h) M ( t ) = e 3 t. i) M X ( t ) =, t <.4..5t 3 j) M X ( t ) =, t < 4..5t k) M X ( t ) = e 3 t + t. l) M X ( t ) 5t = e, t, M 5t X ( ) =.

16 Answers: a) M ( t ) = ( e t ) 5. (i) Binomial, n = 5, p =.7. (ii) = n p = 3.5, = n p ( p ) = (iii) = =.665. b) M ( t ) = e t. (i) Bernoulli, p =.55. OR Binomial, n =, p =.55. (ii) = p =.55, = p ( p ) =.475. (iii).55 + =.55. c) M ( t ) =.3 t e e.7 t, t < ln (.7 ). (i) Geometric, p =.3. p p (ii) = =, = p 3 (iii) =.5. = 9 7. d) M ( t ) =.6 e t.4 e t, t < ln (.4 ). (i) Negative Binomial, p =.6, r =. r (ii) = =, r = p = p 3. p 9 (iii) +.36 =.36.

17 e) M ( t ) =.3 e t +.4 e t +. e 3 t +. e 4 t. (i) No name. f ( ) =.3, f ( ) =.4, f ( 3 ) =., f ( 4 ) =.. (ii) = =.. E ( X ) = = 5.3. = 5.3. =.89. (iii) =.7. f) M ( t ) =. x t x e. (i) Uniform on integers through. f ( ) = f ( ) = = f ( ) =.. (ii) = = 5.5, = = 8.5. (iii). +. =.. t 3e g) M ( t ) = e. (i) Poisson, = 3. (ii) = = 3, = = 3. (iii) P ( X ) = 3 e! 3 3 e! = h) M ( t ) = e 3 t. (i) No name. P ( X = 3 ) =. OR Constant (real number) 3. (ii) = 3, =. (iii) P ( X ) =.

18 i) M X ( t ) =, t <.4..5t (i) Exponential, =.5. (ii) E ( X ) = =.5, Var ( X ) = = 6.5. (iii) P ( X ) =.5 x.5 e dx = e.5 e.5 = e.4 e j) M X ( t ) =, t < 4..5t (i) Gamma, = 3, =.5. (ii) E ( X ) = =.75, Var ( X ) = =.875. (iii) P ( X ) = x e dx 3.5 x = = 8 x 4 x x 4 3 x e x dx x e x e e.435. OR P ( X ) = P ( X ) P ( X ) = P ( Poisson ( 4 ) ) P ( Poisson ( 8 ) ).38.4 =.4.

19 k) M X ( t ) = e 3 t + t. (i) Normal, = 3, =. (ii) E ( X ) = = 3, Var ( X ) = = 4. (iii) P ( X ) = P (. Z.5 ) = =.498. l) M X ( t ) 5t = e, t, M 5t X ( ) =. (i) Uniform, a =, b = 5. (ii) E ( X ) = a b (iii) P ( X ) =.. =.5, Var ( X ) = b a 5 =.

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 27 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < 2 π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ =

More information

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance Distribution function and Graphical Representation - pdf - identifying the mean and variance f ( x ) 1 ( ) x e Distribution function and Graphical Representation - pdf - identifying the mean and variance

More information

8.4 Application to Economics/ Biology & Probability

8.4 Application to Economics/ Biology & Probability 8.4 Application to Economics/ Biology & 8.5 - Probability http://classic.hippocampus.org/course_locat or?course=general+calculus+ii&lesson=62&t opic=2&width=800&height=684&topictitle= Costs+&+probability&skinPath=http%3A%2F%

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

Chapter 4: Continuous Probability Distributions

Chapter 4: Continuous Probability Distributions Chapter 4: Continuous Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 57 Continuous Random Variable A continuous random

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION MODULE 2

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION MODULE 2 THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION NEW MODULAR SCHEME introduced from the eaminations in 7 MODULE SPECIMEN PAPER B AND SOLUTIONS The time for the eamination is ½ hours The paper

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Review of Normal Probability Distribution QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

Continuous Distributions

Continuous Distributions Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet. 2016 Booklet No. Test Code : PSA Forenoon Questions : 30 Time : 2 hours Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes. Closed book and notes. 10 minutes. Two summary tables from the concise notes are attached: Discrete distributions and continuous distributions. Eight Pages. Score _ Final Exam, Fall 1999 Cover Sheet, Page

More information

Discrete Distributions Chapter 6

Discrete Distributions Chapter 6 Discrete Distributions Chapter 6 Negative Binomial Distribution section 6.3 Consider k r, r +,... independent Bernoulli trials with probability of success in one trial being p. Let the random variable

More information

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution Some Continuous Probability Distributions: Part I Continuous Uniform distribution Normal Distribution Exponential Distribution 1 Chapter 6: Some Continuous Probability Distributions: 6.1 Continuous Uniform

More information

Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA

Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA Errata for the ASM Study Manual for Exam P, Fourth Edition By Dr. Krzysztof M. Ostaszewski, FSA, CFA, MAAA (krzysio@krzysio.net) Effective July 5, 3, only the latest edition of this manual will have its

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution Pengyuan (Penelope) Wang June 15, 2011 Review Discussed Uniform Distribution and Normal Distribution Normal Approximation

More information

STAT509: Continuous Random Variable

STAT509: Continuous Random Variable University of South Carolina September 23, 2014 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Answers Part A. P(x = 67) = 0, because x is a continuous random variable. 2. Find the following probabilities:

Answers Part A. P(x = 67) = 0, because x is a continuous random variable. 2. Find the following probabilities: Answers Part A 1. Woman s heights are normally distributed with a mean of 63.6 inches and a standard deviation of 2.5 inches. Find the probability that a single randomly selected woman will be 67 inches

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

PROBABILITY DISTRIBUTION

PROBABILITY DISTRIBUTION PROBABILITY DISTRIBUTION DEFINITION: If S is a sample space with a probability measure and x is a real valued function defined over the elements of S, then x is called a random variable. Types of Random

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Statistics and data analyses

Statistics and data analyses Statistics and data analyses Designing experiments Measuring time Instrumental quality Precision Standard deviation depends on Number of measurements Detection quality Systematics and methology σ tot =

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

Chapter 4: Continuous Random Variable

Chapter 4: Continuous Random Variable Chapter 4: Continuous Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 57 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

X = lifetime of transistor

X = lifetime of transistor Kelley Problem 4-57 /3 Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime, X (in weeks) has a gamma distribution with mean 24 weeks and standard deviation

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

EE 302: Probabilistic Methods in Electrical Engineering

EE 302: Probabilistic Methods in Electrical Engineering EE : Probabilistic Methods in Electrical Engineering Print Name: Solution (//6 --sk) Test II : Chapters.5 4 //98, : PM Write down your name on each paper. Read every question carefully and solve each problem

More information

Probability Density Functions

Probability Density Functions Probability Density Functions Probability Density Functions Definition Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f (x) such that

More information

Math438 Actuarial Probability

Math438 Actuarial Probability Math438 Actuarial Probability Jinguo Lian Department of Math and Stats Jan. 22, 2016 Continuous Random Variables-Part I: Definition A random variable X is continuous if its set of possible values is an

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Chapter 8: Continuous Probability Distributions

Chapter 8: Continuous Probability Distributions Chapter 8: Continuous Probability Distributions 8.1 Introduction This chapter continued our discussion of probability distributions. It began by describing continuous probability distributions in general,

More information

University of Georgia Department of Mathematics. Math 1113 Final Exam Fall 2016

University of Georgia Department of Mathematics. Math 1113 Final Exam Fall 2016 University of Georgia Department of Mathematics Math 1113 Final Exam Fall 2016 By providing my signature below I acknowledge that I abide by the University s academic honesty policy. This is my work, and

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 382 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation σ. These measurements should have the following properties:

More information

6.2 Normal Distribution. Ziad Zahreddine

6.2 Normal Distribution. Ziad Zahreddine 6.2 Normal Distribution Importance of Normal Distribution 1. Describes Many Random Processes or Continuous Phenomena 2. Can Be Used to Approximate Discrete Probability Distributions Example: Binomial 3.

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996 EXAMINATIONS OF THE ROAL STATISTICAL SOCIET (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 996 Paper I : Statistical Theory Time Allowed: Three Hours Candidates

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

3C Histograms. Sample answer: The least value in the data is 1 and the greatest is 1,135. An interval of 200 would yield the frequency table below.

3C Histograms. Sample answer: The least value in the data is 1 and the greatest is 1,135. An interval of 200 would yield the frequency table below. POPULATION The list gives the approximate population density for each state. Choose intervals and make a frequency table. Then construct a histogram to represent the data. Sample answer: The least value

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice 1. We have seen that the TI-83 calculator random number generator X = rand defines a uniformly-distributed random

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

Lecture 3 Continuous Random Variable

Lecture 3 Continuous Random Variable Lecture 3 Continuous Random Variable 1 Cumulative Distribution Function Definition Theorem 3.1 For any random variable X, 2 Continuous Random Variable Definition 3 Example Suppose we have a wheel of circumference

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

STAT100 Elementary Statistics and Probability

STAT100 Elementary Statistics and Probability STAT100 Elementary Statistics and Probability Exam, Sample Test, Summer 014 Solution Show all work clearly and in order, and circle your final answers. Justify your answers algebraically whenever possible.

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information