Application of wall forcing methods in a turbulent channel flow using Incompact3d

Size: px
Start display at page:

Download "Application of wall forcing methods in a turbulent channel flow using Incompact3d"

Transcription

1 Application of wall forcing methods in a turbulent channel flow using Incompact3d S. Khosh Aghdam Department of Mechanical Engineering - University of Sheffield

2 1 Flow control 2 Drag reduction 3 Maths framework 4 Simulations

3 Phenomenology Most of large scale engineering flows are turbulent Atmosphere Transportation (automobile, airplanes, ships, ) Blood flow in heart Aim of flow control modify the characteristics of a flow field favourably Suppression or enhancement of turbulence Dissipation of kinetic energy by turbulent flow around objects Increase of resistance to their motion Drag Component of the force experienced by a body, parallel to the direction of motion

4 Examples Enhancement of turbulence Mixture in combustion: quality of the fuel-air mixture determines power generation efficiency Process industry: quality of mixtures affects chemical reaction rates and purity of final products Reduction of turbulence Drag reduction techniques energy consumption issues Half of the total drag experienced by an aircraft accounts for skin-friction Aircraft industry demonstration test: Coverage of fuselage surface with riblet films ցresistance by 2% Fuel cost savings (Airbus A320) L/year saving 200 million $/year

5 Techniques Difficulty in control design turbulence multiscale phenomenon coupling of system macroscopic size (L) & Kolmogorov scale (η) by the chaotic process of vortex stretching Two main groups active and passive Categorisation relying on energy expenditure Passive no energy added in the flow longitudinal grooves or riblets on a surface Active input of energy in the flow blowing and suction jets in opposition control[1] Based on the control loops active techniques categorisation: open-loop (predetermined) closed-loop (interactive) 1 H. Choi, P. Moin, J. Kim, Active turbulence control for drag reduction in wall-bounded flows, J. Fluid Mech.,262, , 1994

6 Summary Feedforward Control theory Optimal control Closed-loop Active Feedback Control techniques Open-loop Passive

7 Skin-friction coefficient C f = 2τ w ρ U 2 b (1) Friction velocity u τ = τ w ρ = ν y (2) wall u Reduction of velocity gradient reduction in drag Spanwise wall oscillations (active/open-loop) Steady rotating discs[2] (active/open-loop) Oscillating rotating discs (active/open-loop) Hydrophobic surfaces 2 Keefe, Method and apparatus for reducing the drag of flows over surfaces - US Patent

8 Functional analysis Applying control to Navier-Stokes - continuity equations (PDEs) PDEs state-space infinite-dimensional u x = 0 any f(y) solution infinite dimensional solutions space ODEs state-space dy/dt=0 solutions in p Right framework to deal with infinite-dimensional state space solutions Functional analysis Functional analysis framework: functions studied as part of normed and complete + inner product Hilbert Why Functional Analysis? Banach-L p spaces too broad for analysing PDEs solution Regularity properties not always verified in L p spaces Further assumptions higher order derivatives to ensure regularity (and boundedness) of solutions "Higher-order" spaces Sobolev energy spaces

9 Lyapunov stability analysis Motivation: design control laws to stabilise a specified equilibrium for the NSE NSE nonlinear nonlinear stability analysis Depart from a Lyapunov function energy of the system Choose the right norm Example: function f(t, x) (perturbed variable) with x (0, 1), within L 2 (0,1) prove that: f(t) L 2 (0,1) C 1 e C 2t f(0) L 2 (0,1) (3) C 1 1 overshoot coefficient - C 2 > 0 decay rate Find conditions for stability not necessarily nonlinear

10 Application Previous work: Control law in 2D channel flow based on wall-tangential actuation (Balogh et al.[3]): u(x,y=±1,t)= k u (x,±1,t) (4) y Extension to 3D channel flow carried out Link the mathematical formulation with a physical problem hydrophobic surfaces modification of no-slip condition: u u=l s y (5) wall Mathematical parameter in[3] slip-length Relevant scales for MEMS embedded sensors and actuators in the walls to measure local shear 3 A. Balogh, W. Liu, M. Krstic, Stability Enhancement by boundary control in 2D channel flow - IEEE Transactions on Automatic Control, Vol.46, No

11 Application Objective stabilize a parabolic profile Boundary control laws decaying kinetic energy w.r.t time Lyapunov-based approach using Lyapunov function: Lz E(w)= w 2 L 2 (Ω) = +1 L x (u 2 + v 2 + w 2 ) dx dy dz (6) translates as w(t) L 2 (Ω) C 1 e C 2(t t 0 ) w(t 0 ) L 2 (Ω) Procedure: (a) take time derivative of Eq.(6) - (b) apply control - (c) prove regularity of solutions (involving Sobolev spaces)

12 Benchmark L x L y L z Re p t time scheme 4π 2.0 4π/ AB2 L + = L Re τ U + = U Re p Re τ T + = T Re2 τ Re p Parabolic profile, constant mass flow rate, stretched wall-normal 2 Ny = physical grid computational grid

13 Benchmark Database of[4] used for comparison at Re τ = 180 # processors runtime (s) x,z (y=2) x,z (y=0), - u y u y lower wall upper wall t 4 R. Moser, J. Kim, N. Mansour, Direct Numerical Simulations of turbulent channel flow up to Re τ = 590,Phys. of Fluids,1999

14 Benchmark u y x,z walls Re τ C f, ū u rms, v rms, w rms y y +

15 Benchmark p rms Incompact3d kmm ω x ω y ω z ω x kmm ω y kmm ω z kmm y + y +

16 Benchmark Incompact3d kmm y Profiles for uv and 0 Incompact3d kmm uv u rms v rms y +

17 Spanwise wall oscillations: Overview DNS of channel flow with this forcing[5] Drag reduction Structure of forcing w=w m sin 2π T Dependent on magnitude and period of forcing Maximum DR of 40% for T + opt = 100 Experimentally[6] found DR 35% 5 Jung et. al, Physics of Fluids, 4, pp Laadhari et. al, Physics of Fluids, 6, pp

18 L x L y L z n x n y n z Re τ W + m T + 4π 2.0 4π/ DR [7] = 44.5% vs DR Incompact3d = 44.8% x,z (y=2) x,z (y=0), - u y u y lower wall upper wall M. Quadrio, P. Ricco, J. Fluid Mech., 521, pp t

19 Vorticity map at the wall

20 Steady discs rotation: overview L z L y z y x x c L x D Mean flow δ W z Active method for DR injecting vorticity Proposed as part of a patent by Keefe. Numerical study in[8] Relevant parameters (D, W), diameter and maximum tip velocity of the disc 8 P. Ricco, S. Hahn, J. Fluid Mech., 722, pp , 2013

21 Steady discs rotation: implementation disk_phys.dat (text file) from cpp program scr.sh disk_phys_x.dat (text file) disk_phys_z.dat (text file) rfile.f90 disk_phys_opacx.dat (binary direct open-access) disk_phys_opacz.dat (binary direct open-access) velocity components distributed on 2D Cartesian topology set as boundary conditions decomp2d_read_var interface reads disk_phys_opacx.dat and disk_phys_opacz.dat voir_visu.f90 check process with ParaView tampon_opac_x.vtr tampon_opac_z.vtr tampon_opac_sqr.vtr e

22 Steady discs rotation: simulations L x L y L z = 6.79π π - Re p = Nd x Nd z = t= D + = W + = 9 KMM C f.10 3 = 8.18 BASE CASE nx ny nz= C f, C f, C f.10 3 C f.10 3 Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d HIGH RESOLUTION IN x nx ny nz= C f, C f, C f.10 3 C f.10 3 Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d HIGH RESOLUTION IN z nx ny nz= C f, C f, C f.10 3 C f.10 3 Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d HIGH RESOLUTION IN x,y,z nx ny nz= C f, C f, C f.10 3 C f.10 3 Ricco-Hahn Incompact3d Ricco-Hahn Incompact3d N/A 8.13 N/A 6.63

23 Steady discs rotation: flow visualisations u=um+ u d + ut Disc flow: u d =(u d,v d,w d )=u um Mean flow: um(y)= u with f 1 t f t i t f t i fdt and f 1 L x L z Compute 3D u 2 d + w2 in diagnostic tool+paraview d L z 0 L x fdx dz e

24 Steady discs rotation: flow visualisations Isosurface representation u 2 d + w2 d = 0.09

25 Steady discs rotation: flow visualisations Time average of the streamwise wall friction u in time window y=0 [t i h/u P ;t f h/u P ]=[750;2250] Large regions of negative wall-shear stress y

26 Oscillating discs Rotating discs subject to an oscillatory motion Disc tip velocity W= W m cos 2πt T Case giving optimal drag reduction xlx yly zlz nx ny nz t Re p 6.79π π Nd x Nd z D + W + T Ricco (Conf.) Incompact3d Ricco (Conf.) Incompact3d C f, C f, C f.10 3 C f

27 Oscillating discs Isosurface representation u 2 d + w2 d = 0.09

28 Hydrophobic surface: finite slip length u Studied by Min-Kim (2004) with BC forcing term: u=l s wall u, w and(u,w) can be forced but u gives optimal DR u n+1 wall = u n u wall + L n s y wall Problem: Enforce BC at each time step Generation of a thin boundary layer[10] Numerical instability Solution in[10] (1) keep the same BC for several time steps - (2) continuous update Solution adopted: compute u y at 1st time step - pass it as BC t (L s = 10 3 (s), L s = (s) and L s = 10 2 (s)) compute u y at each time step - pass it as BC (L s= 10 3 (s), L s = (s)and L s = 10 2 (u)) 10 C. Lee, P. Moin, J. Kim, Control of the viscous sulayer for drag redcution, J. Fluid Mech.,14, , 2002 y

29 Hydrophobic surface: preliminary results x,z (y=0) u y L s = update 1 st step L s = update 1 st step L s = update 1 st step L s = update for all t L s = update for all t t

30 Hydrophobic surface: statistics no forcing L s= L s= L s= u rms 1.5 v rms no forcing L s= L s= L s= y + y w rms no forcing 0.2 L s= L s= L s= y +

31 Hydrophobic surface: Summary L s test_1 updated updated crashed test_2 constant constant constant L s u y DR DR (Kim-Min 2004) updated 2.1% 2% constant 2.4% 2% updated 4.9% 5% constant 4.9% 5% 0.01 updated NA 18% 0.01 constant 17% 18%

32 Summary Incompact3d efficiently dealing with various drag reduction methods High scalability allows for future control studies with larger Reynolds number

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

SECONDARY MOTION IN TURBULENT FLOWS OVER SUPERHYDROPHOBIC SURFACES

SECONDARY MOTION IN TURBULENT FLOWS OVER SUPERHYDROPHOBIC SURFACES SECONDARY MOTION IN TURBULENT FLOWS OVER SUPERHYDROPHOBIC SURFACES Yosuke Hasegawa Institute of Industrial Science The University of Tokyo Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan ysk@iis.u-tokyo.ac.jp

More information

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Published in Phys. Fluids 14, L73-L76 (22). Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Koji Fukagata, Kaoru Iwamoto, and Nobuhide Kasagi Department of Mechanical

More information

Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces

Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces Under consideration for publication in J. Fluid Mech. 1 Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces M I C H A E L B. M A R T E L L 1 J. B L A I R P E R O T A N D J O

More information

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS Karsten Lindegård Jensen 1, B. Mutlu Sumer 1, Giovanna Vittori 2 and Paolo Blondeaux 2 The pressure field in an oscillatory boundary layer

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

Generation of initial fields for channel flow investigation

Generation of initial fields for channel flow investigation Generation of initial fields for channel flow investigation Markus Uhlmann Potsdam Institut für Klimafolgenforschung, D-442 Potsdam uhlmann@pik-potsdam.de (Mai 2) In the framework of the DFG-funded research

More information

Thomas Pierro, Donald Slinn, Kraig Winters

Thomas Pierro, Donald Slinn, Kraig Winters Thomas Pierro, Donald Slinn, Kraig Winters Department of Ocean Engineering, Florida Atlantic University, Boca Raton, Florida Applied Physics Laboratory, University of Washington, Seattle, Washington Supported

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin

Shear Turbulence. Fabian Waleffe. Depts. of Mathematics and Engineering Physics. Wisconsin Shear Turbulence Fabian Waleffe Depts. of Mathematics and Engineering Physics, Madison University of Wisconsin Mini-Symposium on Subcritical Flow Instability for training of early stage researchers Mini-Symposium

More information

Turbulent boundary layer

Turbulent boundary layer Turbulent boundary layer 0. Are they so different from laminar flows? 1. Three main effects of a solid wall 2. Statistical description: equations & results 3. Mean velocity field: classical asymptotic

More information

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION

WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION WALL PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER AFTER BLOWING OR SUCTION Joongnyon Kim, Kyoungyoun Kim, Hyung Jin Sung Department of Mechanical Engineering, Korea Advanced Institute of Science

More information

Applied Mathematics and Mechanics (English Edition)

Applied Mathematics and Mechanics (English Edition) Appl. Math. Mech. -Engl. Ed., 39(9), 1267 1276 (2018) Applied Mathematics and Mechanics (English Edition) https://doi.org/10.1007/s10483-018-2364-7 Direct numerical simulation of turbulent flows through

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

Turbulent Drag Reduction Using Three-Dimensional Structured Surfaces

Turbulent Drag Reduction Using Three-Dimensional Structured Surfaces Turbulent Drag Reduction Using Three-Dimensional Structured Surfaces Prepared for submission to Journal of Fluids Engineering Yulia Peet, Pierre Sagaut Université Pierre et Marie Curie - Paris 6, F-75252,

More information

FLOW-NORDITA Spring School on Turbulent Boundary Layers1

FLOW-NORDITA Spring School on Turbulent Boundary Layers1 Jonathan F. Morrison, Ati Sharma Department of Aeronautics Imperial College, London & Beverley J. McKeon Graduate Aeronautical Laboratories, California Institute Technology FLOW-NORDITA Spring School on

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW AT Re τ = 5200 DATA SET Data provenance: M. Lee 1 & R. D. Moser 1 Database ingest and Web Services: Z. Wu 2, G. Lemson 2, R. Burns 2, A. Szalay

More information

Destabilizing turbulence in pipe flow

Destabilizing turbulence in pipe flow Destabilizing turbulence in pipe flow Jakob Kühnen 1*, Baofang Song 1,2*, Davide Scarselli 1, Nazmi Burak Budanur 1, Michael Riedl 1, Ashley Willis 3, Marc Avila 2 and Björn Hof 1 1 Nonlinear Dynamics

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Active Control of Turbulence and Fluid- Structure Interactions

Active Control of Turbulence and Fluid- Structure Interactions Bonjour! Active Control of Turbulence and Fluid- Structure Interactions Yu Zhou Institute for Turbulence-Noise-Vibration Interaction and Control Shenzhen Graduate School, Harbin Institute of Technology

More information

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Direct Numerical Simulations of converging-diverging channel flow

Direct Numerical Simulations of converging-diverging channel flow Intro Numerical code Results Conclusion Direct Numerical Simulations of converging-diverging channel flow J.-P. Laval (1), M. Marquillie (1) Jean-Philippe.Laval@univ-lille1.fr (1) Laboratoire de Me canique

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW DATA SET Data provenance: J. Graham 1, M. Lee 2, N. Malaya 2, R.D. Moser 2, G. Eyink 1 & C. Meneveau 1 Database ingest and Web Services: K. Kanov

More information

Turbulent drag reduction by wavy wall

Turbulent drag reduction by wavy wall 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 Turbulent drag reduction by wavy wall Sacha Ghebali Department of Aeronautics Imperial College London

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Turbulent Drag Reduction using Sinusoidal Riblets with Triangular Cross-Section

Turbulent Drag Reduction using Sinusoidal Riblets with Triangular Cross-Section 38th AIAA Fluid Dynamics Conference and Exhibit, June 23-26 28, Seattle, WA AIAA-28-3745 Turbulent Drag Reduction using Sinusoidal Riblets with Triangular Cross-Section ulia Peet and Pierre Sagaut Université

More information

Energy transfer rates in turbulent channels with drag reduction at constant power input

Energy transfer rates in turbulent channels with drag reduction at constant power input Energ transfer rates in turbulent channels with drag reduction at constant power input Davide Gatti, M. Quadrio, Y. Hasegawa, B. Frohnapfel and A. Cimarelli EDRFCM 2017, Villa Mondragone, Monte Porio Catone

More information

Numerical simulation of wave breaking in turbulent two-phase Couette flow

Numerical simulation of wave breaking in turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2012 171 Numerical simulation of wave breaking in turbulent two-phase Couette flow By D. Kim, A. Mani AND P. Moin 1. Motivation and objectives When

More information

Application of neural networks to turbulence control for drag reduction

Application of neural networks to turbulence control for drag reduction Application of neural networks to turbulence control for drag reduction Changhoon Lee and John Kim a) Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles,

More information

DRAG REDUCTION IN SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYERS BY BLOWING AT CONSTANT MASS-FLUX

DRAG REDUCTION IN SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYERS BY BLOWING AT CONSTANT MASS-FLUX June - July, Melbourne, Australia 9 A- DRAG REDUCTION IN SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYERS BY BLOWING AT CONSTANT MASS-FLUX Yukinori Kametani Linné FLOW Centre KTH Mechanics Osquars Backe

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Model-based analysis of polymer drag reduction in a turbulent channel flow

Model-based analysis of polymer drag reduction in a turbulent channel flow 2013 American Control Conference ACC Washington, DC, USA, June 17-19, 2013 Model-based analysis of polymer drag reduction in a turbulent channel flow Binh K. Lieu and Mihailo R. Jovanović Abstract We develop

More information

Wall turbulence with arbitrary mean velocity profiles

Wall turbulence with arbitrary mean velocity profiles Center for Turbulence Research Annual Research Briefs 7 Wall turbulence with arbitrary mean velocity profiles By J. Jiménez. Motivation The original motivation for this work was an attempt to shorten the

More information

The response of wall turbulence to streamwise-traveling waves of spanwise wall velocity

The response of wall turbulence to streamwise-traveling waves of spanwise wall velocity The response of wall turbulence to streamwise-traveling waves of spanwise wall velocity M.Quadrio Politecnico di Milano maurizio.quadrio@polimi.it iti 2008, Bertinoro, Oct 12-15 Outline 1 Background 2

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer

Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer CHIN.PHYS.LETT. Vol. 25, No. 5 (2008) 1738 Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer LIU Jian-Hua( ), JIANG Nan( ) Department

More information

Transition to turbulence in plane Poiseuille flow

Transition to turbulence in plane Poiseuille flow Proceedings of the 55th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, February 25-26, 2015 ThL2T5.1 Transition to turbulence in plane Poiseuille flow F. Roizner, M. Karp and

More information

Drag Reduction via Transversal Wave Motions of Structured Surfaces

Drag Reduction via Transversal Wave Motions of Structured Surfaces th International Symposium on Turbulence and Shear Flow Phenomena (TSFP), Chicago, U, July, 7 Drag Reduction via Transversal Wave Motions of Structured Surfaces Marian Albers Institute of Aerodynamics

More information

Optimization and control of a separated boundary-layer flow

Optimization and control of a separated boundary-layer flow Optimization and control of a separated boundary-layer flow Journal: 2011 Hawaii Summer Conferences Manuscript ID: Draft lumeetingid: 2225 Date Submitted by the Author: n/a Contact Author: PASSAGGIA, Pierre-Yves

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Drag-reducing characteristics of the generalized spanwise Stokes layer: experiments and numerical simulations

Drag-reducing characteristics of the generalized spanwise Stokes layer: experiments and numerical simulations (DNS) Drag-reducing characteristics of the generalized spanwise Stokes layer: experiments and numerical simulations M.Quadrio Politecnico di Milano Tokyo, March 18th, 2010 Outline (DNS) 1 (DNS) 2 3 4 5

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

Regularity diagnostics applied to a turbulent boundary layer

Regularity diagnostics applied to a turbulent boundary layer Center for Turbulence Research Proceedings of the Summer Program 208 247 Regularity diagnostics applied to a turbulent boundary layer By H. J. Bae, J. D. Gibbon, R. M. Kerr AND A. Lozano-Durán Regularity

More information

Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence

Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence Using Statistical State Dynamics to Study the Mechanism of Wall-Turbulence Brian Farrell Harvard University Cambridge, MA IPAM Turbulence Workshop UCLA November 19, 2014 thanks to: Petros Ioannou, Dennice

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller. Ronald D. Joslin

Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller. Ronald D. Joslin Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller Ronald D. Joslin Fluid Mechanics and Acoustics Division, NASA Langley Research Center R.

More information

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain.

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain. Flow Characterization of Inclined Jet in Cross Flow for Thin Film Cooling via Large Eddy Simulation Naqavi, I.Z. 1, Savory, E. 2 and Martinuzzi, R. J. 3 1,2 The Univ. of Western Ontario, Dept. of Mech.

More information

Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing

Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing Catherine H. Crawford, and George Em Karniadakis Citation: Physics of Fluids 9, 788 (1997); doi: 10.1063/1.869210

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

IMAGE-BASED MODELING OF THE SKIN-FRICTION COEFFICIENT IN COMPRESSIBLE BOUNDARY-LAYER TRANSITION

IMAGE-BASED MODELING OF THE SKIN-FRICTION COEFFICIENT IN COMPRESSIBLE BOUNDARY-LAYER TRANSITION IMAGE-BASED MODELING OF THE SKIN-FRICTION COEFFICIENT IN COMPRESSIBLE BOUNDARY-LAYER TRANSITION Wenjie Zheng State Key Laboratory of Turbulence and Complex Systems College of Engineering, Peking University

More information

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE 20 th Annual CFD Symposium, August 09-10, 2018, Bangalore LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE Bharathan R D, Manigandan P, Vishal Tandon, Sharad Kapil,

More information

Applications of parabolized stability equation for predicting transition position in boundary layers

Applications of parabolized stability equation for predicting transition position in boundary layers Appl. Math. Mech. -Engl. Ed., 33(6), 679 686 (2012) DOI 10.1007/s10483-012-1579-7 c Shanghai University and Springer-Verlag Berlin Heidelberg 2012 Applied Mathematics and Mechanics (English Edition) Applications

More information

Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow

Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow Proc. 4th Int. Symp. on Smart Control of Turbulence, Tokyo, March 2-4, 23 Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow Yuji SUZUKI,

More information

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics.

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics. Outline Department of Fluid Mechanics, Budapest University of Technology and Economics October 2009 Outline Outline Definition and Properties of Properties High Re number Disordered, chaotic 3D phenomena

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

α 2 )(k x ũ(t, η) + k z W (t, η)

α 2 )(k x ũ(t, η) + k z W (t, η) 1 3D Poiseuille Flow Over the next two lectures we will be going over the stabilization of the 3-D Poiseuille flow. For those of you who havent had fluids, that means we have a channel of fluid that is

More information

p + µ 2 u =0= σ (1) and

p + µ 2 u =0= σ (1) and Master SdI mention M2FA, Fluid Mechanics program Hydrodynamics. P.-Y. Lagrée and S. Zaleski. Test December 4, 2009 All documentation is authorized except for reference [1]. Internet access is not allowed.

More information

ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control)

ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control) ACTUAL PROBLEMS OF THE SUBSONIC AERODYNAMICS (prospect of shear flows control) Viktor Kozlov 1 ABSTRACT Scientific problems related to modern aeronautical engineering and dealing with basic properties

More information

Predicting natural transition using large eddy simulation

Predicting natural transition using large eddy simulation Center for Turbulence Research Annual Research Briefs 2011 97 Predicting natural transition using large eddy simulation By T. Sayadi AND P. Moin 1. Motivation and objectives Transition has a big impact

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants

Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants J. Fluid Mech. (27), vol. 577, pp. 457 466. c 27 Cambridge University Press doi:1.117/s221127583 Printed in the United Kingdom 457 Interpretation of the mechanism associated with turbulent drag reduction

More information

Drag reduction in wall-bounded turbulence via a transverse travelling wave

Drag reduction in wall-bounded turbulence via a transverse travelling wave Downloaded from https://www.cambridge.org/core. Brown University Library, on 27 Mar 218 at 19:12:8, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/1.117/s2211217613

More information

Drag reduction in wall-bounded turbulence via a transverse travelling wave

Drag reduction in wall-bounded turbulence via a transverse travelling wave J. Fluid Mech. (22), vol. 457, pp. 1 34. c 22 Cambridge University Press DOI: 1.117/S2211217613 Printed in the United Kingdom 1 Drag reduction in wall-bounded turbulence via a transverse travelling wave

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW

OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT IN PLANE COUETTE FLOW Shingo Motoki, Genta Kawahara and Masaki Shimizu Graduate School of Engineering Science Osaka University 1-3 Machikaneyama, Toyonaka, Osaka

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Linear stability of plane Poiseuille flow over a generalized Stokes layer

Linear stability of plane Poiseuille flow over a generalized Stokes layer Linear stability of plane Poiseuille flow over a generalized Stokes layer Maurizio Quadrio 1,, Fulvio Martinelli and Peter J Schmid 1 Dip. Ing. Aerospaziale, Politecnico di Milano, Campus Bovisa, I-0156

More information

Double penalisation method for porous-fluid problems and numerical simulation of passive and active control strategies for bluff-body flows

Double penalisation method for porous-fluid problems and numerical simulation of passive and active control strategies for bluff-body flows Double penalisation method for porous-fluid problems and numerical simulation of passive and active control strategies for bluff-body flows Iraj Mortazavi Institut Polytechnique de Bordeaux INRIA Bordeaux

More information

R&D Study on Micro Sensors and Actuators for Active Control of Wall Turbulence

R&D Study on Micro Sensors and Actuators for Active Control of Wall Turbulence Proc. 2nd Symp. Smart Control of Turbulence, Mar. 21, Tokyo, pp. 19-26 R&D Study on Micro Sensors and Actuators for Active Control of Wall Turbulence Yuji SUZUKI, Nobuhide KASAGI, and Takashi YOSHINO Department

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

arxiv: v1 [physics.flu-dyn] 4 Aug 2014

arxiv: v1 [physics.flu-dyn] 4 Aug 2014 A hybrid RANS/LES framework to investigate spatially developing turbulent boundary layers arxiv:1408.1060v1 [physics.flu-dyn] 4 Aug 2014 Sunil K. Arolla a,1, a Sibley School of Mechanical and Aerospace

More information

Feedback control of transient energy growth in subcritical plane Poiseuille flow

Feedback control of transient energy growth in subcritical plane Poiseuille flow Feedback control of transient energy growth in subcritical plane Poiseuille flow Fulvio Martinelli, Maurizio Quadrio, John McKernan and James F. Whidborne Abstract Subcritical flows may experience large

More information

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue 11 Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue Yang GUO*, Chisachi KATO** and Yoshinobu YAMADE*** 1 FrontFlow/Blue 1) is a general-purpose finite element program that calculates

More information

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls Mechanics and Mechanical Engineering Vol. 21, No. 2 (2017) 379 387 c Lodz University of Technology Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Direct Numerical Simulation of Jet Actuators for Boundary Layer Control

Direct Numerical Simulation of Jet Actuators for Boundary Layer Control Direct Numerical Simulation of Jet Actuators for Boundary Layer Control Björn Selent and Ulrich Rist Universität Stuttgart, Institut für Aero- & Gasdynamik, Pfaffenwaldring 21, 70569 Stuttgart, Germany,

More information

Events of High Polymer Activity in Drag Reducing Flows

Events of High Polymer Activity in Drag Reducing Flows Flow Turbulence Combust (27) 79:23 32 DOI.7/s494-7-975-5 Events of High Polymer Activity in Drag Reducing Flows C. Tesauro B. J. Boersma M. A. Hulsen P. K. Ptasinski F. T. M. Nieuwstadt Received: May 26

More information

Simulations of Turbulence over Superhydrophobic Surfaces

Simulations of Turbulence over Superhydrophobic Surfaces University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2009 Simulations of Turbulence over Superhydrophobic Surfaces Michael B. Martell University of Massachusetts

More information