A Continuous Space-Time Finite Element Method for an Integro-Differential Equation Modeling Dynamic Fractional Order Viscoelasticity

Size: px
Start display at page:

Download "A Continuous Space-Time Finite Element Method for an Integro-Differential Equation Modeling Dynamic Fractional Order Viscoelasticity"

Transcription

1 PREPRINT 29:17 A Coiuous Space-Time Fiie Eleme Mehod for a Iegro-Differeial Equaio Modelig Dyamic Fracioal Order Viscoelasiciy FARDIN SAEDPANAH Deparme of Mahemaical Scieces Divisio of Mahemaics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Göeborg Swede 29

2

3 Prepri 29:17 A Coiuous Space-Time Fiie Eleme Mehod for a Iegro-Differeial Equaio Modelig Dyamic Fracioal Order Viscoelasiciy Fardi Saedpaah Deparme of Mahemaical Scieces Divisio of Mahemaics Chalmers Uiversiy of Techology ad Uiversiy of Goheburg SE Göeborg, Swede Göeborg, April 29

4 Prepri 29:17 ISSN Maemaiska veeskaper Göeborg 29

5 A CONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR AN INTEGRO-DIFFERENTIAL EQUATION MODELING DYNAMIC FRACTIONAL ORDER VISCOELASTICITY FARDIN SAEDPANAH Absrac. A fracioal order iegro-differeial equaio wih a weakly sigular kerel is cosidered. A weak form is formulaed, ad sabiliy of he primal ad he dual problem is sudied. The coiuous Galerki mehod of degree oe is formulaed, ad opimal a priori error esimae is obaied by dualiy argume. A poseriori error represeaio based o space-ime cells is preseed such ha i ca be used for adapive sraegies based o dual weighed residual mehods. Some global a poseriori error esimaes are also proved. 1. Iroducio We sudy a iiial-boudary value problem, modelig dyamic fracioal order viscoelasiciy of he form we use o deoe he ime derivaive, 1.1 ρüx, σ u; x, + β s σ u; x, s ds = fx, i Ω, T, ux, = o Γ D, T, σu; x, = gx, o Γ N, T, ux, = u x, ux, = v x i Ω. Here u is he displaceme vecor, ρ is he cosa mass desiy, f ad g represe, respecively, he volume ad surface loads. The sress σ = σu; x, is deermied by wih σ = σ β sσ s ds, σ = 2µ ɛ + λ TrɛI, where I is he ideiy operaor, ɛ is he srai which is defied by ɛ = 1 2 u + u T, ad µ, λ > are elasic cosas of Lamé ype. The kerel is defied Dae: April 12, Mahemaics Subjec Classificaio. 65M6, 45K5. Key words ad phrases. fracioal order viscoelasiciy, Galerki approximaio, weakly sigular kerel, sabiliy, a priori esimae, a poseriori esimae. 1

6 2 F. SAEDPANAH by: 1.2 β = γ d d E α C 1+α,, α = γ α 1+αE α τ τ τ α τ which meas ha i is weakly sigular wih he properies 1.3 β, β L1R + = β d = γ E α E α = γ < 1, where γ, 1 is a cosa ad τ > is he relaxaio ime. Here E α is he Miag-Leffler fucio of order α, 1 ad defied by, E α z = = z Γ1 + α. There is a exesive lieraure o heoreical ad umerical aalysis of iegrodiffereial equaios modelig liear ad fracioal order viscoelasiciy, see, e.g., [1], [7], [8], [9], [1], [12], ad [13]. Exisece, uiqueess ad regulariy of soluio of a problem i he form of 1.1 has bee sudied i [7], [11]. A poseriori aalysis of emporal fiie eleme approximaio of a parabolic ype problem ad discoiuous Galerki fiie eleme approximaio of a quasi-saic ρü liear viscoelasiciy problem has bee sudied, respecively, i [1] ad [13]. The prese work exeds previous works, e.g., [1], [2], ad [13]. The oulie of his paper is as follows. I 2 we defie a weak form of 1.1 ad he correspodig dual adjoi problem, ad we sudy he sabiliy. I 3 we formulae a coiuous Galerki mehod of degree oe ad we obai sabiliy esimaes. The i 4 we obai a opimal a priori error esimae. We prese a a poseriori error represeaio based o he dual weighed residual mehod i 5, ad we prove some global a poseriori error esimaes. 2. Weak formulaio ad sabiliy We le Ω R d, d = 2, 3, be a bouded polygoal domai wih boudary Γ = Γ D Γ N where Γ D ad Γ N are disjoi ad measγ D. We iroduce he fucio spaces H = L 2 Ω d, H ΓN = L 2 Γ N d, ad V = v H 1 Ω d : v ΓD =. We deoe he orms i H ad H ΓN by ad ΓN, respecively. We also defie a biliear form wih he usual summaio coveio 2.1 av, w = 2µ ɛ ij vɛ ij w + λ ɛ ii vɛ jj w dx, v, w V, Ω which is coercive o V, ad we equip V wih he ier produc a, ad orm v 2 V = av, v. We defie Au = σ u, which is a selfadjoi, posiive defiie, ubouded liear operaor, wih DA = H 2 Ω d V, ad we use he orms v s = A s/2 v. We use a velociy-displaceme formulaio of 1.1 which is obaied by iroducig a ew velociy variable. Heceforh we use he ew variables u 1 = u, u 2 = u ad u = u 1, u 2 he pair of vecor valued fucios. Now we defie he biliear

7 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 3 ad liear forms A : V W R, A τ : W V R, F : W R, J τ : W R, for τ R, by Au, w = T u 1, w 1 u 2, w 1 + ρ u 2, w 2 + au 1, w 2 β sa u 1 s, w 2 ds d + u 1, w 1 + ρ u 2, w 2, T T A τ w, z = w 1, ż 1 + aw 1, z 2 βs a w 1, z 2 s ds τ ρw 2, ż 2 w 2, z 1 d + w 1 T, z 1 T + ρ w 2 T, z 2 T, F w = J τ w = T T τ f, w 2 + g, w 2 ΓN d + u, w 1 + ρ v, w 2, w 1, j 1 + w 2, j 2 d + w 1 T, z1 T + ρw2 T, z2 T, where j 1, j 2 ad z1 T, z2 T represe, respecively, he load erms ad he iiial daa of he dual adjoi problem. I case of τ =, we use he oaio A, J for shor. Here 2.2 V = H 1, T ; V H 1, T ; H, V = H 1, T ; H H 1, T ; V, W = w = w 1, w 2 : w L 2, T ; H L2, T ; V, w i are righ coiuous i ime, W = w = w 1, w 2 : w L 2, T ; V L2, T ; H, w i are lef coiuous i ime, ad we oe ha V W, V W. The variaioal formulaio aalogue o 1.1 is he o fid u V such ha, 2.3 Au, w = F w, w W. Here he defiiio of he velociy u 2 = u 1 is eforced i he L 2 sese, ad he iiial daa are placed i he biliear form i a weak sese. A varia is used i [7] where he velociy has bee eforced i he H 1 sese, wihou placig he iiial daa i he biliear form. We also oe ha he iiial daa are reaied by he choice of he fucio space W, ha cosiss of righ coiuous fucios wih respec o ime. To obai he dual adjoi problem we oe ha A is he adjoi form of A. Ideed, iegraig by pars wih respec o ime i A, he chagig he order of iegrals i he covoluio erm as well as chagig he role of he variables s,, we have, 2.4 Av, w = A v, w, v V, w V. The he variaioal formulaio of he dual problem is o fid z V such ha, 2.5 A w, z = Jw, w W,

8 4 F. SAEDPANAH ha is a weak formulaio of ρ z 2 + Az 2 T βs Az 2 s ds = j 1 j 2, wih iiial daa z1 T, z2 T, ad fucio j = j 1, j 2 ha is defied by Jw = T w, j d. I he aalysis below we use a posiive ype kerel ξ. Ideed, we recall 1.2, 1.3 ad we defie he fucio 2.6 ξ = γ ad i is easy o see ha 2.7 βs ds = βs ds = γe α, D ξ = β <, ξ = γ, lim ξ =, < ξ γ. Besides, ξ is a compleely moooe fucio, ha is, 1 j D j ξ,,, j N, sice he Miag-Leffler fucio E α, α [, 1] is compleely moooe, see, e.g., [5]. Cosequely, a impora propery of ξ is ha, i is a posiive ype kerel, ha is, i is coiuous ad, for ay T, saisfies 2.8 T ξ sφφs ds d, φ C[, T ]. Theorem 1. Le u be he soluio of 2.3 wih sufficiely smooh daa u, v, f, g. The for l R, T >, we have he ideiy, 2.9 ρ u 2 T 2 l + γ u 1 T 2 l T = ρ v 2 l γ u 2 l T T g, Al u 1 Γ N d ξ sa us, A l u ds d T f, Al u 1 d βa u, A l u 1 d 2ξT a u, A l u 1 T, where γ = 1 γ. Moreover, wih Γ N = or Γ N, g =, we have, 2.1 u 2 T l + u 1 T l+1 C v l + u l+1 + T f l d, for some C = Cρ, γ, T. Ad wih Γ N, g, l =, we have he esimae, 2.11 u 2 T + u 1 T 1 C v + u 1 + f L1,;H + g W 1 1,;H Γ N, for some C = CΩ, ρ, γ, T.

9 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 5 Proof. Sice u is a soluio of 2.3, we obviously have u 2 = u 1. We recall γ = 1 γ, ad from 2.7 we have ha β s = D s ξ s, ξ = γ. These ad parial iegraio i he covoluio erm i A, yield 2.12 Au, w = T ρ u 2, w 2 + γau 1, w 2 + ξ sa u 1 s, w 2 ds + ξau, w 2 d + u 1, w 1 + ρ u 2, w 2. Puig his wih w = w 1, w 2 = A l+1 u 1, A l u 2 = A l+1 u 1, A l u 1 i 2.3 we obai, ρ u 2 T 2 l + γ u 1 T 2 l T = ρ v 2 l + γ u 2 l T T ξa u, A l u 1 d. = ρ v 2 l + γ u 2 l T T ξ sa u 1 s, A l u 1 ds d f, A l u 1 d + 2 f, A l u 1 d + 2 T T g, A l u 1 ΓN d g, A l u 1 ΓN d βa u, A l u 1 d 2ξT a u, A l u 1 T + 2γ u 2 l+1, where for he las equaliy we used parial iegraio ad D ξ = β. This, havig γ = 1 γ, implies he ideiy 2.9. Now we prove he simaes 2.1 ad Firs, i 2.9, we use 2.8, iegraio by pars i he erm wih he surface load g, ad he Cauchy-Schwarz iequaliy ad coclude, ρ u 2 T 2 l + γ u 1 T 2 l+1 ρ v 2 l γ u 2 l+1 T 2 + 2/C 1 max u 1 2 l + 2C 1 f l d T 2 T ġ, A l u 1 Γ N d + 2 gt, A l u 1 T Γ N 2 g, A l u Γ N + 2 u l+1 max T u 1 l+1 T β d + 2γ/C 2 u 2 l+1 + 2γC 2 u 1 T 2 l+1. This wih Γ N = or Γ N, g =, cosiderig β L1R + = γ, implies 2.1. Bu for he case ha he surface load g Γ N, we eed o resric o l =, due o he race heorem. Tha is, i his case wih l = ad usig u 1 ΓN CΩ u 1 1 by he race heorem, i a sadard way, we have he esimae u 2 T + u 1 T 1 C v + u 1 + f L1,;H + ġ L1,T ;H Γ N + g L,T ;H Γ N.

10 6 F. SAEDPANAH This ad he fac ha g L,T ;H Γ N C g W 1 1,T ;H Γ N, by Sobolev iequaliy, imply Remark 1. A ideiy, slighly differe from 2.9 has bee preseed i [2], by usig a fucio w, s = u u s ha mus belog o a weighed L 2 - space, iroduced i [6], see also [7] where he absrac framework by [6] has bee, specifically, applied o his problem. The proof preseed here avoids usig fucio w ad seems o be simple ad sraighforward. Remark 2. A impora propery, used here is ha he kerel is of posiive ype. This meas ha he echique preseed here ca be applied o he problems wih posiive ype kerels. For example, wih g =, we could cosider problems wih posiive ype kerels ad of he form ρü + Au β sbus ds = f, where B is a selfadjoi, posiive defiie liear operaor such ha, for some suiable cosa C, Bv, w CAv, w, v, w DA. For example, wih kerel β defied i 1.2, we should have 1 γc >. The a similar argume ca be applied wih l =, ad also wih l provided B ad A be comuaive. Theorem 2. Le z be he soluio of he dual problem 2.5 wih sufficiely smooh daa z1 T, z2 T, j 1, j 2. The for l R, < < T, we have he ideiy, 2.13 z 1 2 l + ρ γ z 2 2 l+1 + 2ρ T T = z T 1 2 l + ρ1 + γ z T 2 2 l ρ T r ξs raa l ż 2 r, ż 2 s ds dr T βt raa l z 2 r, z T 2 dr 2ρξT aa l z 2, z T 2. A l z 1, j 1 + A l+1 z 2, j 2 dr where γ = 1 γ. Moreover, for some cosa C = Cρ, γ, T, we have sabiliy esimaes T 2.14 z 1 l + z 2 l+1 C z1 T l + z2 T l+1 + j 1 l + j 2 l+1 dr. Proof. Sice z is a soluio of 2.5, we obviously have z 1 = ρż 2 ad, for [, T, z saisfies 2.15 A w, z = J w, v W. We recall γ = 1 γ, ad from 2.7 we have βs = D s ξs, ξ = γ. The, by parial iegraio wih respec o ime i he covoluio erm i A, we obai T T A w, z = w 1, ż 1 + γaw 1, z 2 ξs ra w 1, ż 2 s ds ξt ra w 1, z 2 T dr + w 1 T, z 1 T + ρ w 2 T, z 2 T. r

11 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 7 Puig his wih w = w 1, w 2 = A l z 1, A l+1 z 2 = ρa l ż 2, A l+1 z 2 i 2.15 we have T ha implies 1 2 D z 1 r 2 l 1 2 ρ γd z 2 r 2 l+1 + ρ T r ξs ra A l ż 2 r, ż 2 s ds ρξt ra A l ż 2 r, z2 T T dr = A l z 1, j 1 + A l+1 z 2, j 2 dr, z 1 2 l + ρ γ z 2 2 l+1 + 2ρ T T = z T 1 2 l + ρ γ z T 2 2 l ρ T r T ξt ra A l ż 2 r, z2 T dr. ξs ra A l ż 2 r, ż 2 s ds dr A l z 1, j 1 + A l+1 z 2, j 2 dr Now iegraio by pars i he las erm, havig D r ξt r = βt r by 2.7, gives he ideiy The, usig 2.8 i 2.13, similar o he proof of 2.1, i a sadard way, we coclude he iequaliy 2.14, ad his complees he proof. 3. The coiuous Galerki mehod Le = < 1 < < 1 < < < N = T be a pariio of he ime ierval [, T ]. To each discree ime level we associae a riagulaio Th of he polygoal domai Ω wih he mesh fucio, 3.1 h x = h K = diamk, x K, K T h, ad a fiie eleme space Vh cosisig of coiuous piecewise liear polyomials. For each ime subierval = 1, of legh k = 1, we defie iermediae riagulaio T h which is composed of muually fies meshes of he eighborig meshes Th, T 1 h defied a discree ime levels, 1, respecively. The mesh fucio h is he defied by 3.2 h x = h K = diamk, x K, K T h. Correspodigly, we defie he fiie eleme spaces V h cosisig of coiuous piecewise liear polyomials. This cosrucio is used i order o allow coiuiy i ime of he rial fucios whe he meshes chage wih ime. Hece we obai a decomposiio of each ime slab Ω = Ω io space-ime cells K = K, K T h prisms, for example, i case of Ω R2. We oe he differece bewee he mesh fucios h ad h, ad his is impora i our a poseriori error aalysis.

12 8 F. SAEDPANAH The rial ad es fucio spaces for he discree form are, respecively: V hk = U = U 1, U 2 : U coiuous i Ω [, T ], Ux, I liear i, 3.3 U, Vh 2, U, I V h 2, W hk = V = V 1, V 2 : V, coiuous i Ω, V, I Vh 2, V x, I piecewise cosa i. We oe ha global coiuiy of he rail fucios i V hk requires he use of hagig odes if he spaial mesh chages across a ime level. We allow oe hagig ode per edge or face. Remark 3. If we do o chage he spaial mesh or jus refie he spaial mesh from oe ime level o he ex oe, i.e., 3.4 V 1 h V h, = 1,..., N, he we have V h = V h. I he cosrucio of V hk we have associaed he riagulaio Th wih discree ime levels isead of he ime slabs Ω, ad i he ierior of ime slabs we le U be from he uio of he fiie eleme spaces defied o he riagulaios a he wo adjace ime levels. This cosrucio is ecessary o allow for rial fucios ha are coiuous also a he discree ime leveles eve if grids chage bewee ime seps. Associaig riagulaio wih ime slabs isead of ime levels would yield a varia scheme which icludes jump erms due o discoiuiy a discree ime leveles, whe coarseig happes. This meas ha here are exra degrees of freedom ha oe migh use suiable projecios for rasferig soluio a he ime levels, see [7]. The coiuous Galerki mehod, based o he variaioal fomulaio 2.3, is o fid U V hk such ha, 3.5 AU, W = F W, W W hk. The Galerki orhogoaliy, wih u = u 1, u 2 beig he exac soluio of 2.3, is he, 3.6 AU u, W =, W W hk. Similarly he coiuous Galerki mehod, based o he dual variaioal formulaio 2.5, is o fid Z V hk such ha, 3.7 A W, Z = JW, W W hk. The, Z also saisfies, for =, 1,..., N 1, 3.8 A W, Z = J W, W W hk. We oice ha, raher ha usig he dual formulaio of he discree problem 3.5, we formulaed he same fiie eleme mehod for he coiuous dual problem 2.5.

13 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 9 From 3.5 we ca recover he ime seppig scheme, U 1, W 1 U 2, W 1 d =, 3.9 ρ U 2, W 2 + au 1, W 2 β sa U 1 s, W 2 ds d = f, W2 d + g, W 2 ΓN d, W1, W 2 W hk, U 1 = u h, U 2 = vh, for suiable choice of u h, v h V h as approximaios of he iiial daa u, v. Here, as a aural choice, we have 3.1 u h = P h u, v h = P h v. Typical fucios U = U 1, U 2 V hk, W = W 1, W 2 W hk are as follows: 3.11 m U i x, = Ui x = Ui,jϕ j x, j=1 U i x, I = ψ 1 U 1 x + ψ Ui x, m W i x, I = Wi,jϕ j x, j=1 where m is he umber of degrees of freedom i Th, ϕ j xm j=1 are he odal basis fucios for Vh defied o riagulaio Th, ad ψ is he odal basis fucio defied a ime level. Hece 3.9 yields U1 U1 1, W 1 k U U2 1, W 1 =, ρu2 U2 1, W 2 + k 2 U 1 + U1 1, W 2 au1 l 1, W 2 U 1 = u h, U 2 = v h. l=1 l=1 au1, l W 2 This implies he discree liear sysem, i l l 1 l l 1 β sψ l 1 s ds d β sψ l s ds d = f, W2 d + g, W 2 ΓN d, W1, W 2 Vh, M Ũ 1 k 2 M Ũ 2 = M 1, Ũ k 2 M 1, Ũ 1 2, ρm Ũ2 + k 2 ω,s Ũ1 = ρm 1, Ũ2 1 + k 2 + ω, 1S 1, Ũ1 1 Ũ 1 = u h, Ũ 2 = v h, 2 + S, Ũ1 ω, + + ω,l S l, Ũ1 l + B, l=1

14 1 F. SAEDPANAH where ω +, = ω,l = 1 l+1 l 1 β sψ l s ds d, ω, = β sψ l s ds d, B = Bj j = f, ϕj + g, ϕ j ΓN d, j M = M ij ij = ϕ i, ϕ j ij, S l, = S l, ij ij = aϕ l i, ϕ j ij, 1 β sψ l s ds d, M 1, = M 1, ij ij = ϕ 1 i, ϕ j ij, ad Ũ i = Ui,j m j=1 wih U i,j iroduced i We defie he orhogoal projecios R h, : V Vh, P h, : H Vh ad P k, : L 2 d P d, respecively, by 3.12 ar h, v v, χ =, v V, χ Vh, P h, v v, χ =, v H, χ Vh, P k, v v ψ d =, v L 2 d, ψ P d, wih P d deoig he se of all vecor-valued cosa polyomials. Correspodigly, we defie R h v, P h v ad P k v for = 1,, N, by R h v = R h, v, P h v = P h, v, ad P k v = P k, v I. Remark 4. I he case of assumpio 3.4, by Remark 3 ad he defiiio of he L 2 -projecio P k, we have V, P k V W hk, for ay V V hk. We iroduce he liear operaor A,r : V r h V h by av r, w = A,r v r, w, v r V r h, w V h. We se A = A,, wih discree orms v h,l = A l/2 v = v, A l v, v Vh ad l R, ad A h so ha A h v = A v for v Vh. We use Āh whe i acs o V h. For laer use i our error aalysis we oe ha P h A = A h R h.

15 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 11 Theorem 3. Le Z be he soluio of 3.7 wih sufficiely smooh daa z T 1, z T 2, j 1, j 2. Furher, we assume 3.4. The for l R, we have he ideiy, Z 1 2 h,l + ρ γ Z 2 2 h,l+1 + 2ρ T T ξs a A l hż2, Ż2s ds d 3.13 = Z 1 T 2 h,l + ρ1 + γ Z 2 T 2 h,l ρ T A l hz 1, P k P h j 1 d + 2 T T T T A l+1 h βs a A l hp k P h j 2, Z 2 s ds d βt a A l hz 2, Z 2 T d 2ρξT a A l hz 2, Z 2 T. Z 2, P k P h j 2 d where γ = 1 γ. Moreover, for some cosa C = Cρ, γ, T, we have sabiliy esimae Z 1 h,l + Z 2 h,l+1 C P h z1 T h,l + P h z2 T h,l T + P h j 1 h,l + P h j 2 h,l+1 d. Proof. The soluio Z of 3.7 also saisfies 3.8, for = N 1,..., 1,. The recallig Remark 4 for he assumpio 3.4, we obviously have, 3.15 P k Z 1 = ρż2 P k P h j 2. Usig his i 3.8 ad recallig he iiial daa Z i T = P h zi T, i = 1, 2, we obai T W 1, Ż1 + aw 1, Z 2 = T βs a W 1, Z 2 s ds d + W 1 T, P h z1 T + ρ W2 T, P h z2 T T W 1, j 1 d + W 1 T, z T 1 + ρ W2 T, z T 2. The erms cocerig he iiial daa are caceled by he defiiio of he orhogoal projecio P h. Besides, for he covoluio erm we recall βs = D s ξs from 2.7 ad he parial iegraio yields, T T βs a W 1, Z 2 s ds d = + γ T T T ξs a W 1, Ż2s ds d ξt a W 1, Z 2 T d T a W 1, Z 2 d.

16 12 F. SAEDPANAH These ad γ = 1 γ imply ha he soluio Z saisfies, T W 1, Ż1 + γaw 1, Z 2 T + ξt aw 1, Z 2 T d = ξs a W 1, Ż2s ds T W 1, P h j 1 d. Now we se W 1 = A l h P kz 1, ad we have 3.16 T A l hp k Z 1, Ż1 + γaa l hp k Z 1, Z 2 T ξs a A l hp k Z 1, Ż2s ds + ξt a A l hp k Z 1, Z 2 T d = T A l hp k Z 1, P h j 1 d. We sudy he four erms a he lef side of he above equaio. For he firs erm we have 3.17 T T A l hp k Z 1, Ż1 d = 1 D Z 1 2 h,l d 2 = 1 2 Z 1T 2 h,l Z 1 2 h,l. Wih 3.15 we ca wrie he secod erm as 3.18 T T γ aa l hp k Z 1, Z 2 d = ρ γ aa l hż2, Z 2 d γ T aa l hp k P h j 2, Z 2 d = ρ γ 2 Z 2T 2 h,l+1 + ρ γ 2 Z 2 2 h,l+1 γ T aa l hp k P h j 2, Z 2 d.

17 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 13 For he hird erm i 3.16, by virue of 3.15 ad iegraio by pars, we obai 3.19 T T ξs a A l hp k Z 1, Ż2s ds d = ρ + = ρ + + T T T T T T γ T T T ξs a A l hż2, Ż2s ds d ξs a A l hp k P h j 2, Ż2s ds d ξs a A l hż2, Ż2s ds d βs a A l hp k P h j 2, Z 2 s ds d ξt aa l hp k P h j 2, Z 2 T d T a A l hp k P h j 2, Z 2 d. Fially, for he las erm a he lef side of 3.16, we use 3.15 ad iegraio by pars o have 3.2 T ξt a A l hp k Z 1, Z 2 T d = ρ = ρ T T T ξt a A l hż2, Z 2 T d ξt a A l hp k P h j 2, Z 2 T d βt a A l hz 2, Z 2 T d ργ Z 2 T 2 h,l+1 + ρξt a A l hz 2, Z 2 T T ξt a A l hp k P h j 2, Z 2 T d. Puig i 3.16 we coclude he ideiy Now we prove he esimae We recall, from 2.8, ha ξ is a posiive ype kerel. The, usig he Cauchy-Schwarz iequaliy i 3.13, ad β L1R + =

18 14 F. SAEDPANAH γ, ξ γ, we ge Z 1 2 h,l + ρ γ Z 2 2 h,l+1 Z 1 T 2 h,l + ρ1 + γ Z 2 T 2 h,l T A l hz 1, P k P h j 1 d + 2 T T T T A l+1 h βs a A l hp k P h j 2, Z 2 s ds d 2ρ βt a A l hz 2, Z 2 T d 2ρξT a A l hz 2, Z 2 T Z 1 T 2 h,l + ρ1 + γ Z 2 T 2 h,l+1 Z 2, P k P h j 2 d + C 1 max T Z 1 2 h,l + 1/C 1 T P k P h j 1 h,l d T + C 2 max Z 2 2 h,l+1 + 1/C 2 P k P h j 2 h,l+1 d T + C 3 Z 2 T 2 h,l+1 + 1/C 3 max Z 2 2 h,l+1 T + C 4 Z 2 T 2 h,l+1 + 1/C 4 Z 2 2 h,l+1. Usig ha, for piecewise liear fucios, we have 3.21 max U i max U i, [,T ] N ad 3.22 T P k f d T f d, ad ha he above iequaliy holds for arbirary N, i a sadard way, we coclude he esimae iequaliy Now he proof is complee. 4. A priori error esimaes We defie he sadard ierpola I k wih I k v belog o he space of coiuous piecewise liear polyomials, ad 4.1 I k v = v, =, 1,, N. By sadard argumes i approximaio heory we see ha, for q =, 1, 4.2 T I k v v i d Ck q+1 T D q+1 2 v i d, for i =, 1, where k = max 1 N k. We assume he ellipic regulariy esimae v 2 C Av, v DA, so ha he followig error esimaes for he Riz projecio 3.12, hold rue 4.3 R h v v Ch s v s, v H s V, s = 1, 2. Hece we mus specialize o he pure Dirichle boudary codiio ad a covex polygoal domai. We oe ha he eergy orm V is equiale o 1 o V. 2

19 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 15 Theorem 4. Assume ha Γ N =, Ω is a covex polygoal domai, ad 3.4. Le u ad U be he soluios of 2.3 ad 3.5. The, wih e = U u ad C = Cρ, γ, T, we have e 1 T Ch 2 u 2 + u 1 T 2 + T T + Ck 2 ü2 + ü 1 1 d. u 1 2 d Proof. We recall Remark 4 for he assumpio 3.4. We se e = U u = θ + η + ω wih θ 1 = U 1 I k R h u 1, η 1 = I k IR h u 1, ω 1 = R h Iu 1, θ 2 = U 2 I k P h u 2, η 2 = I k IP h u 2, ω 2 = P h Iu 2. Now, puig W = P k θ i 3.7 we have where by defiiio ad by parial iegraio T JP k θ = A P k θ, Z, JP k θ = Pk θ 1, j 1 + P k θ 2, j 2 d + P k θ 1 T, z1 T + ρ Pk θ 2 T, z2 T, A P k θ, Z = Aθ, P k Z + P k θ 1 T, Z 1 T θ 1 T, Z 1 T + ρ P k θ 2 T, Z 2 T ρ θ 2 T, Z 2 T. We se j 1 = j 2 = ad z T 2 =, P h z T 1 = θ 1 T, ad we recall ha Z i T = P h z T i, i = 1, 2. Hece usig he defiiio of he orhogoal projecio P h we have θ 1 T 2 = Aθ, P k Z, ha, usig θ = e η ω ad he Galerki orhogoaliy 3.6, implies, θ 1 T 2 = Aη, P k Z Aω, P k Z T = η 1, P k Z 1 + η 2, P k Z 1 + ρ η 2, P k Z 2 aη 1, P k Z 2 + β sa η 1 s, P k Z 2 ds d η 1, P k Z 1 ρ η 2, P k Z 2 T + ω 1, P k Z 1 + ω 2, P k Z 1 + ρ ω 2, P k Z 2 aω 1, P k Z 2 + β sa ω 1 s, P k Z 2 ds d ω 1, P k Z 1 ρ ω 2, P k Z 2. By he defiiio of η, ha idicaes he ierpolaio error, erms icludig η i, η i vaish. We also use he defiiio of ω, ha idicaes he projecio error,

20 16 F. SAEDPANAH ad we coclude θ 1 T 2 = T η 2, P k Z 1 aη 1, P k Z 2 + T ω 1, P k Z 1 d ω 1, P k Z 1, β sa η 1 s, P k Z 2 ds d ha by he Cauchy-Schwarz iequaliy implies T 2 θ 1 T 2 C 1 max P kz /C 1 η 2 d T T 2 + C 2 max P kz /C 2 η 1 1 d T T + C 3 max P kz /C 3 β η1 1 d T T 2 + C 4 max P kz /C 4 ω 1 d T + C 5 P k Z /C 5 ω 1 2. Usig 3.21, β L1R + = γ, ad he sabiliy esimae 3.14 wih l =, i a sadard way, we have θ 1 T C ω 1 + T η 2 + η ω 1 d. Recallig θ 1 T = e 1 T ω 1 T, ad sabiliy of he projecios P h, R h wih respec o, 1, respecively, we have θ 1 T C R h Iu + R h Iu 1 T + T This complees he proof by 4.2, 4.3. I k Iu 2 + I k Iu R h I u 1 d. 5. A poseriori error esimaes Havig cerai regulariy o he daa, i.e., iiial daa u, v ad he force erms f, g, here are sill wo ypes of limiaio for higher global regulariy of a weak soluio of 1.1. Oe is due o he mixed Dirichle-Neuma boudary codiio. This ype of boudary codiio are aural i pracice, ad a pure Dirichle boudary codiio ca o be realisic i applicaios. Oher limiaio is he sigulariy of he covoluio kerel β. This meas ha eve wih he pure Dirichle boudary codiio, higher regulariy of a weak soluio is limied, see [7], [11], hough wih smooher kerels we ca ge higher regulariy. Besides, he sabiliy ad a priori error esimaes preseed i Theorem 3 ad Theorem 4 do o admi adapive meshes. These, ad oher geeral moivaios such as o pracical use of a priori error esimaes, call for adapive meshes based o a poseriori error aalysis. Here a space-ime cellwise error represeaio is give. The mai framework is adaped from [3], ad a geeral liear goal fucioal J is used. This error represeaio ca be used for goal-orieed adapive sraegies based o dual

21 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 17 weighed residual mehod. For more deails o dual weighed residual mehod ad is pracical aspecs for differeial equaios, see [3] ad refereces herei. Theorem 5. Le u ad U be he soluios of 2.3 ad 3.5, ad J he liear fucioal defied i 2. The, wih e = U u, we have he error represeaio 5.1 Je = Θ,K + K Th =1 K T h 6 i=1 Θ i,k, where, wih z hk W hk beig a approximaio of he dual soluio z ad E hk z = z hk z beig he error operaor, 5.2 Θ,K = U 1 u, E hk z 1 K + ρ U 2 v, E hk z 2 K, Θ 1,K = U 1 U 2, E hk z 1 K, Θ 2,K = ρ U 2 f, E hk z 2 K, Θ 3,K = r h, E hk z 2 K, Θ 4,K = g h g, E hk z 2 K, T Θ 5,K = r h, β se hk z 2 d Θ 6,K = g h, s T s β se hk z 2 d K, K. Here K = K ad K = K are he space-ime cells, ad r h, g h are defied below, 5.6, 5.7, respecively. I should be oiced ha K is o he boudary of K. Proof. Usig he ideiy 2.4 ad he Galerki orhogoaliy 3.6 we have, 5.3 Je = A e, z = Ae, z = Ae, E hk z = AU, E hk z F E hk z = RU; E hk z, where RU; is he residual of he Galerki approximaio U as a fucioal o he soluio space V. The by he defiiio of A, F we have 5.4 Je = U 1 u, E hk z 1 + ρ U 2 v, E hk z 2 + T T U 1, E hk z 1 U 2, E hk z 1 + ρ U 2, E hk z 2 + au 1, E hk z 2 β sa U 1 s, E hk z 2 ds d f, E hk z 2 + g, E hk z 2 ΓN d.

22 18 F. SAEDPANAH Now, by parial iegraio wih respec o he space variable, we obai 5.5 T au 1, z 2 d = = = = = =1 =1 =1 K T h K T h + =1 E E Γ N E E I K T h =1 K T h au 1, z 2 K d σ U 1, z 2 K d [σ U 1 ], z 2 σ U 1, z 2 E d rh, z 2 K + g h, z 2 K d rh, z 2 K + g h, z 2 K where E, E Γ N are, respecively, he ses of he ierior edges ad he edges o he Neuma boudary, correspodig o he riagulaio T h. Here r h are he residuals represeig he jumps of he ormal derivaives σ U 1, ad deermied by, r h Γ = 2 [σ U 1 ] if Γ K \ Ω, if Γ Ω, ad g h is he coribuio from he Neuma boudary defied as σ U 1 if Γ K Γ N, 5.7 g h Γ = if Γ Ω. For he covoluio erm i 5.4 we firs chage he order of he ime iegrals, he similar o 5.5, we have, E 5.8 T β sa U 1 s, z 2 ds d = = = T T s =1 β sa U 1 s, z 2 d ds K T h =1 K T h T + g h, a U 1 s, r h, T s s T s β sz 2 d ds K β sz 2 d K β sz 2 d K.

23 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 19 Now, usig 5.5, 5.8 ad space-ime cellwise represeaio of he oher erms i 5.4 we coclude he error represeaio 5.1. The error represeaio 5.1 leads us o he weighed a poseriori esimae, Je R,K ω,k + R i,kωi,k, K T h wih he residuals ad weighs defied as =1 K T h i=1 R,K = U 1 u 2 K + U 2 v 2 K 1/2, ω,k = E hk z 1 2 K + E hk z 2 2 K 1/2, R 1,K = U 1 U 2 K, ω1,k = E hk z 1 K, R 2,K = ρ U 2 f 2 1 1/2, K + 2 h K r h 2 K ω2,k = E hk z 2 2 K + h K E hk z 2 2 K + h T K β se hk z 2 d 2 1/2, K s R h 1 3,K = K g h g 2 1 1/2, K + h K g h 2 K ω3,k = hk E hk z 2 2 K + h T K β se hk z 2 d 2 1/2. K I order o evaluae he a poseriori error represeaio 5.1 or he a poseriori esimae 5.9, we eed iformaio abou he coiuous dual soluio z. Such iformaio has o be obaied eiher hrough a priori aalysis i form of bouds for z i cerai Sobolev orms or hrough compuaio by solvig he dual problem umerically. I his coex we provide iformaio hrough a priori aalysis ad we leave he ivesigaio o he secod case o a laer work. I he followig, he arge fucioal J will be he global L 2 -orm of he approximaio displaceme u 1 = u 1 x,. We firs prese a weighed global a poseriori error esimae, usig global L 2 -projecios P k, P h defied i 3.12, ad error esimaes of P h i a weighed L 2 -orm. We recall he weighed global error esimaes of he L 2 -projecio P h 3.12, see [4]. Firs we recall some oaio. Le T be a give riagulaio wih mesh fucio h, ad for ay simplex K T, ρ K deoe he radius of he larges ball coaied i he closure of K, ha is K. A family F of riagulaios T is called o-degeerae, if here exsis a cosa c such ha we have c = max max h K. T F K T ρ K Le S K = K T : K K ad δ T be a measure for he give riagulaio T defied by δ T = max max 1 h 2 K T K K S /h2 K K. We defie a measure, δ F, for a give family F, by 5.1 δ F = max T F δ T. s

24 2 F. SAEDPANAH We defie he error operaors E hk, E h, ad E k by 5.11 E hk v = P k P h Iv, E h v = P h Iv, E k v = P k Iv, ad we oe ha 5.12 E hk = E h + E k P h. Lemma 1. Assume ha he family F of raigulaios T be o-degeerae. The for sufficiely small δ F, here exiss a cosa C such ha for ay riagulaio T F we have, for all v H 2, h s E h v C s v, s = 1, 2, v H s, h 1 E h v C 2 v, v H 2, where deoes he usual gradie. For more deails o he pracical aspecs of δ F, see [4]. For he ex heorem we recall he mesh fucios h, h from 3.1, 3.2, ad we defie he oaios h mi, = mi h K, K T h h max, = max h K. K Th Theorem 6. Le u be he soluios of 2.3, ad U be he soluio of 3.5 wih a o-degeerae family F h of riagulaios Th, =, 1,..., N, wih sufficiely small δ Fh, such ha he weighed global error esimaes 5.13 ad 5.14 hold. The, wih e = U u, we have he weighed a poseriori error esimae e 1 T C h U1 u + h 2 U2 v + =1 h U 1 U 2 + h 2 ρ U 2 f + ζ + ζ,n h 3 K r h 2 K 1/ ζ K T h h 3 K g h g 2 K 1/2 + ζ,n h 3 K g h 2 K 1/2 where 5.16 ζ = K T h + k U 1 U 2 + k E k Ā h U 1 + k Ek β sāhu 1 s ds + k E k f + k h 2 mi, h2 max,, K T h ζ,n = K T h 1/2 h 1 K E kg 2 K d, 2 h mi, max j N h2 max,j. Proof. Le z V be he soluio of he dual problem 2.5. From he defiiio of he L 2 projecios P k, P h i 3.12 ad he es space W hk i 3.3 we have P k P h z W hk. Therefore, usig 5.3 ad he error operaors 5.11 we have, 5.17 Je = RU; E hk z = RU; E h z + RU; E k P h z,

25 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 21 where we used We sudy he wo erms a he righ side of his equaio. For he firs erm we ca wrie, RU; E h z = U 1 u, E h z 1 + ρ U 2 v, E h z 2 + =1 U 1 U 2, E h z 1 + ρ U 2 f, E h z 2 + au 1, E h z 2 g, E h z 2 ΓN β sa U 1 s, E h z 2 ds d. Now by parial iegraio i space, similar o 5.5, 5.8, we have RU; E h z = U1 u, E h z 1 K + ρ U 2 v, E h z 2 K K T h + =1 K T h U 1 U 2, E h z 1 K + ρ U 2 f, E h z 2 K 5.18 = + r h, E h z 2 K + g h g, E h z 2 K T r h, βs E h z 2 s ds g h, 2 I i + i=1 T βs E h z 2 s ds 6 II i. i=1 K K d We he, for each erm, use he Cauchy-Schwarz iequaliy wice. Firs o he local elemes K, K, o obai local L 2 -orms, ad he o he sum over he elemes o obai global orms such ha he weighed global error esimaes 5.13, 5.14 ca be used. For I 1 we have 5.19 I 1 h U 1 u h 1 E hz 1 C h U 1 u z 1, ad i a similar way we have, 5.2 I 2 C h 2 U 2 v 2 z 2. For he ex erm, usig he error esimae 5.13, we have, 5.21 II 1 = =1 =1 K Th U 1 U 2, E h z 1 d K h U 1 U 2 h 1 C max [,T ] z 1 =1 E h z 1 d h U 1 U 2 d,

26 22 F. SAEDPANAH ad similarly we obai, 5.22 II 2 C max [,T ] 2 z 2 =1 h 2 ρ U 2 f d. For II 3, we firs have, II 3 =1 K T h h 3 K r h 2 K 1/2 K T h h 3 K E hz 2 2 K 1/2 d. The by a scaled race iequaliy ad he weighed global error esimaes 5.13, 5.14, we obai h 3 K E hz 2 2 K C h 4 K E hz K + h K E hz 2 2 K K T h K T h C h 4 mi, h4 max, h 2 E h z h mi, h2 max, h 1 E h z 2 2 C h 4 mi, h4 max, 2 z 2 2. These imply he esimae 5.23 II 3 C max [,T ] 2 z 2 =1 mi, h 2 h2 max, K T h h 3 K r h 2 K 1/2 d. I a similar way, we have 5.24 II 4 C max [,T ] 2 z 2 =1 mi, h 2 h2 max, K T h h 3 K g h g 2 K 1/2 d. Fially we sudy II 5 ad a similar resul will hold for II 6. To his ed, firs we oe ha, II 5 =1 K T h K T h h 3 K h 3 K r h 2 K T 1/2 βs E h z 2 s ds K 2 1/2 d.

27 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 23 The, usig Mikowski s iequaliy, he Cuachy-Schwarz iequaliy, ad he fac ha β L1R + = γ, we have K T h h 3 K T βs E h z 2 s ds K T h γ K T h T h 3 K h 3 K 2 K T 2 βs E h z 2 s K ds T βs βs ds K T h T βs E h z 2 s 2 K ds h 3 K E hz 2 s 2 K ds, ha usig a scaled race iequaliy ad he error esimaes 5.13, 5.14, we have K T h h 3 K T C C C βs E h z 2 s ds T βs j K T h j= 2 + h mi, h2 max,j h 1 j j j= 2 K h 4 K E hz 2 s 2 2 K + h K E hz 2 s 2 K ds βs h 4 mi, h4 max,j h 2 j E h z 2 s 2 j 1 E h z 2 s 2 ds j 1 βs h 4 mi, h4 max,j 2 z 2 s 2 ds Cγ max [,T ] 2 z 2 s 2 h 4 max mi, j N h4 max,j. Hece we obai, 5.25 II 5 C max [,T ] 2 z 2 =1 mi, h 2 max j N h2 max,j K T h h 3 K r h 2 K 1/2 d. A similar esimae for II 6 holds, ha is, 5.26 II 6 C max [,T ] 2 z 2 =1 mi, h 2 max j N h2 max,j K T h h 3 K g h 2 K 1/2 d.

28 24 F. SAEDPANAH Puig i 5.18 we coclude, 5.27 RU; E h z C max max [,T ] 2 z 2, max z 1 [,T ] h U1 u + h 2 U2 v + =1 h U 1 U 2 + h 2 ρ U 2 f 2 + h mi, h2 max, K T h 2 + h mi, h2 max, h 3 K r h 2 K 1/2 h 3 K g h g 2 K 1/2 2 + h max K T h mi, j N h2 max,j 2 + h max mi, j N h2 max,j K T h K T h h 3 K r h 2 K h 3 K g h 2 K 1/2 1/2 d. Now we sudy he secod erm i 5.17, ha is, RU; E k P h z = RU; E k P h z ± T Pk f, E k P h z 2 + P k g, E k P h z 2 ΓN d = U 1 u, E k P h z 1 + ρ U 2 v, E k P h z 2 + U 1 U 2, E k P h z 1 =1 + au 1, E k P h z 2 β sa U 1 s, E k P h z 2 ds + ρ U 2 P k f, E k P h z 2 Pk g, E k P h z 2 ΓN + E k f, E k P h z 2 + E k g, E k P h z 2 ΓN d. Recallig he iiial codiio U i = P h u i, i = 1, 2, he firs wo erms o he righ side vaish. Besides, from he secod equaio of 3.9 we have, for W V h, ρ U 2, W P k f, W P k g, W d = ap k U 1, W a P k β su 1 s ds, W d.

29 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 25 Hece, we coclude 5.28 RU; E k P h z = U 1 U 2, E k P h z 1 =1 ae k U 1, E k P h z 2 + a E k β su 1 s ds, E k P h z 2 + E k f, E k P h z 2 + E k g, E k P h z 2 ΓN d. For he las erm we have, =1 E k g, E k P h z 2 ΓN d =1 K T h 1/2 h 1 K E 1/2. kg 2 K h K E k P h z 2 K 2 K Th By a scaled race iequaliy ad local iverse iequaliy we have, K T h h K E k P h z 2 2 K C K T h C Ek P h z 2 2 K + h 2 K E k P h z 2 2 K Ek P h z 2 2 K + E k P h z 2 2 K K T h = C E k P h z 2 2. Hece, E k g, E k P h z 2 ΓN d C =1 K T h h 1 K E kg 2 K 1/2 Ek P h z 2. Cosiderig his i 5.28 ad usig he Cauchy-Schwarz iequaliy we have RU; E k P h z C =1 U 1 U 2 E k P h z 1 + E k Ā h U 1 E k P h z 2 + E k β sāhu 1 s ds E k P h z 2 + E k f E k P h z 2 + K T h 1/2 Ek h 1 K E kg K 2 P h z 2.

30 26 F. SAEDPANAH This, L 2 -sabiliy of he L 2 -projecio P h, ad a sadard error esimaio of he error operaor E k, coclude RU; E k P h z C max max ż 1, max ż 2 [,T ] [,T ] 5.29 =1 k U 1 U 2 + k E k Ā h U 1 + k Ek β sāhu 1 s ds + k E k f + k K T h 1/2 h 1 K E kg 2 K d. We ow se j 1 = j 2 = z2 T = ad z1 T = A 1/2 e 1 T. The, puig 5.27 ad 5.29 i 5.17, usig he sabiliy esimaes 2.14 ad a sadard argume, we coclude he a poseriori error esimae 5.15, ad his complees he proof. Remark 5. We oe ha for he error esimae 5.15 here are wo ypes of resricio o he riagulaios; Oe by ζ, ζ,n, ha measures he quasiuiformiy of he family of riagulaio, ad he oher by δ Fh, ha measure he regulariy of he family of riagulaios i a slighly differe sese. Alhough maybe o explicily, bu ζ, ζ,n ad δ Fh ca be relaed. I pracice we use fiiely may riagulaios, ha meas quasiuiformiy holds, hough possibly wih big ζ, ζ,n. This meas ha we sill ca use he a poseriori error esimae Bu whe δ Fh is o sufficiely small, he error esimae 5.15 does o hold. This calls for usig local ierpolas isead of global L 2 -projecio P h. I he ex heorem we prese a a poseriori error esimae usig ierpolaio, liear i space ad cosa i ime o each space-ime cell. We also oe ha a possible, bu o eccesserily opimal, way of igorig hese limiaios could be usig global error esimaes of P h wih global mesh size h max. Tha is a poseriori error esimae i he form, wih k = k for, e 1 T C h max, U 1 u + h 2 max, U 2 v T + Ch max U 1 U 2 d + Ch 2 max + T T ρ U 2 f + r h + g h g ΓN + g h ΓN d k U 1 U 2 + E k Ā h U 1 + E k β sāhu 1 s ds + E k f + E k g ΓN d, where r h K = h 1 K max K r h, g h K = h 1/2 K g h, ad g K = h 1/2 K g. We recall he decomposiio of he space-ime slab Ω = Ω io cells K = K, K T h. Le I hk be he sadard ierpola, such ha I hk v K be liear i space ad cosa i ime. We defie he error operaor E hk by E hk v = I hk Iv.

31 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 27 A varia of he Bramble-Hilber lemma he implies he error esimaes, E hk v K C 5.3 h r K r v K + k v K, r = 1, 2, E hkv K C 5.31 h 2 K 2 v K + k v K, where K is a pach of space cells suiably chose aroud K. We recall he mesh fucio h from 3.2, ad we defie he oaio We will also use he fac ha h max, = max h K. K T h 5.32 v 2 Ω = v I 2 d k max v. Theorem 7. Le u ad U be he soluios of 2.3 ad 3.5. The, wih e = U u, we have he weighed a poseriori error esimae 5.33 e 1 T C h U1 u + h 2 U2 v + C h U 1 U 2 Ω + k U 1 U 2 Ω =1 k 1/2 + h 2 ρ U 2 f Ω + k ρ U 2 f Ω 1/2 1/2 + h 3 K r h 2 K + h 3 K g h g 2 K K T h + k K T h h 1 K r h 2 K 1/2 + k h 1 K g h g 2 K 1/2 K T h + k K T h h K r h 2 K 1/2 + k h K g h g 2 K 1/2 K T h + h2 max, + k + h2 max, + k + hmax, + k + hmax, + k j=1 K T j h j=1 K T j h h max,j j=1 K T j h h max,j j=1 K T j h K T h h 1 K β r h j 2 K 1/2 2 d h 1 K β g h j 2 K 1/2 2 d h 1 K β r h j 2 K 1/2 2 d h 1 K β g h j 2 K 1/2 2 d 1/2 1/2 1/2 1/2.

32 28 F. SAEDPANAH Proof. We wrie he error represeaio 5.1 as Je = Θ,K + Θ i,k = I + I i. K Th i=1 =1 K T h i=1 Firs we esimae I. To his ed, recallig Θ,K from 5.2, we use he Cauchy- Schwarz iequaliy ad he ierpolaio error esimae 5.3 o obai, U1 u, E hk z 1 K U 1 u K E hk z 1 K K T h K T h C U 1 u K h K z 1 K K T h C z 1 h 2 K U 1 u 2 K 1/2 K T h = C z 1 h U1 u. Similarly we have ρ U 2 v, E hk z 2 K C 2 z 2 h 2 U2 v. K T h From hese wo esimaes we coclude 5.35 I C max z 1, 2 z 2 h U1 u + h 2 U2 v. For he ex erm, usig he Cauchy-Schwarz iequaliy ad he error esimae 5.3, we have I 1 U 1 U 2 K E hk z 1 K =1 K T h C =1 K T h =1 K T h U 1 U 2 K hk z 1 K + k ż 1 K C h 2 K U 1/2 1 U 2 2 K z 1 2 K =1 K T h + C k U 1/2 1 U 2 2 K ż 1 2 K = C =1 ha usig 5.32 we have 5.36 K T h K T h 1/2 1/2 h U 1 U 2 Ω z 1 Ω + k U 1 U 2 Ω ż 1 Ω, I 1 C max =1 max z 1, max ż 1 [,T ] [,T ] k 1/2 h U 1 U 2 Ω + k U 1 U 2 Ω.

33 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 29 I he same way we obai 5.37 I 2 C max max [,T ] 2 z 2, max ż 2 [,T ] k 1/2 h2 ρ U 2 f Ω + k ρ U 2 f Ω. =1 Now for I 3, we use he Cauchy-Schwarz iequaliy, a race iequaliy, ad he error esimaes 5.3, 5.31 o obai, I 3 =1 K T h C C =1 K T h =1 K T h h 1/2 K r h K h1/2 K E hkz 2 K h 1/2 K r h K Ehk z 2 K + h K E hk z 1 K h 1/2 K r h K 2 h 2 K 2 z 2 K + k ż 2 K + h K k ż 2 K 1/2 C h 3 K r h 2 K 2 z 2 Ω =1 K T h + k K T h + k K T h h 1 K r h 2 K 1/2 ż2 Ω h K r h 2 K 1/2 ż2 Ω, ha usig 5.32 we have 5.38 I 3 C max max [,T ] 2 z 2, max =1 k 1/2 + k K T h [,T ] ż 2, max ż 2 [,T ] h 3 K r h 2 K 1/2 + k h K r h 2 K 1/2. K T h h 1 K r h 2 K 1/2 K T h

34 3 F. SAEDPANAH Ad similarly 5.39 I 4 C max max [,T ] 2 z 2, max =1 k 1/2 + k K T h [,T ] ż 2, max h 3 K g h g 2 K 1/2 h 1 K g h g 2 K 1/2 ż 2 [,T ] K T h + k h K g h g 2 K 1/2. K T h Fially we sudy I 5, I 6 which iclude he covoluio erms. We fid a esimae for I 5 ad a similar argume holds for I 6. Firs, recallig he defiiio of Θ 5,K from 5.2, we ca wrie I 5 as, I 5 = =1 K T h Θ 5,K = T β s =1 s K T h rh s, E hk z 2 d ds. K The we chage he order of he ime iegrals ad we obai, I 5 = = =1 j β s j=1 j 1 K T j h =1 j=1 K T j h rh s, E hk z 2 ds d K β rh j, E hk z 2 d, K where β v j = j j 1 β svs ds.

35 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 31 Now by a race iequaliy ad he Cauchy-Schwarz iequaliy i he sum over he riagles, ad furher Cuachy-Schwarz iequaliy i he iegral over, we have, I 5 C =1 j=1 K T j h 1/2 h 1 K β r h j 2 K E hk z 2 + h max,j E hk z 2 d 1/2 = C E hk z 2 h 1 K β r h j K 2 d C + C + C =1 =1 =1 j=1 E hk z 2 K T j h h max,j j=1 1/2 K T j h E hk z 2 2 d 1/2 2 h 1 K β r h j K 2 d =1 j=1 K T j h E hk z 2 2 d h max,j j=1 K T j h 1/2 h 1 K β r h j 2 K 1/2 d 1/2 h 1 K β r h j 2 K 1/2 2 d 1/2. Sice by he error esimae 5.3 we have E hk z 2 2 d = E hk z 2 2 K d = E hk z 2 2 K K T h C K T h K T h h4 K 2 z 2 2 K + k 2 ż 2 2 K C h4 max, 2 z 2 2 Ω + k2 ż 2 2 Ω, ad similarly by 5.31 E hk z 2 2 d = E hk z 2 2 K d = E hk z 2 2 K K T h C K T h K T h h2 K 2 z 2 2 K + k 2 ż 2 2 K C h2 max, 2 z 2 2 Ω + k2 ż 2 2 Ω,

36 32 F. SAEDPANAH he, recallig 5.32, we coclude he esimae I 5 C max max [,T ] 2 z 2, max ż 2, max ż 2 [,T ] [,T ] N k 1/2 h2 max, + k 5.4 =1 + C =1 j=1 K T j h k 1/2 hmax, + k h max,j j=1 h 1 K β r h j 2 K 1/2 2 d K T j h 1/2 h 1 K β r h j 2 K 1/2 2 d 1/2 The same esimae holds for I 6 wih r h be replaced by g h. We ow se j 1 = j 2 = z2 T = ad z1 T = A 1/2 e 1 T. The, puig , ad he couerpar of 5.4 for I 6, i 5.1, usig he sabiliy esimaes 2.14 ad a sadard argume, we coclude he a poseriori error esimae 5.33, ad his complees he proof. Remark 6. We ca compue r h K = ψ 1 r h 1 + ψ r h 2 K d 1/2 k1/2 r h 1 2 K + r h 2 K k1/2 rh 1 K + r h K. Remark 7. We oe ha he las a poseriori error esimae preseed i 5.33, does o have he resricios ha were meioed i Remark 5. Refereces 1/2 1. K. Adolfsso, M. Eelud, ad S. Larsso, Space-ime discreizaio of a iegro-differeial equaio modelig quasi-saic fracioal-order viscoelasiciy, J. Vib. Corol 14 28, K. Adolfsso, M. Eelud, S. Larsso, ad M. Racheva, Discreizaio of iegro-differeial equaios modelig dyamic fracioal order viscoelasiciy, LNCS , W. Bagerh ad R. Raacher, Adapive Fiie Eleme Mehods for Differeial Equaios, Lecures i Mahemaics ETH Zürich, Birkhäuser Verlag, M. Boma, Esimaes for he L 2 -projecio oo coiuous fiie eleme spaces i a weighed L p-orm, BIT 46 26, A. Erdélyi, W. Magus, F. Oberheiger, ad F. G. Tricomi, Higher Trascedeal Fucios. Vol. III, Rober E. Krieger Publishig Co. Ic., 1981, Based o oes lef by Harry Baema, Repri of he 1955 origial. 6. R. H. Fabiao ad K. Io, Semigroup heory ad umerical approximaio for equaios i liear viscoelasiciy, SIAM J. Mah. Aal , S. Larsso ad F. Saedpaah, The coiuous Galerki mehod for a iegro-differeial equaio modelig dyamic fracioal order viscoelasiciy, IMA J. Numer. Aal., o appear..

37 CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL W. McLea, V. Thomée, ad L. B. Wahlbi, Discreizaio wih variable ime seps of a evoluio equaio wih a posiive-ype memory erm, J. of Compu. Appl. Mah , A. K. Pai, V. Thomée, ad L. B. Wahlbi, Numerical mehods for hyperbolic ad parabolic iegro-differeial equaios, J. Iegral Equaios Appl , B. Riviére, S. Shaw, ad J. R. Whiema, Discoiuous Galerki fiie eleme mehods for dyamic liear solid viscoelasiciy problems, Numer. Mehods Parial Differeial Equaios 23 27, F. Saedpaah, Exisece ad uiqueess of he soluio of a iegro-differeial equaio wih weakly sigular kerel, Prepri 29:16, Dep. of Mahemaical Scieces, Chalmers Uiversiy of Techology ad Uiversiy of Goheburg. 12. S. Shaw ad J. R. Whiema, Applicaios ad umerical aalysis of parial differeial Volerra equaios: a brief survey, Compu. Mehods Appl. Mech. Egrg , , A poseriori error esimaes for space-ime fiie eleme approximaio of quasisaic herediary liear viscoelasiciy problems, Compu. Mehods Appl. Mech. Egrg , Deparme of Mahemaical Scieces, Chalmers Uiversiy of Techology ad Uiversiy of Goheburg, SE Göeborg, Swede address: fardi@chalmers.se

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Compact Finite Difference Schemes for Solving a Class of Weakly- Singular Partial Integro-differential Equations

Compact Finite Difference Schemes for Solving a Class of Weakly- Singular Partial Integro-differential Equations Ma. Sci. Le. Vol. No. 53-0 (0 Maemaical Scieces Leers A Ieraioal Joural @ 0 NSP Naural Scieces Publisig Cor. Compac Fiie Differece Scemes for Solvig a Class of Weakly- Sigular Parial Iegro-differeial Equaios

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1 Paper 3A3 The Equaios of Fluid Flow ad Their Numerical Soluio Hadou Iroducio A grea ma fluid flow problems are ow solved b use of Compuaioal Fluid Damics (CFD) packages. Oe of he major obsacles o he good

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows Joural of Applied Mahemaics ad Physics 58-59 Published Olie Jue i SciRes hp://wwwscirporg/joural/jamp hp://dxdoiorg/6/jamp76 O he Exisece ad Uiqueess of Soluios for oliear Sysem Modelig hree-dimesioal

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative Malaysia Joural of Maheaical Scieces 7(): 3-7 (3) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural hoepage: hp://eispe.up.edu.y/joural Boudary Value Proble for he Higher Order Equaio wih Fracioal Derivaive

More information

Averaging of Fuzzy Integral Equations

Averaging of Fuzzy Integral Equations Applied Mahemaics ad Physics, 23, Vol, No 3, 39-44 Available olie a hp://pubssciepubcom/amp//3/ Sciece ad Educaio Publishig DOI:269/amp--3- Averagig of Fuzzy Iegral Equaios Naalia V Skripik * Deparme of

More information

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE ECE 570 Sessio 7 IC 75-E Compuer Aided Egieerig for Iegraed Circuis Trasie aalysis Discuss ime marcig meods used i SPICE. Time marcig meods. Explici ad implici iegraio meods 3. Implici meods used i circui

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpeCourseWare hp://ocw.mi.edu 5.74 Iroducory Quaum Mechaics II Sprig 009 For iformaio aou ciig hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms. drei Tokmakoff, MIT Deparme of Chemisry,

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

(1) f ( Ω) Keywords: adjoint problem, a posteriori error estimation, global norm of error.

(1) f ( Ω) Keywords: adjoint problem, a posteriori error estimation, global norm of error. O a poseriori esimaio of umerical global error orms usig adjoi equaio A.K. Aleseev a ad I. M. Navo b a Deparme of Aerodyamics ad Hea Trasfer, RSC ENERGIA, Korolev, Moscow Regio, 4070, Russia Federaio b

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation.

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation. ecure Phys 375 Eergy Desiy / Eergy Flu / oal Eergy i D Overview ad Moivaio: Fro your sudy of waves i iroducory physics you should be aware ha waves ca raspor eergy fro oe place o aoher cosider he geeraio

More information

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION U.P.B. ci. Bull. eries A Vol. 69 No. 7 IN 3-77 DETERMINATION OF PARTIULAR OLUTION OF NONHOMOGENEOU LINEAR DIFFERENTIAL EQUATION BY DIRETE DEONVOLUTION M. I. ÎRNU e preziă o ouă meoă e eermiare a soluţiilor

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9-9466 ol., No. (December 8) pp. 5 5 Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) O Exisece ad Uiqueess heorem Cocerig ime Depede Hea rasfer

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9-9466 ol., Issue 6 (December 8) pp. 5 5 (Previously ol., No. ) Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) O Exisece ad Uiqueess heorem

More information

A HYBRID SPECTRAL ELEMENT METHOD FOR FRACTIONAL TWO-POINT BOUNDARY VALUE PROBLEMS

A HYBRID SPECTRAL ELEMENT METHOD FOR FRACTIONAL TWO-POINT BOUNDARY VALUE PROBLEMS A HYBRID SPECTRAL ELEMENT METHOD FOR FRACTIONAL TWO-POINT BOUNDARY VALUE PROBLEMS Chag-Tao Sheg ad Jie She, Dedicaed o Professor Zhehua Teg s 8h birhday) Absrac. We propose a hybrid specral eleme mehod

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

PREPRINT 2009:16. Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH

PREPRINT 2009:16. Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH PREPRINT 29:16 Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

On stability of first order linear impulsive differential equations

On stability of first order linear impulsive differential equations Ieraioal Joural of aisics ad Applied Mahemaics 218; 3(3): 231-236 IN: 2456-1452 Mahs 218; 3(3): 231-236 218 as & Mahs www.mahsoural.com Received: 18-3-218 Acceped: 22-4-218 IM Esuabaa Deparme of Mahemaics,

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

On Numerical Solution of Boundary Integral Equations of the Plane Elasticity Theory by Singular Integral Approximation Methods

On Numerical Solution of Boundary Integral Equations of the Plane Elasticity Theory by Singular Integral Approximation Methods Proceedigs of he 5h WSEAS I Cof o Sysem Sciece ad Simulaio i Egieerig Teerife Caary Islads Spai December 6-8 6 88 O Numerical Soluio of Boudary Iegral Equaios of he Plae Elasiciy Theory by Sigular Iegral

More information

Lecture 15: Three-tank Mixing and Lead Poisoning

Lecture 15: Three-tank Mixing and Lead Poisoning Lecure 15: Three-ak Miig ad Lead Poisoig Eigevalues ad eigevecors will be used o fid he soluio of a sysem for ukow fucios ha saisfy differeial equaios The ukow fucios will be wrie as a 1 colum vecor [

More information

Generalized Jacobi spectral-galerkin method for nonlinear Volterra integral equations with weakly singular

Generalized Jacobi spectral-galerkin method for nonlinear Volterra integral equations with weakly singular JOURAL OF MAHEMACAL SUDY J. Mah. Sudy, Vol. x, o. x (1x), pp. 1-14 Geeralized Jacobi specral-galerki mehod for oliear Volerra iegral equaios wih weakly sigular kerels Jie She 1,, Chagao Sheg 1 ad Zhogqig

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

A Novel Approach for Solving Burger s Equation

A Novel Approach for Solving Burger s Equation Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 93-9466 Vol. 9, Issue (December 4), pp. 54-55 Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) A Novel Approach for Solvig Burger s Equaio

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Prakash Chandra Rautaray 1, Ellipse 2

Prakash Chandra Rautaray 1, Ellipse 2 Prakash Chadra Rauara, Ellise / Ieraioal Joural of Egieerig Research ad Alicaios (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue, Jauar -Februar 3,.36-337 Degree Of Aroimaio Of Fucios B Modified Parial

More information

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups joural of fucioal aalysis 149, 47547 (1997) aricle o. FU97313 Iegraio by Pars ad Quasi-Ivariace for Hea Kerel Measures o Loop Groups Bruce K. Driver* Deparme of Mahemaics, 112, Uiversiy of Califoria, Sa

More information