THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION MODULE 2

Size: px
Start display at page:

Download "THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION MODULE 2"

Transcription

1 THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE EXAMINATION NEW MODULAR SCHEME introduced from the eaminations in 7 MODULE SPECIMEN PAPER B AND SOLUTIONS The time for the eamination is ½ hours The paper contains four questions, of which candidates are to attempt three Each question carries marks An indicative mark scheme is shown within the questions, by giving an outline of the marks available for each part-question The pass mark for the paper as a whole is 5% The solutions should not be seen as "model answers" Rather, they have been written out in considerable detail and are intended as learning aids For this reason, they do not carry mark schemes Please note that in many cases there are valid alternative methods and that, in cases where discussion is called for, there may be other valid points that could be made While every care has been taken with the preparation of the questions and solutions, the Society will not be responsible for any errors or omissions The Society will not enter into any correspondence in respect of the questions or solutions RSS 6

2 (i) The random variable X follows the Poisson distribution with probability mass function f( ) λ λ = e, =,,,! (a) Show that the mean and variance of X are both equal to λ (b) State the Poisson approimation to the binomial distribution, indicating the circumstances in which it is appropriate (5) (ii) A civil servant calculates weekly social security payments for unemployed adults These payments vary according to claimants' circumstances, and errors may occur Over a long period of time, the probability of a wrong calculation has been found to be 75 Find to decimal places the eact probability that a sample of contains (a) wrong calculation, (b) wrong calculations (7) (iii) Repeat part (ii) using the Poisson approimation to the binomial distribution In each case find to two significant figures the percentage error in the Poisson calculation Comment briefly on your results (8)

3 Among the inhabitants of Altamania, height, H say, is distributed Normally with mean 6 cm and standard deviation cm, ie N(6, 6) (i) (ii) Find the proportion of the population whose heights are within one standard deviation of the mean Find also the proportion of the population who are more than 68 cm tall (5) The Altamanian Police Force (APF) is restricted to persons who are more than 68 cm tall, and may be assumed to consist of a random sample of Altamanians satisfying this condition Find (a) the median height of members of the APF, (b) the proportion of members of the APF who are more than 7 cm tall () (iii) Assume that the mean and standard deviation of height among members of the APF are 695 cm and 35 cm respectively Find an approimate value for the probability that the mean height of a random sample of 5 members of the APF is more than 7 cm (5) 3 The events A, B and C have respective probabilities, and, and A, B 3 and C are, respectively, the complements of A, B and C (i) Given that A, B and C are mutually independent, find (a) P( A B C), (b) P( A C A B) (8) (ii) Now let A and B be independent, A and C be independent and B and C be independent, so that A, B and C are pairwise independent, and let P( A B C) = Find in terms of (a) P( A B C), (b) P( A C A B), (c) P A B C Also find the maimum and minimum possible values of ()

4 The random variable X has the geometric probability mass function (pmf) given by f (), where f = p p, =,,,, < p< (i) Sketch the graph of f () for the case p = /3, for 5 (ii) Obtain the mean and variance of X (5) () (iii) For any non-negative integer, show that P( X ) = ( p), and deduce that for any non-negative integers l and m ( ) P X l+ m X l = P X m Interpret this result (5) (iv) The random variable Y has pmf g(y), where g y y = θ θ, y =,,,, < θ < X and Y are independent, and the random variable Z is defined as the minimum of X and Y, ie Z = min(x, Y) By noting that P(Z z) = P(X z and Y z), find an epression for P(Z z), where z is any nonnegative integer By considering P(Z z) P(Z z + ), or otherwise, show that ( θ) z ( θ θ) P Z = z = p p+ p, z =,,, Identify the form of this distribution and hence write down E(Z) and Var(Z) (6)

5 SOLUTIONS Question (i) (a) λ λ λ e λ λe λ e λ EX = = = λ = λ = λ! ( )!! = = = We have Var(X) = E(X ) {E(X)} E(X ) can be found similarly, but it is easier to use E(X ) = E[X(X )] + E(X) and thus Var(X) = E[X(X )] + E(X) {E(X)} λ λ λ e λ λ e λ e λ EX [ ( X )] = ( ) = = λ = λ = λ! ( )!! = = = Thus Var( X ) = λ + λ λ = λ [The probability generating function or moment generating function could also be used this work is in Module 5] (i) (b) The binomial distribution with parameters n and p may be approimated by the Poisson distribution with parameter np if n is large and p is small As a "rule of thumb", ½ np gives an indication of how large n should be and how small p should be (If np >, a Normal approimation to the binomial may be better) (ii) Let X = number of wrong calculations We have X ~ B(, 75) P X = = = = 3353() P X = = ( ) ( 75) ( 995) () = = 3 Solution continued on net page

6 (iii) We approimate using X ~ Poisson( 75 = 5) With this, 5 ( = ) = 5e = 337( ) P X giving a percentage error of ( ) = 8%, and e P( X = ) = = 7 7! 5 5 giving a percentage error of ( ) = 58% [Note These percentage errors might come out slightly differently if more accuracy is kept in the binomial and Poisson probabilities] Both approimations are remarkably accurate, with percentage errors well below % The approimation for X = (one wrong calculation) is the more accurate of the two That approimation is an underestimate; the other is an overestimate

7 Question H N6, (i) P(56 < H 6) = P < Z ( [where Z N,) ] = P( < Z ) =Φ Φ( ) =Φ Φ( ) by symmetry, ie Φ() { } = 686 [Φ denotes the cdf of the standard Normal distribution as usual] P( Z ) P H > 68 = > = Φ = 8 (ii) (a) The relevant portion of the Normal distribution of H is that beginning at 68, which corresponds to the value Z = The median value m within this portion has ( 8) probability above it, ie, so Φ( m) = = 9886, corresponding to Z = 77 The corresponding value of H is μ + σ Z which is 6 + ( 77) = 69 cm (b) H = 7 corresponds to Z = = 5 ; we have Φ ( 5) = 9938, so P( H > 7) Φ ( 5) = 6 Conditional on H > 68, the probability is P H > 68 = 6 8 = 7 (iii) Mean height of 5 members 35 N 695, 5 P(mean > 7) = P Z > = Φ = Φ 89 ( 35 / 5) 35 = 9677 = 33

8 Question 3 P A P B P C 3 = = = (i) (a) By the given independence, P( A B C) = P( A) P( B) P( C) = = 3 (ii) (b) P( A C A B) ( ) ( ) ( ) P A C A B P A C B = = P A B P A B 3 = = 3 A B C is P(A)P(B), etc, and hence the values 3, 8 and 6 are found The others follow using P(A), P(B) and P(C) Using pairwise independence, the value of P( A B) P A B C = + from the diagram 6 (a) (b) P( A C A B) ( ) ( ) ( ) P A C A B P A C B = = P A B P A B 6 + = = 3 + ( 6 + ) + ( 6 ) 9 P A B C = + (c) Since all probabilities must lie in [,], we have and 8 8, ie

9 (i) Question Probability mass function: f = p p, =,,,, < p< /3 P(X = ) /9 /7 3 5 (ii) E( X) = ( p) p This can be found in several ways; the method shown = here (using geometric series) is perhaps not the most efficient, but should be easy to understand We have = 3 { } ( p) p = p + ( p) + ( p) + 3( p) + 3 = p{ + ( p) + ( p) + ( p) ( p) + ( p) ( p) + + } 3 p ( p) ( p) p p p = p = = ( p) ( p) ( p) p ( p) p Similarly, ( ) ( p) + ( p) = p EX = p p= Thus Var(X) = E(X ) {E(X)} = p + p p p = = p p p [The probability generating function or moment generating function could also be used this work is in Module 5] Solution continued on net page

10 r ( p) p (iii) P( X ) = ( p) p [geometric series] = = ( p r= ( p) ) (for = P( A B),,, ) We now use P( A B) = and take the event A as "X l + m" P( B) and the event B as "X l", so that A B = A Thus + ( p) l ( p) l m m ( ) ( P X l+ m X l = = p = P X m This is the "lack of memory" property of a geometric distribution ) z (iv) By independence, ( P Z z = P X z P Y z = p θ ( θ) z z+ { } {( θ) } P Z = z = P Z z P Z z+ = p p {( )( )} z ( ) ( )( ) z { } ( = p θ + p+ θ pθ = p θ p+ θ pθ, for z =,, This is a geometric distribution as given at the start of the question with p replaced by p + θ pθ Hence, from part (ii), p θ + pθ EZ = p + θ pθ p θ + pθ p+ θ pθ, Var(Z) = ) ) z

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 2004

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 2004 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 004 Paper I : Statistical Theory Time Allowed: Three Hours

More information

THE ROYAL STATISTICAL SOCIETY 2007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 2 PROBABILITY MODELS

THE ROYAL STATISTICAL SOCIETY 2007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 2 PROBABILITY MODELS THE ROYAL STATISTICAL SOCIETY 007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE ROBABILITY MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 4 EXAINATIONS SOLUTIONS GRADUATE DIPLOA PAPER I STATISTICAL THEORY & ETHODS The Societ provides these solutions to assist candidates preparing for the examinations in future

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2015 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996 EXAMINATIONS OF THE ROAL STATISTICAL SOCIET (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 996 Paper I : Statistical Theory Time Allowed: Three Hours Candidates

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

MATHEMATICS AND STATISTICS

MATHEMATICS AND STATISTICS 011-AS-M & S 44 INTRODUCTION MATHEMATICS AND STATISTICS ADVANCED SUPPLEMENTARY LEVEL This syllabus has been designed mainly for candidates who wish to further their study of mathematics beyond the Certificate

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROAL STATISTICAL SOCIET 6 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE The Society is providing these solutions to assist candidates preparing for the examinations in 7. The solutions are intended

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice

IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice IB Mathematics HL Year 2 Unit 7 (Core Topic 6: Probability and Statistics) Valuable Practice 1. We have seen that the TI-83 calculator random number generator X = rand defines a uniformly-distributed random

More information

abc Mathematics Pure Core General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Pure Core General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Pure Core SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER MATHEMATICS

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2013 MODULE 5 : Further probability and inference Time allowed: One and a half hours Candidates should answer THREE questions.

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

CS145: Probability & Computing

CS145: Probability & Computing CS45: Probability & Computing Lecture 5: Concentration Inequalities, Law of Large Numbers, Central Limit Theorem Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES THE ROYAL STATISTICAL SOCIETY 9 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES The Society provides these solutions to assist candidates preparing

More information

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3

(b). What is an expression for the exact value of P(X = 4)? 2. (a). Suppose that the moment generating function for X is M (t) = 2et +1 3 Math 511 Exam #2 Show All Work 1. A package of 200 seeds contains 40 that are defective and will not grow (the rest are fine). Suppose that you choose a sample of 10 seeds from the box without replacement.

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Ch. 5 Joint Probability Distributions and Random Samples

Ch. 5 Joint Probability Distributions and Random Samples Ch. 5 Joint Probability Distributions and Random Samples 5. 1 Jointly Distributed Random Variables In chapters 3 and 4, we learned about probability distributions for a single random variable. However,

More information

CME 106: Review Probability theory

CME 106: Review Probability theory : Probability theory Sven Schmit April 3, 2015 1 Overview In the first half of the course, we covered topics from probability theory. The difference between statistics and probability theory is the following:

More information

2017 Promotional Examination II Pre-University 2

2017 Promotional Examination II Pre-University 2 Class Adm No Candidate Name: 017 Promotional Eamination II Pre-University MATHEMATICS 8865/01 Paper 1 1 September 017 Additional Materials: Answer Paper List of Formulae (MF 6) 3 hours READ THESE INSTRUCTIONS

More information

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS A. J. Clark School of Engineering Department of Civil and Environmental Engineering by Dr. Ibrahim A. Assakkaf Spring 1 ENCE 3 - Computation in Civil Engineering

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf)

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf) Lecture Notes 2 Random Variables Definition Discrete Random Variables: Probability mass function (pmf) Continuous Random Variables: Probability density function (pdf) Mean and Variance Cumulative Distribution

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 004 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER II STATISTICAL METHODS The Society provides these solutions to assist candidates preparing for the examinations in future

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS

SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS SYLLABUS FOR ENTRANCE EXAMINATION NANYANG TECHNOLOGICAL UNIVERSITY FOR INTERNATIONAL STUDENTS A-LEVEL MATHEMATICS STRUCTURE OF EXAMINATION PAPER. There will be one -hour paper consisting of 4 questions..

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

SOR201 Solutions to Examples 3

SOR201 Solutions to Examples 3 page 0SOR0(00) SOR0 lutions to Examples (a) An outcome is an unordered sample {i,, i n }, a subset of {,, N}, where the i j s are all different The random variable X can take the values n, n +,, N If X

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance

Normal Distribution. Distribution function and Graphical Representation - pdf - identifying the mean and variance Distribution function and Graphical Representation - pdf - identifying the mean and variance f ( x ) 1 ( ) x e Distribution function and Graphical Representation - pdf - identifying the mean and variance

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Chapter 4. Probability-The Study of Randomness

Chapter 4. Probability-The Study of Randomness Chapter 4. Probability-The Study of Randomness 4.1.Randomness Random: A phenomenon- individual outcomes are uncertain but there is nonetheless a regular distribution of outcomes in a large number of repetitions.

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

Lecture Notes 2 Random Variables. Random Variable

Lecture Notes 2 Random Variables. Random Variable Lecture Notes 2 Random Variables Definition Discrete Random Variables: Probability mass function (pmf) Continuous Random Variables: Probability density function (pdf) Mean and Variance Cumulative Distribution

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Homework 3 solution (100points) Due in class, 9/ (10) 1.19 (page 31)

Homework 3 solution (100points) Due in class, 9/ (10) 1.19 (page 31) Homework 3 solution (00points) Due in class, 9/4. (0).9 (page 3) (a) The density curve forms a rectangle over the interval [4, 6]. For this reason, uniform densities are also called rectangular densities

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Exam Answer Key G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Eam Answer Key G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s Midterm Practice Eam Answer Key Name:

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3 THE ROYAL STATISTICAL SOCIETY 015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3 The Society is providing these solutions to assist candidates preparing for the examinations in 017. The solutions are

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains red balls, 10 green balls and 1 yellow balls. You randomly select balls, without replacement. (a What ( is( the probability

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology 6.04/6.4: Probabilistic Systems Analysis Fall 00 Quiz Solutions: October, 00 Problem.. 0 points Let R i be the amount of time Stephen spends at the ith red light. R i is a Bernoulli random variable with

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Eaminations Cambridge International General Certificate of Secondary Education ADDITIONAL MATHEMATICS 0606/ Paper May/June 07 MARK SCHEME Maimum Mark: 80 Published This mark scheme

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Introduction to Statistical Inference Self-study

Introduction to Statistical Inference Self-study Introduction to Statistical Inference Self-study Contents Definition, sample space The fundamental object in probability is a nonempty sample space Ω. An event is a subset A Ω. Definition, σ-algebra A

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Pearson Edecel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Mathematical formulae and statistical tables First certification from 08 Advanced Subsidiary GCE in Mathematics

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π Solutions to Homework Set #5 (Prepared by Lele Wang). Neural net. Let Y X + Z, where the signal X U[,] and noise Z N(,) are independent. (a) Find the function g(y) that minimizes MSE E [ (sgn(x) g(y))

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 8 Prof. Hanna Wallach wallach@cs.umass.edu February 16, 2012 Reminders Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

Expectation, inequalities and laws of large numbers

Expectation, inequalities and laws of large numbers Chapter 3 Expectation, inequalities and laws of large numbers 3. Expectation and Variance Indicator random variable Let us suppose that the event A partitions the sample space S, i.e. A A S. The indicator

More information

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Be able to compute and interpret expectation, variance, and standard

More information

Stat 100a, Introduction to Probability.

Stat 100a, Introduction to Probability. Stat 100a, Introduction to Probability. Outline for the day: 1. Geometric random variables. 2. Negative binomial random variables. 3. Moment generating functions. 4. Poisson random variables. 5. Continuous

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

STAT 302: Assignment 1

STAT 302: Assignment 1 STAT 302: Assignment 1 Due date: Feb 4, 2011. Hand to Mailbox besides LSK333 1. An imaginary small university has 3 programs A, B and C. If an applicant is a girl, her probability of being admitted to

More information

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002 EE/CpE 345 Modeling and Simulation Class 5 September 30, 2002 Statistical Models in Simulation Real World phenomena of interest Sample phenomena select distribution Probabilistic, not deterministic Model

More information

Stat 512 Homework key 2

Stat 512 Homework key 2 Stat 51 Homework key October 4, 015 REGULAR PROBLEMS 1 Suppose continuous random variable X belongs to the family of all distributions having a linear probability density function (pdf) over the interval

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution Some Continuous Probability Distributions: Part I Continuous Uniform distribution Normal Distribution Exponential Distribution 1 Chapter 6: Some Continuous Probability Distributions: 6.1 Continuous Uniform

More information

(4) Suppose X is a random variable such that E(X) = 5 and Var(X) = 16. Find

(4) Suppose X is a random variable such that E(X) = 5 and Var(X) = 16. Find Chapter 5 Exercises A random variable X has the distribution: X 6 PX 6 5 6 Find the expected value, variance, and standard deviation of X. A number Y is chosen at random from the set S = {,, }. Find the

More information