Fluctuation-induced forces near critical points

Size: px
Start display at page:

Download "Fluctuation-induced forces near critical points"

Transcription

1 Fluctuation-induced forces near critical points From Casimir to anisotropic critical systems H. W. Diehl Fakultät für Physik, U. Duisburg-Essen October 20, 2010 Third International Conference Models in Quantum Field Theory dedicated to A. N. Vassiliev Collaborators: Matthias Burgsmüller, U. Duisburg-Essen Felix M. Schmidt, U. Duisburg-Essen Mykola A. Shpot, ICMP Lviv (Ukraine) Work supported in part by: DFG, grant # Die-378/5

2 Fluctuation-induced forces effective force F 12 induced by fluctuations in medium examples: van der Waals Casimir, Casimir-Polder, dispersion forces, (near-)critical Casimir forces critical Casimir forces in anisotropic critical systems

3 Casimir Effect in QED July 15, 1909 May 4, : vacuum fluctuations L vacuum bound. cond. 1 conducting plates bound. cond. 2 normal modes of electromagnetic field between plates: q ω q,ν = c q = c qx 2 + qy 2 + qz; 2 q = (q x,q y, q z = m π/l), m N ground-state energy: E 0(L) = 1 X ω q,ν = C Λ V + CΛ s A+ π2 2 {z } 720 q,ν=1,2 infinities {z } universal BC c L A L 2 (fluctuation induced) force: F C (L) = E0 L = π2 240 c L 4 A

4 Casimir Effect in QED July 15, 1909 May 4, : vacuum fluctuations L vacuum bound. cond. 1 conducting plates bound. cond. 2 normal modes of electromagnetic field between plates: q ω q,ν = c q = c qx 2 + qy 2 + qz; 2 q = (q x,q y, q z = m π/l), m N ground-state energy: E 0(L) = 1 X ω q,ν = C Λ V + CΛ s A+ π2 2 {z } 720 q,ν=1,2 infinities {z } universal BC (fluctuation induced) force: c L A L 2 F C (L) = E0 L = (L/µm) 4 dyn cm 2 A

5 Experimental Verification S. Lamoreaux, PRL 87, 5 (1997); U. Mohideen & A. Roy, PRL 81, 4549 (1998); plates: G. Bressi et al, PRL 99, (2002) polystyrene sphere ( 196 µm) and sapphire plate coated with Au plate-sphere separations from 0.1 to 0.9 µm

6 Experimental Verification S. Lamoreaux, PRL 87, 5 (1997); U. Mohideen & A. Roy, PRL 81, 4549 (1998); plates: G. Bressi et al, PRL 99, (2002) polystyrene sphere ( 196 µm) and sapphire plate coated with Au plate-sphere separations from 0.1 to 0.9 µm solid line: Casimir force for plate-sphere geometry including corrections due to finite conductivity surface roughness finite temperatures Proximity Force (Derjaguin) Approximation

7 Microelectromechanical Systems (MEMS) Attractive Casimir forces may cause STICTION. Interest in repulsive Casimir forces.

8 Signs: Gaussian Results for Parallel Plates Massless Euclidean field theory in d space dimensions H = d d x 1 2 ( φ)2 R d 1 [0,L] Symanzik 81: (D,D) = 2 d π d/2 Γ(d/2)ζ(d) < 0 Krech & Dietrich 91: (N,N) = (D,D) < 0 (PBC) = 2 d (D,D) < 0 (D,N) = (2 1 d 1) (D,D) > 0 (APB) = 2 d (D,N) > 0 Theorems for attractive CFs: Kenneth & I. Klich 2007 ( Gauss ) Bachas 2007 (beyond Gauss: reflection positivity )

9 Thermodynamic Casimir Effect pressure 0 0 K solid liquid gas critical point temperature M.E. Fisher & P.-G. de Gennes (1978): large-λ modes massless consider confined nearly critical systems B 1 : area A nearly critical fluid B 2 : area A L F L,A (T) k B T = LAf b(t) {z } bulk contribution + A[f s,1(t,...) + f s,2(t,...)] {z } surface contributions + Af res(t,l,...) {z } residual

10 Thermodynamic Casimir Effect pressure 0 0 K solid liquid gas critical point temperature M.E. Fisher & P.-G. de Gennes (1978): large-λ modes massless consider confined nearly critical systems B 1 : area A nearly critical fluid B 2 : area A L F L,A (T) k B T = LAf b(t) {z } bulk contribution + A[f s,1(t,...) + f s,2(t,...)] {z } surface contributions + Af res(t,l,...) {z } residual Casimir force per area: F(T, L,...)/A = k B T fres L finite size scaling (only short-range interactions): f res(t,l,...) 1 L d 1 Θ {z} universal (L/ξ,...) at T c, : f res 1 L d 1 {z} Casimir amplitude

11 Universality Casimir amplitudes and scaling functions Θ are universal, depend on: 1 gross features of the medium (bulk universality class) 2 gross features of boundaries (surface universality classes) 3 geometry

12 Lattice and Continuum Models free bc K K 1 X H lat = K s is j i,j / B 1 B 2 X K 1 s is j K 2 i,j B 1 X i,j B 2 s is j K 2 free bc B 1 B 2 c 1 n V n c 2 H = Z R d 1 [0,L] d d x L b {z} bulk density + 2X Z da L j j=1 B j {z } boundary planes z = 0 and z = L L b = 1 2 ( φ)2 + τ 2 φ2 + ů 4! φ4 ; L j = 1 cj φ2 2 mesoscopic BC: n φ = c j φ

13 Lattice and Continuum Models free bc K K 1 X H lat = K s is j i,j / B 1 B 2 X K 1 s is j K 2 i,j B 1 X i,j B 2 s is j K 2 free bc B 1 B 2 c 1,h 1 n V n c 2,h 2 H = Z R d 1 [0,L] d d x L b {z} bulk density + 2X Z da L j j=1 B j {z } boundary planes z = 0 and z = L L b = 1 2 ( φ)2 + τ 2 φ2 + ů 4! φ4 ; L j = 1 2 cj φ2 h jφ mesoscopic BC: n φ = c j φ h j

14 Standard φ 4 model for slab B 1 B 2 c 1 n V n c 2 H = Z R d 1 [0,L] d d x L b {z} bulk density + 2X Z da L j j=1 B j {z } boundary planes z = 0 and z = L L b = 1 2 ( φ)2 + τ 2 φ2 + ů 4! φ4 ; L j = 1 cj φ2 2 mesoscopic BC: n φ = c j φ

15 Standard φ 4 model for slab B 1 B 2 c 1 n V n c 2 H = Z R d 1 [0,L] d d x L b {z} bulk density + 2X Z da L j j=1 B j {z } boundary planes z = 0 and z = L L b = 1 2 ( φ)2 + τ 2 φ2 + ů 4! φ4 ; L j = 1 cj φ2 2 mesoscopic BC: n φ = c j φ, c j c j c sp SD/BD T SD/BD Dirichlet SO/BD c j = c j SO/BO c j = 0 c sp SO/BO enhancement c j =

16 Standard φ 4 model for slab B 1 B 2 c 1 n V n c 2 H = Z R d 1 [0,L] d d x L b {z} bulk density + 2X Z da L j j=1 B j {z } boundary planes z = 0 and z = L L b = 1 2 ( φ)2 + τ 2 φ2 + ů 4! φ4 ; L j = 1 cj φ2 2 mesoscopic BC: n φ = c j φ, c j c j c sp SD/BD T SD/BD Dirichlet Neumann c j = 0 SO/BD c j = c j SO/BO c j = 0 c sp SO/BO enhancement c j =

17 Consequences T Dirichlet Neumann c j = 0 SO/BD c j = c j SO/BO c j = 0 c sp SO/BO enhancement c j = BC = scale-dependent! assume c 1, c 2 0 (non-supercritical enhancement), then: microscopic BC: free mesoscopic BC: Robin BC nφ = c jφ large-scale asymptotic BC: D-D, D-sp, sp-sp (sp = special, critically enhanced)

18 Consequences T Dirichlet Neumann c j = 0 SO/BD c j = c j SO/BO c j = 0 c sp SO/BO enhancement c j = BC = scale-dependent! assume c 1, c 2 0 (non-supercritical enhancement), then: microscopic BC: free mesoscopic BC: Robin BC nφ = c jφ large-scale asymptotic BC: D-D, D-sp, sp-sp (sp = special, critically enhanced) f res,crit(l)/n D`c 1L Φ/ν,c 2L Φ/ν L (d 1) Φ/ν 0.8

19 Scaling Function: Critical Casimir Force F nak B T L d D ( c 1 L Φ/ν, c 2 L Φ/ν) Φ/ν 0.8 D(c1, c2) c 1 c c 2 c 2+1 D(c 1, c 2 ) = [ d 1 + (Φ/ν) ( c 1 c1 + c 2 c2 )] D(c1, c 2 )

20 Scaling Function: Critical Casimir Force F nak B T L d D ( c 1 L Φ/ν, c 2 L Φ/ν) Φ/ν c2 c c1 c1+1 D(c 1, c 2 ) = [ d 1 + (Φ/ν) ( c 1 c1 + c 2 c2 )] D(c1, c 2 )

21 Crossover repulsive attractive 0.02 D(c1L Φ/ν, c2l Φ/ν ) (c 1, c 2 ) = (0, 0.1) (c 1, c 2 ) = (10, 0.1) L Scaled Casimir force F nak B T Ld = D ( c 1 L Φ/ν, c 2 L Φ/ν) F. M. Schmidt & HWD: PRL 101, (2008); arxiv: , and to be published

22 Universality Casimir amplitudes and scaling functions Θ are universal, depend on: 1 gross features of the medium (bulk universality class) 2 gross features of boundaries (surface universality classes) surface coupling subcritically enhanced: ordinary (O) transition surface coupling critically enhanced: special (sp) transition fixed boundary magnetizations / h 1 = ±, h 2 = ± 3 geometry (O,O), (O,sp), (sp,sp), (+,+), (+, ), PBC, APB

23 Universality Casimir amplitudes and scaling functions Θ are universal, depend on: 1 gross features of the medium (bulk universality class) 2 gross features of boundaries (surface universality classes) surface coupling subcritically enhanced: ordinary (O) transition surface coupling critically enhanced: special (sp) transition fixed boundary magnetizations / h 1 = ±, h 2 = ± 3 geometry (O,O), (O,sp), (sp,sp), (+,+), (+, ), PBC, APB experimental verifications: a) indirect: thinning of 4 He films (Garcia & Chan 1999) b) direct measurements (binary fluids): Hertlein et al 2008 theoretical results: many, distinct methods Nightingale & Indekeu, Krech & Dietrich 1990,..., HWD s group,..., Hucht, Vasilyev et al, Hasenbusch,..., Abrahams, Maciolek, Dantchev, Dohm,...,Kardar et al,... reviews: M. Krech: Casimir effect in Critical Systems (World Scientific, 1994); Brankov, Tonchev, & Dantchev (World Scientific, 2000); Gabassi 2009

24 Isotropic versus strongly anisotropic critical behavior isotropic strongly anisotropic ξ = ξ (0) ± τ ν ν α ν β, θ = ν α /ν β 1 ξ α = ξ (0) α,± τ να ξ β = ξ (0) β,± τ ν β

25 Isotropic versus strongly anisotropic critical behavior isotropic strongly anisotropic ξ = ξ (0) ± τ ν ν α ν β, θ = ν α /ν β 1 ξ α = ξ (0) α,± τ να ξ β = ξ (0) β,± τ ν β

26 Isotropic versus strongly anisotropic critical behavior isotropic strongly anisotropic ξ = ξ (0) ± τ ν ν α ν β, θ = ν α /ν β 1 ξ α = ξ (0) α,± τ να ξ β = ξ (0) β,± τ ν β f res,crit BC CP L (d 1) f res,crit E }{{} nonuniversal BC L ζ

27 φ 4 model for m-axial Lifshitz point Z H b = h 1 d d x 2 dx β=m+1 ( β φ) 2 + ρ 2 mx ( αφ) 2 + σ 2 α=1 mx ( αφ) τ 2 φ2 + ů 4! φ4i α=1 LP in Landau theory at τ = ρ = 0. Full two-loop RG analysis in d = 4 + m 2 ǫ dimensions: HWD & MA Shpot 2000, MA Shpot & HWD 2001; HWD, MA Shpot & RKP Zia 2003; work on boundary critical behavior: HWD with Gerwinski, Rutkevic, Shpot, Prudnikov

28 Orientation Matters! 2 fundamentally distinct orientations ς: parallel ( ) perpendicular ( ) y 1 y 2 y 1 y 2 L n n L n n z = β-direction z = α-direction z l 1 H = V dv L b + δ BC,free z l θ da L, s B 1 B 2 1 BC 2 BC large-scale BC O φ = 0 φ = 0, n φ = 0

29 Methods of Investigation 1 parallel orientation: Gauß theory (1-loop) for general d,m RG-improved perturbation theory in d = 4 + m 2 ǫ dimensions (2-loops, O(ǫ)) PBC: modified RG-improved perturbation theory (zero-mode): e Heff[ϕ] = exp( H[ ϕ + ψ ]) {z} {z} q=0 modes q 0 modes CP case: HWD, Grüneberg &Shpot 2006, Grüneberg & HWD 2008, 2009 n limit (PBC) 2 perpendicular orientation: Gauß theory (1-loop), general d,m, for (O,O) and PBC PBC: modified RG-improved perturbation theory in d = 4 + m 2 ǫ dimensions (2-loops), failed n limit (PBC) M. Burgsmüller, HWD & MA Shpot, Jstat (to appear); arxiv:

30 General Results: Non-/Universality fres;lp BC (L; σ, µ) L nonuniv. µ m(1 2θ) 2 ( µ (d m)(2θ 1) 2θ {}}{ E σ σ) m 4 BC L ζ, ς =, ( Eσ σ) d m 4θ BC }{{} L ζ, ς =, nonuniv. ζ = d m + θ m 1 ζ = d m θ + m 1. BC, definable as universal ratios! M. Burgsmüller, HWD & MA Shpot, Jstat (to appear); arxiv:

31 Results: Orientation 1 Gauß: BC = PBC and (O, O) BC,G(d,m,n) = C m BC CP,G(d m 2,n), Cm = π(2 m)/4 2 m Γ( m+2 4 ) (1) PBC,G (d,m,n) = 2 d m/2 (O,O),G (d,m, n) = n Cm Γ( d 2 m 4 ) ζ(d m 2 ) π (d m/2)/2 2 small-ǫ expansion: (1) prevails to calculated order (O,O) /n = C m[a 0 + a 1(n)ǫ] + O(ǫ 2 ) PBC /n = C m[b 0 + b 1(n)ǫ + b 3/2 (n)ǫ 3/2 ] + o(ǫ 3/2 ) 3 large-n limit: (1) prevails lim n PBC,(O,O) /n PBC,(O,O), PBC: consistency with small-ǫ expansion! (d, m) = C }{{} m PBC,(O,O) CP, (d m 2 ) }{{} 3,1 5/2

32 Results: Orientation d = 3, m = n = 1 PBC,G = PBC, = (n ) PBC,small-ǫ = (O,O),G = (O,O),small-ǫ = Critical Casimir force is attractive!

33 Orientation, PBC,G (d, m, n)/n = Γ(d m 22d 2m+1 2 )ζ(2d m) π (d 1)/2 Γ( m d 1 PBC PBC,G (3, 1, 1) = +12ζ(5) = π PBC, (3, 1, 1) (n ) Critical Casimir force is repulsive! 2 )

34 Orientation, (O,O) BC Y Y φ = 0, n φ = 0 Tr φ e H b[φ] δ(φ)δ( nφ) δ(φ)δ( nφ) x 1 B 1 x 2 B 2 φ = 0, n φ = 0 use Fadeev-Popov trick, introduce 4 n-component auxiliary fields χ 1,..., χ 4 integrate out φ lim A F G Ak B T = n 2 Z d d 1 p ln det M(p) (2π) d 1 {z } 4 4 (O,O),G (d, 1, n)/n = K d 12 1 d dq q 2d 3 ln[2e q (coshq + cosq 2)] 0 (O,O),G (3, 1, 1) Critical Casimir force is attractive!

35 Summary & Conclusions fluctuation-induced critical forces depend on type of orientation! distinct ζ, and BC,! universal ratios BC, definable! attraction and repulsion possible! simulation results for ANNNI model desirable experiments?

36 Summary & Conclusions fluctuation-induced critical forces depend on type of orientation! distinct ζ, and BC,! universal ratios BC, definable! attraction and repulsion possible! simulation results for ANNNI model desirable experiments? Thank you for your attention!

Effective forces due to confined nearly critical fluctuations

Effective forces due to confined nearly critical fluctuations Effective forces due to confined nearly critical fluctuations H. W. Diehl Fachbereich Physik, U. Duisburg-Essen June 24, 2009 Collaborators: Daniel Grüneberg, U. Duisburg-Essen F. M. Schmidt, U. Duisburg-Essen

More information

Fluctuation-induced forces in confined He and Bose gases

Fluctuation-induced forces in confined He and Bose gases Fluctuation-induced forces in confined He and Bose gases H. W. Diehl Fakultät für Physik, U. Duisburg-Essen November 24, 2016 Collaborators: S. Rutkevich, U. Duisburg-Essen M. Hasenbusch, Institut für

More information

arxiv: v2 [cond-mat.stat-mech] 31 Oct 2012

arxiv: v2 [cond-mat.stat-mech] 31 Oct 2012 epl draft Exact thermodynamic Casimir forces for an interacting threedimensional model system in film geometry with free surfaces arxiv:125.6613v2 [cond-mat.stat-mech] 31 Oct 212 H. W. Diehl 1, Daniel

More information

The square lattice Ising model on the rectangle

The square lattice Ising model on the rectangle The square lattice Ising model on the rectangle Fred Hucht, Theoretische Physik, Universität Duisburg-Essen, 47048 Duisburg Introduction Connection to Casimir forces Free energy contributions Analytical

More information

arxiv: v2 [cond-mat.stat-mech] 21 Feb 2012

arxiv: v2 [cond-mat.stat-mech] 21 Feb 2012 arxiv:1110.141v [cond-mat.stat-mech] 1 Feb 01 Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions H. W. Diehl and Felix M. Schmidt Fakultät für Physik, Universität Duisburg-Essen,

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

New Measurements of Wetting by Helium Mixtures

New Measurements of Wetting by Helium Mixtures Journal of Low Temperature Physics, Vol. 140, Nos. 1/2, July 2005 ( 2005) DOI: 10.1007/s10909-005-6010-9 New Measurements of Wetting by Helium Mixtures Ryosuke Ishiguro and Sébastien Balibar Laboratoire

More information

Casimir energy & Casimir entropy

Casimir energy & Casimir entropy Workshop HBAR-KB, Grenoble, 29/09-01/10/2014 Casimir energy & Casimir entropy Astrid Lambrecht, Serge Reynaud, Romain Guérout, Gabriel Dufour, Laboratoire Kastler Brossel, Paris with M.-T. Jaekel (LPTENS

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

arxiv: v2 [cond-mat.stat-mech] 14 Mar 2008

arxiv: v2 [cond-mat.stat-mech] 14 Mar 2008 Thermodynamic Casimir effects involving interacting field theories with zero modes Daniel Grüneberg H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, D-4748 Duisburg, Germany (Dated: February

More information

arxiv: v1 [cond-mat.stat-mech] 25 Mar 2016

arxiv: v1 [cond-mat.stat-mech] 25 Mar 2016 Direct calculation of the critical Casimir force in a binary fluid arxiv:163.7891v1 [cond-mat.stat-mech] 25 Mar 216 Francesco Puosi, 1 David Lopes Cardozo, 1 Sergio Ciliberto, 1 and Peter C. W. Holdsworth

More information

Interface Profiles in Field Theory

Interface Profiles in Field Theory Florian König Institut für Theoretische Physik Universität Münster January 10, 2011 / Forschungsseminar Quantenfeldtheorie Outline φ 4 -Theory in Statistical Physics Critical Phenomena and Order Parameter

More information

Analysis of the susceptibility in a fluid system with Neumann plus boundary conditions

Analysis of the susceptibility in a fluid system with Neumann plus boundary conditions Analysis of the susceptibility in a fluid system with Neumann plus boundary conditions Peter Djondjorov 1,, Vassil Vassilev 1,, and Daniel Dantchev 1, 1 Institute of Mechanics, Bulgarian Academy of Sciences,

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

On the Casimir energy for scalar fields with bulk inhomogeneities

On the Casimir energy for scalar fields with bulk inhomogeneities On the Casimir energy for scalar fields with bulk inhomogeneities arxiv:080.3603v1 [hep-th] 22 Apr 2008 I.V. Fialkovsky a, V.N. Markov b, Yu.M. Pis mak a a) St Petersburg State University, St Petersburg,

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010) NATURAL SCIENCES TRIPOS Part III Past questions EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics (27 February 21) 1 In one-dimension, the q-state Potts model is defined by the lattice Hamiltonian βh =

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

VACUUM ENERGY IN QUANTUM FIELD THEORY

VACUUM ENERGY IN QUANTUM FIELD THEORY VACUUM ENERGY IN QUANTUM FIELD THEORY V.V. Nesterenko BLTP JINR, Dubna Advances of Quantum Field Theory Dubna, 4 7 October 2011 INTRODUCTION Is it possible to calculate the vacuum energy in the standard

More information

Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems

Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems A. Rançon D. Lopes Cardozo T. Roscilde P. Holdsworth Ecole Normale Superieure de Lyon F. Rose N. Dupuis LPTMC Paris 6 L.-P. Henry

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5

More information

Domains and Domain Walls in Quantum Spin Chains

Domains and Domain Walls in Quantum Spin Chains Domains and Domain Walls in Quantum Spin Chains Statistical Interaction and Thermodynamics Ping Lu, Jared Vanasse, Christopher Piecuch Michael Karbach and Gerhard Müller 6/3/04 [qpis /5] Domains and Domain

More information

Critical Casimir effect and wetting by helium mixtures

Critical Casimir effect and wetting by helium mixtures Critical Casimir effect and wetting by helium mixtures Sebastien Balibar, Tomohiro Ueno, Takao Mizusaki, Frederic Caupin, Etienne Rolley To cite this version: Sebastien Balibar, Tomohiro Ueno, Takao Mizusaki,

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

The three-dimensional O(n) φ 4 model on a strip with free boundary conditions: exact results for a nontrivial dimensional crossover in the limit n

The three-dimensional O(n) φ 4 model on a strip with free boundary conditions: exact results for a nontrivial dimensional crossover in the limit n arxiv:1512.05892v2 [cond-mat.stat-mech] 16 Feb 2017 The three-dimensional O(n) φ 4 model on a strip with free boundary conditions: exact results for a nontrivial dimensional crossover in the limit n H.

More information

Static continuum theory of nematic liquid crystals.

Static continuum theory of nematic liquid crystals. Static continuum theory of nematic liquid crystals. Dmitry Golovaty The University of Akron June 11, 2015 1 Some images are from Google Earth and http://www.personal.kent.edu/ bisenyuk/liquidcrystals Dmitry

More information

Mean-field Gauge Interactions in Five Dimensions I (The Torus)

Mean-field Gauge Interactions in Five Dimensions I (The Torus) Mean-field Gauge Interactions in Five Dimensions I (The Torus) Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv:0905.2757 [hep-lat] 5th RMST, Kolymbari, June 2009 Background. J. M. Drouffe

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

Exact and Numerical Methods in Casimir Calculations

Exact and Numerical Methods in Casimir Calculations Exact and Numerical Methods in Casimir Calculations K. A. Milton based on collaboration with K. V. Shajesh, P. Parashar, J. Wagner supported by NSF and DOE Oklahoma Center for High Energy Physics, and

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Equation of state of the unitary Fermi gas

Equation of state of the unitary Fermi gas Equation of state of the unitary Fermi gas Igor Boettcher Institute for Theoretical Physics, University of Heidelberg with S. Diehl, J. M. Pawlowski, and C. Wetterich C o ld atom s Δ13, 11. 1. 2013 tio

More information

Entanglement in Quantum Field Theory

Entanglement in Quantum Field Theory Entanglement in Quantum Field Theory John Cardy University of Oxford Landau Institute, June 2008 in collaboration with P. Calabrese; O. Castro-Alvaredo and B. Doyon Outline entanglement entropy as a measure

More information

Observation of the thermal Casimir force. Diego A. R. Dalvit Theoretical Division Los Alamos National Laboratory

Observation of the thermal Casimir force. Diego A. R. Dalvit Theoretical Division Los Alamos National Laboratory Observation of the thermal Casimir force Diego A. R. Dalvit Theoretical Division Los Alamos National Laboratory Collaborators Steve Lamoreaux (Yale) Alex Sushkov (Yale, now @ Harvard) Woo-Joong Kim (Seattle)

More information

Where is the PdV term in the first law of black-hole thermodynamics?

Where is the PdV term in the first law of black-hole thermodynamics? Where is the PdV term in the first law of black-hole thermodynamics? Brian P Dolan National University of Ireland, Maynooth, Ireland and Dublin Institute for Advanced Studies, Ireland 9th Vienna Central

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Tricritical Casimir Forces in 3 He - 4 He Wetting Films

Tricritical Casimir Forces in 3 He - 4 He Wetting Films Tricritical Casimir Forces in 3 He - 4 He Wetting Films Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

More information

Mesonic and nucleon fluctuation effects in nuclear medium

Mesonic and nucleon fluctuation effects in nuclear medium Mesonic and nucleon fluctuation effects in nuclear medium Research Center for Nuclear Physics Osaka University Workshop of Recent Developments in QCD and Quantum Field Theories National Taiwan University,

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background

Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv:0905.2757 to appear in NPB + work in progress Corfu,

More information

Quantum Dynamics of Supergravity

Quantum Dynamics of Supergravity Quantum Dynamics of Supergravity David Tong Work with Carl Turner Based on arxiv:1408.3418 Crete, September 2014 An Old Idea: Euclidean Quantum Gravity Z = Dg exp d 4 x g R topology A Preview of the Main

More information

arxiv: v1 [hep-th] 28 Oct 2014

arxiv: v1 [hep-th] 28 Oct 2014 Spherical Casimir effect for a massive scalar field on the three dimensional ball Andrea Erdas Department of Physics, Loyola University Maryland, 45 North Charles Street, Baltimore, Maryland, USA arxiv:4.7798v

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

Photons in the Chiral Magnetic Effect

Photons in the Chiral Magnetic Effect Photons in the Chiral Magnetic Effect Kenji Fukushima Department of Physics, Keio University June 25, 2012 @ CPODD 1 Current from the Quantum Anomaly Anomaly Relation j = N c i=flavor Q i 2 e 2 μ 5 2π

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Critical Depletion Force

Critical Depletion Force XCVI CONGRESSO NAZIONALE SOCIETA ITALIANA DI FISICA BOLOGNA 20-24 settembre 2010 Critical Depletion Force Stefano BUZZACCARO Prof. Roberto PIAZZA Politecnico di Milano Prof. Alberto PAROLA Jader COLOMBO

More information

Casimir Force in Anisotropic Materials with AC Kerr Effect

Casimir Force in Anisotropic Materials with AC Kerr Effect Progress In Electromagnetics Research M, Vol. 38, 165 173, 2014 Casimir Force in Anisotropic Materials with AC Kerr Effect Junlong Zhang 1, Zhixiang Huang 1, *, and Xianliang Wu 1, 2 Abstract The Casimir

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

t Hooft Loops and S-Duality

t Hooft Loops and S-Duality t Hooft Loops and S-Duality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Asymptotic Expansion of N = 4 Dyon Degeneracy

Asymptotic Expansion of N = 4 Dyon Degeneracy Asymptotic Expansion of N = 4 Dyon Degeneracy Nabamita Banerjee Harish-Chandra Research Institute, Allahabad, India Collaborators: D. Jatkar, A.Sen References: (1) arxiv:0807.1314 [hep-th] (2) arxiv:0810.3472

More information

Linear Response in Fluctuational Electrodynamics

Linear Response in Fluctuational Electrodynamics Max Planck Institute Stuttgart Linear Response in Fluctuational Electrodynamics Matthias Krüger Group Members: Artem Aerov Roberta Incardone Moritz Förster MIT - Student: Vladyslav Golyk Collaborators:

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Casimir and Casimir-Polder forces in chiral and non-reciprocal media

Casimir and Casimir-Polder forces in chiral and non-reciprocal media Casimir and Casimir-Polder forces in chiral and non-reciprocal media Stefan Yoshi Buhmann, Stefan Scheel, David Butcher Quantum Optics and Laser Science Blackett Laboratory, Imperial College London, UK

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Polymer Solution Thermodynamics:

Polymer Solution Thermodynamics: Polymer Solution Thermodynamics: 3. Dilute Solutions with Volume Interactions Brownian particle Polymer coil Self-Avoiding Walk Models While the Gaussian coil model is useful for describing polymer solutions

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region An exact result for the behavior of Yang-Mills Green functions in the deep infrared region MG12, Paris, 17 July 2009 Kei-Ichi Kondo* (Univ. of Tokyo/hiba Univ., Japan) Based on K.-I. Kondo, Kugo-Ojima

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

Instanton constituents in sigma models and Yang-Mills theory at finite temperature Instanton constituents in sigma models and Yang-Mills theory at finite temperature Falk Bruckmann Univ. of Regensburg Extreme QCD, North Carolina State, July 8 PRL (8) 56 [77.775] EPJ Spec.Top.5 (7) 6-88

More information

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

1. (3) Write Gauss Law in differential form. Explain the physical meaning. Electrodynamics I Midterm Exam - Part A - Closed Book KSU 204/0/23 Name Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about the physics involved,

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Linking U(2) U(2) to O(4) via decoupling

Linking U(2) U(2) to O(4) via decoupling Linking U(2) U(2) to O(4) via decoupling Norikazu Yamada (KEK, GUAS) in collaboration with Tomomi Sato (KEK, GUAS) Based on Linking U(2) U(2) to O(4) model via decoupling, PRD91(2015)034025 [arxiv:1412.8026

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Ultraviolet divergences, repulsive forces and a spherical plasma shell

Ultraviolet divergences, repulsive forces and a spherical plasma shell Journal of Physics: Conference Series Ultraviolet divergences, repulsive forces and a spherical plasma shell To cite this article: M Bordag 2009 J. Phys.: Conf. Ser. 161 012018 View the article online

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Asymptotically free nonabelian Higgs models. Holger Gies

Asymptotically free nonabelian Higgs models. Holger Gies Asymptotically free nonabelian Higgs models Holger Gies Friedrich-Schiller-Universität Jena & Helmholtz-Institut Jena & Luca Zambelli, PRD 92, 025016 (2015) [arxiv:1502.05907], arxiv:16xx.yyyyy Prologue:

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

Applications to simulations: Monte-Carlo

Applications to simulations: Monte-Carlo Applications to simulations: Monte-Carlo A.C. Maggs ESPCI, Paris June 2016 Summary Algorithms Faster/simpler codes Thermodynamics of Electric fields Partition function of electric field Thermal Casimir/Lifshitz

More information

Thermal Casimir Effect for Colloids at a Fluid Interface

Thermal Casimir Effect for Colloids at a Fluid Interface Thermal Casimir Effect for Colloids at a Fluid Interface Jef Wagner Ehsan Noruzifar Roya Zandi Department of Physics and Astronomy University of California, Riverside Outline 1 2 3 4 5 : Capillary Wave

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Casimir effect and the quark anti-quark potential. Zoltán Bajnok,

Casimir effect and the quark anti-quark potential. Zoltán Bajnok, Gauge/gravity duality, Munich, July 3, 23 Casimir effect and the quark anti-quark potential Zoltán Bajnok, MTA-Lendület Holographic QFT Group, Wigner esearch Centre for Physics, Hungary with L. Palla,

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information