ECSE413B: COMMUNICATIONS SYSTEMS II Tho Le-Ngoc, Winter Digital Transmission in AWGN Optimum Receiver Probability of Error

Size: px
Start display at page:

Download "ECSE413B: COMMUNICATIONS SYSTEMS II Tho Le-Ngoc, Winter Digital Transmission in AWGN Optimum Receiver Probability of Error"

Transcription

1 ECE43B: COUICAIO YE II ho Le-go, Wnter 8 Bas Dgtal odulaton ehnques: Dgtal ransmsson n AWG Optmum Reever Proalty of Error Dgtal odulaton ehnques: AK, PK, QA, FK

2 Elements of a dgtal ommunatons ln CODIG CHAEL ODE CHAEL IPU IGAL IPU RADUCER OURCE ECODER X CHAEL ECODER ODULAOR wth CHAEL CODIIOER x AFE Input X { n, n {+, -}} Output X { n, n {+, -} } Ojetve: mnmze Pr{ n n } resoures: POWER & BADWIDH Channels: AWG, II, ULIPAH CHAEL OUPU IGAL OUPU RADUCER OURCE DECODER X CHAEL DECODER DEODULAOR wth CHAEL EQUALIZER Rx AFE DIGIAL RAIIO Bas Dgtal odulaton ehnques ho Le-go PAGE

3 IE-LIIED IGALLIG CHEE I A AWG EVIROE BIARY EQ. { } BI-O- YBOL COVERER {a j } x s(t) r(t) COHERE RECEIVER {ˆ a j } YBOL-O- BI COVERER ˆ } { wth Pr{ wth Pr{ } / } / WG w(t) Input nary sequene: {} }, transmtted n t- /, : t nterval Every m ts: grouped to form symol m possle symols, ymol sequene: {a }, a ja,,,3,, m wth Pr{a ja }/. a j s transmtted n the nterval t-j s s /, s m : symol nterval. RAIER: generates s(t) g (t-j s ) for t-j s s / f a j A e.e., OE-O-OE APPIG AWG CHAEL: r(t) s(t)+w(t) where w(t): whte Gaussan nose, zero-mean, varane o /. Bas Dgtal odulaton ehnques ho Le-go PAGE 3

4 VECOR REPREEAIO OF IE-LIIED IGAL s(t) g (t-j s ) for t-j s s / f a j A : one-to-one orrespondene g (t): sgnalng element g (t) for t > /: tme-lmted and + s s / / g (t) dt E We want to fnd ( ) orthonormal funtons Φ (t),,,, so that g (t) gφ(t) sgnal element: waveform g (t) an e represented y -dmensonal vetor g ( g,, g ) ORHOORAL FUCIO: Φ (t) for t > / and + f j (t)dt Φ (t)φ * j f j Φ * j (t)φ () j j( (t) f Φ ( (t): REAL, {Φ (t), (),,,,},, forms an ORHOORAL BAI of dmensons. waveform g (t) an e represented y -dmensonal vetor g ( g,, g ): g (t) g Φ(t) where + * g g (t).φ (t)dt < + g + / dt / g g Φ (t) Φ (t) Σ WAVEFOR g (t) Φ * (t) Φ * (t) + / dt / g g Φ (t) Φ* (t) + / dt / g I RAIER g (t) g Φ(t) I RECEIVER g (g, g, g ), + * g g (t).φ (t)dt Bas Dgtal odulaton ehnques ho Le-go PAGE 4

5 VECOR CHAEL g j + / g dt j +w w(t) / Φ (t) Φ * (t) s(t) r(t) g + / j Σ g dt j +w Φ (t) Φ * (t) + / g j { g j } { g j } Φ (t) WAVEFOR CHAEL Φ* (t) + / / dt g j +w { g j + w} w(t): Whte Gaussan ose, zero mean and varane σ W /, nose omponents w s,,,, are Gaussan wth zero mean and varane of /. hey are also statstally ndependent. w s ρs+w OPIU RECEIVER VECOR CHAEL ĝ j x p w (x ) exp, p w (x) / pw (x ( π ) x ) exp / ( π ) Bas Dgtal odulaton ehnques ho Le-go, x x PAGE 5

6 OPIU RECEIVER nmze Pr{ â j A l a j A, l} mnmze Pr{ ŝ s l s g, l}, or maxmze Pr{ â j A a j A } maxmze Pr{ ŝ g s g } maxmze Pr{ ŝ s ρ g +w} optmum maxmum a posteror proalty (AP) reever: ax Pr{ ŝ s ρ g +w}: Proedure: For a reever vetor ρ, alulate all Pr{ g ρ},,, elet the ndex orrespondng to the AXIU value Pr{ g ρ} and delare Usng the Bayes rule: Pr{A B}.p(B)p(B A).Pr{A} for A: dsrete, B: ontnuous p(b): proalty l densty funton (pdf) of B p{ρ g}.pr{g} Pr{ g ρ} ax Pr{ g ρ} ax p{ρ g}.pr{g} p{ρ} wrtg wrtg s ˆ g If Pr{ g } }/,,,, wrtg ax Pr{ g ρ} wrtg ax p{ρ g} optmum reever maxmum lelhood (L) reever For g,,,,, alulate all p{ρ g }. elet orrespondng to the largest p{ρ L reever selets g, the most lely sgnalng vetor n produng ρ g } Bas Dgtal odulaton ehnques ho Le-go PAGE 6

7 AP and L n AWG hannel ransmtter: sends s g wth a pror proalty of Pr{g }. Reever: From the reeved sample r s +w where w: Gaussan (, o /), guess s AWG(, o / )CHAEL: f g sent ρ g+ w or, p( ρ g) exp [ π o ] r-g ln [ p( ρ g) ].5 5 ln [ π o] o r-g o axmum A Posteror (A P): Choose g orrespondng to max Pr{ g ρ} max p( ρ g ) Pr{ g } r-g max ln[ p( ρ g)pr{ g} ] max[ ln p( ρ g) + lnpr{ g} ] mn + (.5ln[ π o] lnpr{ g} ) o [ p ] axmum Lelhood (L): Choose ln Pr{ g }orrespondng to max p( ρ g ) max ln ( ρ g ) mn r-g e.., For general, elet orrespondng to the mnmum Euldean dstane r-g among all r-g m when Pr{ g } / (AP): maxln Pr { g ρ} mn r-g ( L) Bas Dgtal odulaton ehnques ho Le-go PAGE 7

8 AP and L: example of nary ase () ransmtter: From nary sequene { }, or wth a pror proalty Pr{ } and Pr{ }, respetvely, sends s g f or s g f. Reever: From the reeved sample r s +w where w: Gaussan (, o /), guess axmum A Posteror (AP): Choose $ f Pr{ r} > Pr{ r}, otherwse hoose $ P{ Pr{ } f, ( ) ( r r Λ AP r > ΛA P ) ln $ Pr{ r }, f Λ AP ( r ) < p( r )Pr{ }/ p( r) p( r ) Pr{ } From Bayes rule, ΛAP ( r ) ln ln + ln p ( r )Pr{ }/ pr ( ) pr ( ) Pr{ } ( ) Pr{ } ( ) ( pr Λ AP r ΛL ) +ΛP( ), ΛL ( r ) ln, ΛP( ) ln pr ( ) Pr{ } axmum Lelhood (L): Choose $ f ( ) ( ), otherwse hoose p r > p r $, f Λ L ( r ) > $, f Λ L ( r ) < when Pr{ } Pr{ } Λ ( ) Λ ( r) Λ ( r) P AP L Bas Dgtal odulaton ehnques ho Le-go PAGE 8

9 AP and L: example of nary ase () n AWG ( r AWG(, o / ): or, p( r ) exp π o ( r g ) ln ( ).5ln [ pr ] [ π ] o o p( r ) ( r g) ( r g) ΛL ( r ) ln, pr ( ) o Λ AP Pr{ r} ( r g) ( r ) ln Pr{ r} g o ( r g ) Pr{ } +ΛP( ), ΛP( ) ln o Pr{ } ) axmum Lelhood (L): Choose $ f p( r ) > p( r ), otherwse hoose $, f ( r g ) > ( r g ) $, f ( r g ) < ( r g ) For gene ral, elet orrespondng to the mnmum Euldean dstane r-g among all r-g m Bas Dgtal odulaton ehnques ho Le-go PAGE 9

10 PROBABILIY OF ERROR For g sent, the L reever maes an error f t dedes ρ s not mnmum.e. ρ g > ρ g for some n g n sˆ g,l l. hs event ours f and only f In the -dmensonal oservaton spae Z, the optmum reever estalshes dsjont zones Z as follows U Z Z Z I Z j O / for j Z {ρ : ρ g s mnmum} For an oservaton vetor ρ f ρ Z then the L reever delares that herefore the average proalty of error s Pe Pr{ρ Z g p y a ˆ A A }Pr{ A } was sent. for Pr{A },Pe Pr{ρ Z A } [ Pr{ρ Z A }] Pr{ρ Z A } P Pr{orret deson} ρ g where Pr{ρ Z A } p (ρ g)dρ πν exp dρ w / ( ) ρ g ρ g s mnmum s mnmum Bas Dgtal odulaton ehnques ho Le-go PAGE

11 VECOR REPREEAIO FOR A GEERAL BIARY IE-LIIED IGALIG CHEE In the nterval t-n /, g ( t n) f an, wth a pror proalty of / st () g ( t n ) f an, wth a pror proalty of / For a general nary sgnalng sheme wth tme-lmted, fnte-energy elements, g (t) and g (t), for a smple -D reever desgn, we an selet the orthonormal ass wth Φ (t) g (t) - g(t), E E Δ Δ g (t) - g (t) dt g (t) dt + g (t) dt g (t).g E Δ E + E E, E g(t).g(t)dt for g(t),g(t):real- valued d E + E E E ( γ ) where E ( E + E) : average energy per t E γ : orrelaton oeffent etween g, g (g ( t ) & g ( t )) and γ : E (E E )g (t) + (E E )g (t) a E)g(t) dt E hen, Φ (t), E (E E )g (t) + (E a (t)dt g )/ BOUDARY:(g +g φ (t) g g (t) g φ (t)+ g φ (t) and g (t) g φ (t)+ g φ (t), g (E -E )/d, g -(E -E )/d g g (E E -E / )/E a d E Δ E +E -E g - g g g φ (t) Bas Dgtal odulaton ehnques ho Le-go PAGE

12 PROBABILIY OF ERROR OF BIARY RAIIO I A AWG EVIROE For antpodal sgnalng: g (t)- g (t), -E E E, d 4E φ (t) g (t)/e / φ (t) : one dmenson, g - g E / * (t).g For orthogonal sgnalng: g (t)dt E, d E +E g E /[E +E ] / g -E /[E +E ] / g g [E E /(E +E )] / For g transmtted ( or ), reeve r g +n, where AWG n(w,w ) w,w : ndependent Gaussan wth zero mean and varane: o /. For g transmtted, error f w <-d/. For g transmtted, error f w >d/. w and hene r are rrelevant. he Rx onsders only r n deteton. P e Pr{ error g sent }Pr{ g sent } + Pr{ error g sent }Pr{ g sent } d d P e erf erf P e E erf ( γ ) d/ d/ x x Pr{ error g sent} Pr{ w d } ( ) exp exp pw x dx dx dx d / π π d x + d exp( v ) dv erf for v, dv dx, x d v, x + v + π Bas Dgtal odulaton ehnques ho Le-go PAGE

13 ERROR FUCIO x X s alled normalzed zero-meangaussan (Random) varale X: fx ( x) e π + x Q-funton: Q( y) Pr{ X > y} e dx, y π + + x v omplmentary error funton: erf( u) e dv e dx Q( u ), v x / u u π π x lower ounds: x, e Q( x) < π x x x / e upper ounds: x, Q( x) <, x or tghter: Q( x) < e π x Bas Dgtal odulaton ehnques ho Le-go PAGE 3

14 ELECIO OF g (t), g (t) erf s monotone-dereasng, erf() to redue P e we have to maxmze ( γ ) A. For the same average energy per t to nose power densty E /, we an mnmze P e y mnmze γ γ, mn γ when g ( t) g ( t) : AIPODAL IGALLIG P e erf E : the BE A send g( t) Example: RZ antpodal send g ( t) g ( t for t ) elsewhere / E B. WOR CAE: γ when g (t) g (t),.e. send the same sgnal for oth ases. P e /, 5% orret, 5% wrong / C. Orthogonal sgnal: γ, g( t) g( t) dt P E erf e, orthogonal / worse than antpodal sgnallng Bas Dgtal odulaton ehnques ho Le-go PAGE 4

15 -ARY IGALLIG CHEE: Unon Bound on the Proalty of Error g,,,..., wth Pr{ g sent} / P Pr{ error g sent} e For the optmum reever, Pr { error g sent} Pr{ ρ g < ρ g g sent} Pr{ ρ s loser to at least g than to g g sent} ε denotes the event that ρ s loser to g than to (ote that: P{ A B C} Pr{ A} + Pr{ B} + Pr{ C} ) Consder any par of g, d Pr{ε } erf Pr{ error g g : { } Pr error g sent Pr Pr{ } U ε ε,, g as the nary transmsson ase prevously analyzed. We have otaned sent}, d g g d d : Euldean dstane etween g, g erf P e erf,, he aove nequalty shows that P e s domnated y the term havng the smallest dstane d,mn. In desgnng the set of sgnalng elements, to mnmze P e we should am for the largest mnmum Euldean dstane. d dmn dmn dmn mn d, ( ), erf erf P e erf d Bas Dgtal odulaton ehnques ho Le-go PAGE 5

16 Dgtal odulaton: General odulaton: Proess y whh some haraterst of a arrer, (t), s vared n aordane wth a modulatng wave. (IEEE tandard D. of E&E terms) In the th symol lnterval, t- /, send one of possle tme-lmted sgnalng elements g (t- ) wth a pror proalty of / symol m ts, g (t): modulated sgnal,,,, m, wth fnte energy E Average energy per symol: E, Average energy per t: E, E me + ( t) osωt, E ( t) dt E + g ( t) dt E E AK (Ampltude hft Keyng), PK (Phase K), FK (Frequeny K), APK, QA Ojetves n desgnng a modulaton sheme: Bandwdth effeny: max data rate (f ) n a mnmum hannel andwdth (BW) Power effeny: mnmum pro. of error for mnmum transmtted power (or n terms of E /, E / ), maxmum resstane to nterferng sgnals. Easy mplementaton: mn rut omplexty ome of these goals pose onfltng requrements: ompromsng the desgn for a ertan applaton. Bas Dgtal odulaton ehnques ho Le-go PAGE 6

17 AK (Ampltude odulaton) os ωt t g() t aφ (), t a [ ( + ) ] d /, Φ () t, Energy E a for ω >> or ω π elsewhere / / d d d ( ) E a ( ) ( ) Example of AK sgnal wth 4 when ω, we have aseand PA gnal onstellaton for,4,8 Φ () t () t osω C t Baseand AK (PA), {a } Bas Dgtal odulaton ehnques ho Le-go passand AK PAGE 7

18 AK: Performane ODULAOR AK {a } osω t AW wth σ / osω t dt r selet f r I DEODULAOR ρa +n, n: Gaussan nose wth σ / f a sent, orret deson f ρ I orret deson, f d/ n d/, for, f n d/, for f n -d/, for Pr{orret} (/)[Pr{n d/}+pr{n -d/} +(-)Pr{ d/ n d/}] I I I 3... I I a a a 3 a - a Φ(t) d d 3 E Unon ound: Pe ( ) erf (/ )( ) erf, d E ( ) 3 E s 3 E s Exat Analyss: P e erf for erf >> Bas Dgtal odulaton ehnques ho Le-go PAGE 8

19 AK: Performane Analyss d Pr{n d / } Pr{ n d / } erf d Pr{n d/ } Pr{ n d/ } erf p d Pr{ d/ n d/ } [ Pr{ n d/ } + Pr{ n d / } ] p where p erf Pr{ orret} [ ( p) + ( )( p) ] p ( )p d P e Pr{ orret} erf 3 E s 3 E s Pe erf erf for >> Bas Dgtal odulaton ehnques ho Le-go PAGE 9

20 Bnary Phase hft Keyng (BPK) Can e vewed as BPK or APK: Eah t s enoded n the phase of the arrer wth frequeny f : o o for a and 8 for a In the th symol nterval, t- /, send one of possle tme-lmted sgnalng elements g (t- ) wth a pror proalty of / E E E t () os ω t g() t os ωtg, () t osωt os ( ω t + π ) gnal onstellaton of BPK 3 5 t () osω t d E Pr{t error}: P erf erf, d E Bas Dgtal odulaton ehnques ho Le-go PAGE

21 Phase hft Keyng (PK) General PK: g () t E s os[ π f t+ θ ] I ϕ () t + Q ϕ (), t t orthonormal ass funton ϕ ( t) os π f t & ϕ ( t) sn π ft elsewhere nary data Aos(θ ) nary-tosymol {θ } -Asn(θ ) osω t π I Aos θ, Q Asn θ, A Es, θ ( ),,,..., snωt PK QPK: 4, an e vewed as a lnear omnaton of an n- phase and 3 4 I + E / "" E / "" E / "" + E / "" s s s s Q + E / "" + E / "" E / "" E / "" s s s s E s E an e vewed as a sum of BAK (or BPK) modulated sgnals wth n-phase and quadrature arrers. Bas Dgtal odulaton ehnques ho Le-go 3 4 gnal onstellaton of QPK PAGE

22 PK Performane nary data Aos(θ ) nary-to- symol {θ } Asn(θ ) osω t PK sgnal PK WG osω t dt dt X Y ρx+jy I elet f ρ symol-tonary nary data snω t sn ω t Average energy/symol: E A dmn Asn E.sn Unon Bound for -ary PK: P E BPK,, P P erf, E E e e π π E erf sn π Bas Dgtal odulaton ehnques ho Le-go PAGE

23 PK Performane: Exat analyss n ρ g + n, n ( n, n): d Gaussan (, o/), θn tan n E + π π Pr{orret g } Pr { ρ I } Pr - θ n,for all,,...,,, E E E E pθ ( x) exp + os xexp sn x erf os x π E E for hgh E / and x < π /, erf os x exp os x π E osx ( ) E E os.exp sn pθ x x x π π / π E s P{ Pr{ orret } pθ ( x ) dx, P e P{ Pr{ orret } erf sn π / o Bas Dgtal odulaton ehnques ho Le-go PAGE 3

24 quare Quadrature Ampltude odulaton QA One ase of AP()K: Quadrature AK a os ω t + sn ω t g ( t ) Choose a d a ( 6, L : nteger d a, where 6, L d a ( + L ) a and are ndependent a, an tae any OE of L possle values / d E ( ) d ), d E m/, m/ for t elsewhere : nteger,,..., L AK {a } { } dt / â L os ω t sn ω t hoose m f â I Reever: -ary QA reat t as ndependent nphase & quadrature AK. WG os ω t os ω t sn ω t dt ˆ hoose l f ˆ I d Eah AK has P ( ) [ ] eak erf Pe aryqa PeAK For large E /, P eak << d 3 E Pe, aryqa PeAK erf erf ( ) otes: For 4, L, 4QA s 4PK Bas Dgtal odulaton ehnques ho Le-go PAGE 4

25 Proalty of t error (P ) vs Proalty of symol error and Gray Codng Examples of Gray odng: PA QA PK When a symol error ours, t s lely that the reever taes the adjaent symol (the symol losest to the rght one). herefore, t s desrale to ode the m-t symol n suh a way that adjaent symols dffer y only one t. In ths way, the average proalty of t error P s P P Pe m log Bas Dgtal odulaton ehnques ho Le-go PAGE 5

26 PROBABILIY OF YBOL ERROR -QA, -PK: BW-effent ut not power-effent For >8, -QA outperforms -PK QA PK E / o Bas Dgtal odulaton ehnques ho Le-go E / o PAGE 6

27 Frequeny hft Keyng (FK) -ary orthogonal FK sgnalng shemes are power-effent effent ut not andwdth-effent. A os ωt t g () t, elsewhere m,,...,, E E A ORHOORAL -ary FK: g ( t). g ( t) dt for j j ote: Gray odng annot e used for orthogonal FK ( ω ω ) π or ( f f ) /, : nteger j j d g g A A j j E : onstant Pe ( ) erf E E Pe ( ) erf ( log ) Bas Dgtal odulaton ehnques ho Le-go E / o PAGE 7

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave.

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave. 1 IQ Sgnals general overvew 2 IQ reevers IQ Sgnals general overvew Rado waves are used to arry a message over a dstane determned by the ln budget The rado wave (alled a arrer wave) s modulated (moded)

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder. PASSBAND DIGITAL MODULATION TECHNIQUES Consder the followng passband dgtal communcaton system model. cos( ω + φ ) c t message source m sgnal encoder s modulator s () t communcaton xt () channel t r a n

More information

On the unconditional Security of QKD Schemes quant-ph/

On the unconditional Security of QKD Schemes quant-ph/ On the unondtonal Seurty of QKD Shemes quant-ph/9953 alk Outlne ntroduton to Quantum nformaton he BB84 Quantum Cryptosystem ve s attak Boundng ve s nformaton Seurty and Relalty Works on Seurty C.A. Fuhs

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Assuming that the transmission delay is negligible, we have

Assuming that the transmission delay is negligible, we have Baseband Transmsson of Bnary Sgnals Let g(t), =,, be a sgnal transmtted over an AWG channel. Consder the followng recever g (t) + + Σ x(t) LTI flter h(t) y(t) t = nt y(nt) threshold comparator Decson ˆ

More information

ECE 6602 Assignment 6 Solutions for Spring 2003

ECE 6602 Assignment 6 Solutions for Spring 2003 ECE 660 Assgnment 6 Solutons for Sprng 003 1. Wrte a matlab ode to do the modulaton and demodulaton for a bnary FSK usng a) oherent detetor and b) a nonoherent detetor. Modfy the programs that are posted

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Theoretical Modeling and Simulation of a Chaos-Based Physical Layer for WSNs

Theoretical Modeling and Simulation of a Chaos-Based Physical Layer for WSNs ITERATIOAL JOURAL OF COMMUICATIOS Issue, Volume 7, 03 Theoretal Modelng and Smulaton of a Chaos-Based Physal Layer for WSs Stevan Berer, Shu Feng Astrat In ths paper the theoretal model and smulaton of

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

Chaos-Based Physical Layer Design for WSN Applications

Chaos-Based Physical Layer Design for WSN Applications Reent Advanes n Teleommunatons Crut Desgn Chaos-Based Physal Layer Desgn for WS Applatons STVA BRBR Department of letral Computer ngneerng The Unversty of Aukl Aukl, ew Zeal s.berber@aukl.a.nz SHU FG Department

More information

Signal space Review on vector space Linear independence Metric space and norm Inner product

Signal space Review on vector space Linear independence Metric space and norm Inner product Sgnal space.... Revew on vector space.... Lnear ndependence... 3.3 Metrc space and norm... 4.4 Inner product... 5.5 Orthonormal bass... 7.6 Waveform communcaton system... 9.7 Some examples... 6 Sgnal space

More information

Machine Learning: and 15781, 2003 Assignment 4

Machine Learning: and 15781, 2003 Assignment 4 ahne Learnng: 070 and 578, 003 Assgnment 4. VC Dmenson 30 onts Consder the spae of nstane X orrespondng to all ponts n the D x, plane. Gve the VC dmenson of the followng hpothess spaes. No explanaton requred.

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Digital Modems. Lecture 2

Digital Modems. Lecture 2 Dgtal Modems Lecture Revew We have shown that both Bayes and eyman/pearson crtera are based on the Lkelhood Rato Test (LRT) Λ ( r ) < > η Λ r s called observaton transformaton or suffcent statstc The crtera

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Improving the Performance of Fading Channel Simulators Using New Parameterization Method

Improving the Performance of Fading Channel Simulators Using New Parameterization Method Internatonal Journal of Eletrons and Eletral Engneerng Vol. 4, No. 5, Otober 06 Improvng the Performane of Fadng Channel Smulators Usng New Parameterzaton Method Omar Alzoub and Moheldn Wanakh Department

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Retnng MIMO for Wreless etwors: Lnear Trougput Increases wt Multple Receve Antennas ar Jndal Unversty of Mnnesota Unverstat Pompeu Fabra Jont wor wt Jeff Andrews & Steven Weber MIMO n Pont-to-Pont Cannels

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Instance-Based Learning and Clustering

Instance-Based Learning and Clustering Instane-Based Learnng and Clusterng R&N 04, a bt of 03 Dfferent knds of Indutve Learnng Supervsed learnng Bas dea: Learn an approxmaton for a funton y=f(x based on labelled examples { (x,y, (x,y,, (x n,y

More information

Errata for Problems and Answers in Wave Optics (PM216)

Errata for Problems and Answers in Wave Optics (PM216) Contents Errata for Problems and Answers n Wave Opts (PM6) Frst Prntng Seton 3 Seton 35 Seton Seton ttle should be Lnear polarzers and retarder plates Seton ttle should be Indued optal ansotropy Seton

More information

Differential Phase Shift Keying (DPSK)

Differential Phase Shift Keying (DPSK) Dfferental Phase Shft Keyng (DPSK) BPSK need to synchronze the carrer. DPSK no such need. Key dea: transmt the dfference between adjacent messages, not messages themselves. Implementaton: b = b m m = 1

More information

Optimization and Implementation for the Modified DFT Filter Bank Multicarrier Modulation System

Optimization and Implementation for the Modified DFT Filter Bank Multicarrier Modulation System Journal of Communatons Vol. 8, No. 0, Otober 203 Optmzaton and Implementaton for the odfed DFT Flter Ban ultarrer odulaton System Guangyu Wang, Wewe Zhang, Ka Shao, and Lng Zhuang Chongqng Key Laboratory

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Clustering. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University

Clustering. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University Clusterng CS4780/5780 Mahne Learnng Fall 2012 Thorsten Joahms Cornell Unversty Readng: Mannng/Raghavan/Shuetze, Chapters 16 (not 16.3) and 17 (http://nlp.stanford.edu/ir-book/) Outlne Supervsed vs. Unsupervsed

More information

Channel model. Free space propagation

Channel model. Free space propagation //06 Channel model Free spae rado propagaton Terrestral propagaton - refleton, dffraton, satterng arge-sale fadng Empral models Small-sale fadng Nose and nterferene Wreless Systems 06 Free spae propagaton

More information

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov JSM 2013 - Survey Researh Methods Seton Is t MAR or NMAR? Mhal Sverhkov Bureau of Labor Statsts 2 Massahusetts Avenue, NE, Sute 1950, Washngton, DC. 20212, Sverhkov.Mhael@bls.gov Abstrat Most methods that

More information

Concepts for Wireless Ad Hoc

Concepts for Wireless Ad Hoc Bandwdth and Avalable Bandwdth oncepts for Wreless Ad Hoc Networks Marco A. Alzate Unversdad Dstrtal, Bogotá Néstor M. Peña Unversdad de los Andes, Bogotá Mguel A. abrador Unversty of South Florda, Tampa

More information

t } = Number of calls in progress at time t. Engsett Model (Erlang-B)

t } = Number of calls in progress at time t. Engsett Model (Erlang-B) Engsett Model (Erlang-B) A B Desrpton: Bloed-alls lost model Consder a entral exhange wth users (susrers) sharng truns (truns). When >, long ours. Ths s the ase of prnpal nterest. Assume that the truns

More information

Review: Fit a line to N data points

Review: Fit a line to N data points Revew: Ft a lne to data ponts Correlated parameters: L y = a x + b Orthogonal parameters: J y = a (x ˆ x + b For ntercept b, set a=0 and fnd b by optmal average: ˆ b = y, Var[ b ˆ ] = For slope a, set

More information

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0 Chapter Problem Solutons. K γ.6, r f Ω For v, v.6 r + f ( 9.4) +. v 9..6 9.. v v v v v T ln and S v T ln S v v.3 8snωt (a) vs 3.33snωt 6 3.33 Peak dode current d (max) (b) P v s (max) 3.3 (c) T o π vo(

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

TLCOM 612 Advanced Telecommunications Engineering II

TLCOM 612 Advanced Telecommunications Engineering II TLCOM 62 Advanced Telecommuncatons Engneerng II Wnter 2 Outlne Presentatons The moble rado sgnal envronment Combned fadng effects and nose Delay spread and Coherence bandwdth Doppler Shft Fast vs. Slow

More information

On High Spatial Reuse Broadcast Scheduling in STDMA Wireless Ad Hoc Networks

On High Spatial Reuse Broadcast Scheduling in STDMA Wireless Ad Hoc Networks On Hgh Spatal Reuse Broadast Shedulng n STDMA Wreless Ad Ho Networks Ashutosh Deepak Gore Abhay Karandkar Informaton Networks Laboratory Department of Eletral Engneerng Indan Insttute of Tehnology - Bombay

More information

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state The alulaton of ternary vapor-lqud syste equlbru by usng P-R equaton of state Y Lu, Janzhong Yn *, Rune Lu, Wenhua Sh and We We Shool of Cheal Engneerng, Dalan Unversty of Tehnology, Dalan 11601, P.R.Chna

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

MULTICRITERION OPTIMIZATION OF LAMINATE STACKING SEQUENCE FOR MAXIMUM FAILURE MARGINS

MULTICRITERION OPTIMIZATION OF LAMINATE STACKING SEQUENCE FOR MAXIMUM FAILURE MARGINS MLTICRITERION OPTIMIZATION OF LAMINATE STACKING SEENCE FOR MAXIMM FAILRE MARGINS Petr Kere and Juhan Kos Shool of Engneerng, Natonal nversty of ruguay J. Herrera y Ressg 565, Montevdeo, ruguay Appled Mehans,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering Clusterng: Smlarty-Based Clusterng CS4780/5780 Mahne Learnng Fall 2013 Thorsten Joahms Cornell Unversty Supervsed vs. Unsupervsed Learnng Herarhal Clusterng Herarhal Agglomeratve Clusterng (HAC) Non-Herarhal

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations Applcaton of Nonbnary LDPC Codes for Communcaton over Fadng Channels Usng Hgher Order Modulatons Rong-Hu Peng and Rong-Rong Chen Department of Electrcal and Computer Engneerng Unversty of Utah Ths work

More information

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION Control 4, Unversty of Bath, UK, September 4 FAUL DEECION AND IDENIFICAION BASED ON FULLY-DECOUPLED PARIY EQUAION C. W. Chan, Hua Song, and Hong-Yue Zhang he Unversty of Hong Kong, Hong Kong, Chna, Emal:

More information

DOAEstimationforCoherentSourcesinBeamspace UsingSpatialSmoothing

DOAEstimationforCoherentSourcesinBeamspace UsingSpatialSmoothing DOAEstmatonorCoherentSouresneamspae UsngSpatalSmoothng YnYang,ChunruWan,ChaoSun,QngWang ShooloEletralandEletronEngneerng NanangehnologalUnverst,Sngapore,639798 InsttuteoAoustEngneerng NorthwesternPoltehnalUnverst,X

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Exercise 10: Theory of mass transfer coefficient at boundary

Exercise 10: Theory of mass transfer coefficient at boundary Partle Tehnology Laboratory Prof. Sotrs E. Pratsns Sonneggstrasse, ML F, ETH Zentrum Tel.: +--6 5 http://www.ptl.ethz.h 5-97- U Stoffaustaush HS 7 Exerse : Theory of mass transfer oeffent at boundary Chapter,

More information

X b s t w t t dt b E ( ) t dt

X b s t w t t dt b E ( ) t dt Consider the following correlator receiver architecture: T dt X si () t S xt () * () t Wt () T dt X Suppose s (t) is sent, then * () t t T T T X s t w t t dt E t t dt w t dt E W t t T T T X s t w t t dt

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Section 3. Measurement Errors

Section 3. Measurement Errors eto 3 Measuremet Errors Egeerg Measuremets 3 Types of Errors Itrs errors develops durg the data aqusto proess. Extrs errors foud durg data trasfer ad storage ad are due to the orrupto of the sgal y ose.

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne ( ( ( t as ( + ( + + ( ( ( Consder a sequence of ndependent random proceses t, t, dentcal to some ( t. Assume t = 0. Defne the sum process t t t t = ( t = (; t

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Chapter 1 Probability Theory. Definition: A set is a collection of finite or infinite elements where ordering and multiplicity are generally ignored.

Chapter 1 Probability Theory. Definition: A set is a collection of finite or infinite elements where ordering and multiplicity are generally ignored. Chapter 1 for BST 695: Speal Tops n Statstal Theory, Ku Zhang, 2011 Chapter 1 Probablty Theory Chapter 11 Set Theory Defnton: A set s a olleton of fnte or nfnte elements where orderng and multplty are

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

Assignment 2. Tyler Shendruk February 19, 2010

Assignment 2. Tyler Shendruk February 19, 2010 Assgnment yler Shendruk February 9, 00 Kadar Ch. Problem 8 We have an N N symmetrc matrx, M. he symmetry means M M and we ll say the elements of the matrx are m j. he elements are pulled from a probablty

More information

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm. Brander and Lews (1986) Lnk the relatonshp between fnanal and produt sdes of a frm. The way a frm fnanes ts nvestment: (1) Debt: Borrowng from banks, n bond market, et. Debt holders have prorty over a

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

ELG 5372 Error Control Coding. Claude D Amours Lecture 2: Introduction to Coding 2

ELG 5372 Error Control Coding. Claude D Amours Lecture 2: Introduction to Coding 2 ELG 5372 Error Control Coding Claude D Amours Leture 2: Introdution to Coding 2 Deoding Tehniques Hard Deision Reeiver detets data before deoding Soft Deision Reeiver quantizes reeived data and deoder

More information

425. Calculation of stresses in the coating of a vibrating beam

425. Calculation of stresses in the coating of a vibrating beam 45. CALCULAION OF SRESSES IN HE COAING OF A VIBRAING BEAM. 45. Calulaton of stresses n the oatng of a vbratng beam M. Ragulsks,a, V. Kravčenken,b, K. Plkauskas,, R. Maskelunas,a, L. Zubavčus,b, P. Paškevčus,d

More information

STK4900/ Lecture 4 Program. Counterfactuals and causal effects. Example (cf. practical exercise 10)

STK4900/ Lecture 4 Program. Counterfactuals and causal effects. Example (cf. practical exercise 10) STK4900/9900 - Leture 4 Program 1. Counterfatuals and ausal effets 2. Confoundng 3. Interaton 4. More on ANOVA Setons 4.1, 4.4, 4.6 Supplementary materal on ANOVA Example (f. pratal exerse 10) How does

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

The Concept of Beamforming

The Concept of Beamforming ELG513 Smart Antennas S.Loyka he Concept of Beamformng Generc representaton of the array output sgnal, 1 where w y N 1 * = 1 = w x = w x (4.1) complex weghts, control the array pattern; y and x - narrowband

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Inference-based Ambiguity Management in Decentralized Decision-Making: Decentralized Diagnosis of Discrete Event Systems

Inference-based Ambiguity Management in Decentralized Decision-Making: Decentralized Diagnosis of Discrete Event Systems 1 Inferene-based Ambguty Management n Deentralzed Deson-Makng: Deentralzed Dagnoss of Dsrete Event Systems Ratnesh Kumar Department of Eletral and Computer Engneerng, Iowa State Unversty Ames, Iowa 50011-3060,

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

A New Algorithm for the Design of Stable Higher Order Single Loop Sigma Delta Analog-to-Digital Converters

A New Algorithm for the Design of Stable Higher Order Single Loop Sigma Delta Analog-to-Digital Converters A ew Algorthm for the Desgn of Stale gher Order Sngle oop Sgma Delta Analog-to-Dgtal Converters S.R. Kadvar * **, D. Shmtt-andsedel *,. Klar ** * Semens AG, R&D, ZFE T ME, Munh Germany ** Tehnal Unversty

More information

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations TUTORIAL ON DIGITAL MODULATIONS Part 8a: Error probability A [2011-01-07] 07] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello 1 Part 8a: Error

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Magnitude Approximation of IIR Digital Filter using Greedy Search Method

Magnitude Approximation of IIR Digital Filter using Greedy Search Method Ranjt Kaur, Damanpreet Sngh Magntude Approxmaton of IIR Dgtal Flter usng Greedy Searh Method RANJIT KAUR, DAMANPREET SINGH Department of Eletrons & Communaton, Department of Computer Sene & Engnnerng Punjab

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question A1 a) The marginal cdfs of F X,Y (x, y) = [1 + exp( x) + exp( y) + (1 α) exp( x y)] 1 are F X (x) = F X,Y (x, ) = [1

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information