COURSE OUTLINE. Introduction Signals and Noise Filtering Noise Sensors and associated electronics. Sensors, Signals and Noise 1

Size: px
Start display at page:

Download "COURSE OUTLINE. Introduction Signals and Noise Filtering Noise Sensors and associated electronics. Sensors, Signals and Noise 1"

Transcription

1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Noise Sensors and associated electronics

2 Processing Noise with Linear Filters 2 Mathematical Foundations Filtering Stationary Noise Filtering White Noise Filtering Noise with Constant-Parameter Filters Appendix: Input-Output Crosscorrelation and Autocorrelation with Stationary Noise and Constant-Parameter Filters

3 3 Mathematical Foundations of Noise Processing by Linear Filters

4 Noise filtering 4 Input noise x(α) w t (α) Output noise y(t) characterized by R "" α, α + γ = x α x(α + γ) characterized by R ++ t, t + τ = y t y(t + τ) The output autocorrelationcan be obtained in terms of the input autocorrelation and of the filter weightingfunction : R ++ t /,t 0 = y t / y(t 0 ) = = 1 x α w / α dα 4 1 x(β))w 0 (β)dβ = 8 x α x β 4 w / α w 0 β dα dβ = 8 R "" (α, β) w / α w 0 β dα dβ = =

5 Noise filtering The output autocorrelation R ++ t /, t 0 = R ++ t /,t / + τ = y t / y(t / + τ) by setting in evidence the intervals of autocorrelation at the input γ = β α and at the output τ = t 2 t 1 can be expressed as R ++ t /, t / + τ = 8 R "" (α, α + γ) w / α w 0 α + γ dα dγ and in particular the mean square noise at time t 1 is y 0 t / = R ++ t /,t / = 8 R "" (α, α + γ) w / α w / α + γ dα dγ NB: these equations are valid for all cases of noise and linear filtering, that is, also for non-stationary input noise and for time-variant filters.

6 6 Filtering Stationary Noise

7 Filtering Stationary Noise 7 In case of stationary noise the input autocorrelation depends only on the time interval γ R "" α, α + γ = R "" γ The output autocorrelation is correspondingly simplified R ++ t /,t / + τ = 8 R "" (γ) w / α w 0 α + γ dα dγ = 1 R "" (γ) dγ 1 w / α w 0 α + γ dα NB: with stationary input noise: a) a constant parameter filter produces stationary output noise. b) a time-variant filter can produce a non-stationary output noise! =

8 Filtering Stationary Noise 8 R ++ t /, t / + τ = 1 R "" (γ) dγ 1 w / α w 0 α + γ dα Denoting by k 12w ( γ) the crosscorrelation of the weighting functions w 1 ( α) and w 2 ( α) We can write k /0; (γ) = 1 w / α w 0 α + γ dα R ++ t /, t / + τ = 1 R "" γ 4 k /0; (γ) dγ For the mean square noise we must consider the autocorrelation k 11w (α) of w 1 ( α) y 0 t / = R ++ t /,t / = 1 R "" (γ) dγ 1 w / α w / α + γ dα y 0 t / = 1 R "" (γ) 4 k //; (γ) dγ

9 Filtering Stationary Noise 9 With stationary input noise and for any linear filter (i.e. both constant-parameter and time variant filters) the output noise mean square value can be computed y 0 t / = 1 R "" (γ) 4 k //; (γ) dγ By the Parseval theorem extension and recalling that F k //; γ = W / (f) 0 the output mean square noise can be computed also in the frequency domain y 0 t / = 1 S " (f) 4 W / (f) 0 df

10 Filtering Stationary Noise 10 The mean square output of a filter that receives stationary noise can be computed in the time domain as in the frequency domain as y 0 t / = 1 R "" (γ) 4 k //; (γ) dγ y 0 t / = 1 S " (f) 4 W / (f) 0 df and in case of white noise, i.e. with R "" γ = 4 δ(γ) S " f = it is simply y 0 t / = 4 k //; 0 = 1 w / 0 α dα y 0 t / = 1 W / (f) 0 df

11 11 Filtering White Noise

12 Filtering White NON-Stationary noise 12 The fact that a White NON-Stationary noise has δ-like autocorrelation R "" α, α + γ = α δ(γ) brings simplification to the equation of the output autocorrelation R ++ t /, t / + τ = 8 α δ(γ) 4 w / α w 0 α + γ dα dγ R ++ t /, t / + τ = 1 α 4 w / α w 0 α dα and to the equation of the output mean square value y 0 t / = R ++ t /, t / = 1 α 4 w / 0 (α)dα the equation is conceptually similar to that for y 0 in discrete-time filtering, with samples x taken at clocked times α i and multiplied by weights w i and summed y 0 t / = x 0 (α D ) 4 w D 0 E DFG

13 Filtering White Stationary noise 13 The fact that White Stationary noise has constant intensity (power) R "" α, α + γ = R "" γ = 4 δ(γ) further simplifies the equation of the output autocorrelation R ++ t /, t / + τ = 1 w / α w 0 α dα = 4 k /0; (0) and of the output mean square value y 0 t / = 4 k //; 0 = 1 w / 0 α dα the equation is similar to that for discrete-time filtering of stationary white input noise y 0 t / = x 0 E w 0 DFG D By Parseval theorem we have also y 0 t / = 1 W / (f) 0 df

14 14 Filtering Noise with Constant-Parameter Filters

15 About CONSTANT-PARAMETER filters 1 The constant-parameter filters: are completely characterized by the δ-response h(t) in time and by the transfer function H(f) = F[h(t)] in the frequency domain have weighting w m (α) for acquisition at time t m simply related to the δ-response w m α = h(t α) therefore have W m (f) 2 = H(f) 2 They are PERMUTABLE. In a cascade of constant parameter filters, if the order of the various filters in the sequence is changed, the final output does NOT change. They are REVERSIBLE. A constant parameter filter can change the shape of a signal, but it is always possible to find a restoring filter, that is, another constant parameter filter which restores the signal to the original shape.

16 CONSTANT-PARAMETER filters with NON-stationary input noise 16 The output autocorrelation is R ++ t /,t 0 = 8 R "" (α, β) w / α w 0 β dα dβ = 8 R "" α, β 4 h t / α h t 0 β dα dβ = = 1 h t / α dα 1 R "" α, β 4 h t 0 β dβ = That is = R ++ t /,t 0 = R "" α, β h β h(α)

17 CONSTANT-PARAMETER filters with Stationary input noise 17 Starting from R ++ t /,t 0 = R ++ t / + τ = R "" α, β h β h α and taking into account that: the stationary input autocorrelation depends only on the interval γ = β α dβ = dγ dα = dγ the output autocorrelation is also stationary and depends only on the interval τ we can obtain (detailed equations available in Appendix) R ++ τ = R "" γ h γ h γ = R "" γ k TT γ and therefore S + f = S " f 4 H(f) 0

18 CONSTANT-PARAMETER filters with Stationary input noise 18 From the output autocorrelation R ++ τ = R "" γ k TT γ we obtain for the output mean square value y 0 = R ++ 0 = 1 R "" γ k TT γ dγ and by Parseval s theorem y 0 = 1 S " f H(f) 0 df In the case of white input noise R "" γ = δ γ and therefore y 0 = k TT 0 y 0 = 1 H(f) 0 df

19 19 Appendix: output-input cross-correlation and output autocorrelation with constant parameter filters and stationary noise

20 Appendix: output-input cross-correlation with constant parameter filters and stationary noise 20 yx Let us see first the output-input crosscorrelation R yx (τ) (, ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) R t t = y t x t = x α h t α x t dα = x α x t h t α dα = xx (, ) ( ) ( ) ( ) = R α t h t α dα = R t α h t α dα 2 1 xx 2 1 and setting t2 α = γ dα = dγ τ = (, ) (, ) ( ) ( ) yx 1 2 yx 1 1 xx 1 2 xx ( ) ( ) ( ) ( ) xx t ( ) t 2 1 R t t = R t t + τ = R γ h t t + γ dγ = = R γ h τ + γ dγ = R γ h τ γ dγ we see that R τ = R τ h τ yx ( ) ( ) ( ) xx

21 Appendix: input-output cross-correlation with constant parameter filters and stationary noise 21 xy Let us see now the input-output crosscorrelation R xy (τ) (, ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) R t t = x t y t = x t x β h t β dβ = x t x β h t β dβ = xx (, ) ( ) ( ) ( ) = R t β h t β dβ = R β t h t β dβ 1 2 xx 1 2 and setting ; ; γ = β dγ dβ t 1 τ = = 2 1 t t (, ) (, ) ( ) ( ) R t t = R t t + τ = R γ h t t γ dγ = xy 1 2 xy 1 1 xx 2 1 xx ( ) ( ) = R γ h τ γ dγ We see that R τ = R τ h τ xy ( ) ( ) ( ) xx

22 Appendix: output auto-correlation with constant parameter filters and stationary noise 22 yy (, ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) R t t = y t y t = y t x β h t β dβ = y t x β h t β dβ = yx (, ) ( ) ( ) ( ) = R t β h t β dβ = R β t h t β dβ 1 2 yx 1 2 and setting ; ; γ = β dγ dβ t 1 τ = = 2 1 (, ) (, ) ( ) ( ) yy 1 2 yy 1 1 yx 2 1 t t R t t = R t t + τ = R γ h t t γ dγ = ( γ) ( τ γ) γ ( τ) ( τ) ( τ) ( τ) ( τ) = Ryx h d = Ryx h = Rxx h h = ( τ) ( τ) ( τ) = Rxx h h and finally R τ = R τ k τ ( ) ( ) ( ) yy xx hh

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 4 Ergodic Random Processes, Power Spectrum Linear Systems 0 c 2011, Georgia Institute of Technology (lect4 1) Ergodic Random Processes An ergodic random process is one

More information

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics Noise Analysis and Simulation White Noise Band-Limited

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes EAS 305 Random Processes Viewgraph 1 of 10 Definitions: Random Processes A random process is a family of random variables indexed by a parameter t T, where T is called the index set λ i Experiment outcome

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering: LPF3 Switched-Parameter Averaging Filters Sensors and associated electronics

COURSE OUTLINE. Introduction Signals and Noise Filtering: LPF3 Switched-Parameter Averaging Filters Sensors and associated electronics ensors, ignals and Noise COURE OUTLINE Introduction ignals and Noise Filtering: LPF3 witched-parameter Averaging Filters ensors and associated electronics witched-parameter Averaging Filters 2 Discrete

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Homework 3 (Stochastic Processes)

Homework 3 (Stochastic Processes) In the name of GOD. Sharif University of Technology Stochastic Processes CE 695 Dr. H.R. Rabiee Homework 3 (Stochastic Processes). Explain why each of the following is NOT a valid autocorrrelation function:

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #46 Prof. Young-Han Kim Thursday, June 5, 04 Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei). Discrete-time Wiener process. Let Z n, n 0 be a discrete time white

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

ECE-S Introduction to Digital Signal Processing Lecture 3C Properties of Autocorrelation and Correlation

ECE-S Introduction to Digital Signal Processing Lecture 3C Properties of Autocorrelation and Correlation ECE-S352-701 Introduction to Digital Signal Processing Lecture 3C Properties of Autocorrelation and Correlation Assuming we have two sequences x(n) and y(n) from which we form a linear combination: c(n)

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

1 Partial differentiation and the chain rule

1 Partial differentiation and the chain rule 1 Partial differentiation and the chain rule In this section we review and discuss certain notations and relations involving partial derivatives. The more general case can be illustrated by considering

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts White Gaussian Noise I Definition: A (real-valued) random process X t is called white Gaussian Noise if I X t is Gaussian for each time instance t I Mean: m X (t) =0 for all t I Autocorrelation function:

More information

Taylor Series and stationary points

Taylor Series and stationary points Chapter 5 Taylor Series and stationary points 5.1 Taylor Series The surface z = f(x, y) and its derivatives can give a series approximation for f(x, y) about some point (x 0, y 0 ) as illustrated in Figure

More information

Properties of LTI Systems

Properties of LTI Systems Properties of LTI Systems Properties of Continuous Time LTI Systems Systems with or without memory: A system is memory less if its output at any time depends only on the value of the input at that same

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

ECE-340, Spring 2015 Review Questions

ECE-340, Spring 2015 Review Questions ECE-340, Spring 2015 Review Questions 1. Suppose that there are two categories of eggs: large eggs and small eggs, occurring with probabilities 0.7 and 0.3, respectively. For a large egg, the probabilities

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Discrete-Time Signals and Systems (2) Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

2. (a) What is gaussian random variable? Develop an equation for guassian distribution

2. (a) What is gaussian random variable? Develop an equation for guassian distribution Code No: R059210401 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS ( Common to Electronics & Communication Engineering, Electronics &

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

PROBABILITY AND RANDOM PROCESSESS

PROBABILITY AND RANDOM PROCESSESS PROBABILITY AND RANDOM PROCESSESS SOLUTIONS TO UNIVERSITY QUESTION PAPER YEAR : JUNE 2014 CODE NO : 6074 /M PREPARED BY: D.B.V.RAVISANKAR ASSOCIATE PROFESSOR IT DEPARTMENT MVSR ENGINEERING COLLEGE, NADERGUL

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

Lecture 13 and 14: Bayesian estimation theory

Lecture 13 and 14: Bayesian estimation theory 1 Lecture 13 and 14: Bayesian estimation theory Spring 2012 - EE 194 Networked estimation and control (Prof. Khan) March 26 2012 I. BAYESIAN ESTIMATORS Mother Nature conducts a random experiment that generates

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Problems on Discrete & Continuous R.Vs

Problems on Discrete & Continuous R.Vs 013 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Probability & Random Process : MA 61 : University Questions : SKMA1004 Name of the Student: Branch: Unit I (Random Variables) Problems on Discrete

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb3: SIPE lecture Correlation functions in time & frequency domain Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE // Delft University

More information

Fundamentals of Noise

Fundamentals of Noise Fundamentals of Noise V.Vasudevan, Department of Electrical Engineering, Indian Institute of Technology Madras Noise in resistors Random voltage fluctuations across a resistor Mean square value in a frequency

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

Robust Control 9 Design Summary & Examples

Robust Control 9 Design Summary & Examples Robust Control 9 Design Summary & Examples Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/6/003 Outline he H Problem Solution via γ-iteration Robust stability via

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

General Relativity I

General Relativity I General Relativity I presented by John T. Whelan The University of Texas at Brownsville whelan@phys.utb.edu LIGO Livingston SURF Lecture 2002 July 5 General Relativity Lectures I. Today (JTW): Special

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution ECE 54 Stochastic Signals and Systems Problem Set Solution Problem Solutions : Yates and Goodman,..4..7.3.3.4.3.8.3 and.8.0 Problem..4 Solution Since E[Y (t] R Y (0, we use Theorem.(a to evaluate R Y (τ

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

MA6451 PROBABILITY AND RANDOM PROCESSES

MA6451 PROBABILITY AND RANDOM PROCESSES MA6451 PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES 1.1 Discrete and continuous random variables 1. Show that the function is a probability density function of a random variable X. (Apr/May

More information

review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17

review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17 1. Revision Recall basic terms of algebraic expressions like Variable, Constant, Term, Coefficient, Polynomial etc. The coefficients of the terms in 4x 2 5xy + 6y 2 are Coefficient of 4x 2 is 4 Coefficient

More information

Properties of the Autocorrelation Function

Properties of the Autocorrelation Function Properties of the Autocorrelation Function I The autocorrelation function of a (real-valued) random process satisfies the following properties: 1. R X (t, t) 0 2. R X (t, u) =R X (u, t) (symmetry) 3. R

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter ECE4270 Fundamentals of DSP Lecture 20 Fixed-Point Arithmetic in FIR and IIR Filters (part I) School of ECE Center for Signal and Information Processing Georgia Institute of Technology Overview of Lecture

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Fig 1: Stationary and Non Stationary Time Series

Fig 1: Stationary and Non Stationary Time Series Module 23 Independence and Stationarity Objective: To introduce the concepts of Statistical Independence, Stationarity and its types w.r.to random processes. This module also presents the concept of Ergodicity.

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Utility of Correlation Functions

Utility of Correlation Functions Utility of Correlation Functions 1. As a means for estimating power spectra (e.g. a correlator + WK theorem). 2. For establishing characteristic time scales in time series (width of the ACF or ACV). 3.

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.3 CURVE SQUEAL OF

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.58J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Section 14.1 Vector Functions and Space Curves

Section 14.1 Vector Functions and Space Curves Section 14.1 Vector Functions and Space Curves Functions whose range does not consists of numbers A bulk of elementary mathematics involves the study of functions - rules that assign to a given input a

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

Stochastic Process II Dr.-Ing. Sudchai Boonto

Stochastic Process II Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Random process Consider a random experiment specified by the

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION c01.fm Page 3 Friday, December 8, 2006 10:08 AM 1 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION In the design and analysis of image processing systems, it is convenient and often necessary mathematically

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Atmospheric Flight Dynamics Example Exam 1 Solutions

Atmospheric Flight Dynamics Example Exam 1 Solutions Atmospheric Flight Dynamics Example Exam 1 Solutions 1 Question Figure 1: Product function Rūū (τ) In figure 1 the product function Rūū (τ) of the stationary stochastic process ū is given. What can be

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.5 ALGEBRA 5 (Manipulation of algebraic expressions) by A.J.Hobson 1.5.1 Simplification of expressions 1.5.2 Factorisation 1.5.3 Completing the square in a quadratic expression

More information

ISE I Brief Lecture Notes

ISE I Brief Lecture Notes ISE I Brief Lecture Notes 1 Partial Differentiation 1.1 Definitions Let f(x, y) be a function of two variables. The partial derivative f/ x is the function obtained by differentiating f with respect to

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, 2007 Cover Sheet Test Duration: 120 minutes. Open Book but Closed Notes. Calculators allowed!! This test contains five problems. Each of

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE

PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE ADRIAN PĂCURAR LAST TIME We saw that for a function z = f(x, y) of two variables, we can take the partial derivatives with respect to x or y. For the

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

Lab 5: Power Spectral Density, Noise, and Symbol Timing Information

Lab 5: Power Spectral Density, Noise, and Symbol Timing Information ECEN 4652/5002 Communications Lab Spring 2017 2-20-17 P. Mathys Lab 5: Power Spectral Density, Noise, and Symbol Timing Information 1 Introduction The two concepts that are most fundamental to the realistic

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

UNIT-4: RANDOM PROCESSES: SPECTRAL CHARACTERISTICS

UNIT-4: RANDOM PROCESSES: SPECTRAL CHARACTERISTICS UNIT-4: RANDOM PROCESSES: SPECTRAL CHARACTERISTICS In this unit we will study the characteristics of random processes regarding correlation and covariance functions which are defined in time domain. This

More information

Name: Chapter 7: Exponents and Polynomials

Name: Chapter 7: Exponents and Polynomials Name: Chapter 7: Exponents and Polynomials 7-1: Integer Exponents Objectives: Evaluate expressions containing zero and integer exponents. Simplify expressions containing zero and integer exponents. You

More information

Maxima and Minima. (a, b) of R if

Maxima and Minima. (a, b) of R if Maxima and Minima Definition Let R be any region on the xy-plane, a function f (x, y) attains its absolute or global, maximum value M on R at the point (a, b) of R if (i) f (x, y) M for all points (x,

More information

Least costly probing signal design for power system mode estimation

Least costly probing signal design for power system mode estimation 1 Least costly probing signal design for power system mode estimation Vedran S. Perić, Xavier Bombois, Luigi Vanfretti KTH Royal Institute of Technology, Stockholm, Sweden NASPI Meeting, March 23, 2015.

More information

ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: April 6, 2017 2017, B.-P. Paris ECE 630: Statistical Communication

More information