Descents of Permutations in a Ferrers Board

Size: px
Start display at page:

Download "Descents of Permutations in a Ferrers Board"

Transcription

1 Desces of Permuaios i a Ferrers Board Chuwei Sog School of Mahemaical Scieces, LMAM, Pekig Uiversiy, Beijig 0087, P. R. Chia Caherie Ya Deparme of Mahemaics, Texas A&M Uiversiy, College Saio, TX Mahemaics Subjec Classificaio: 05A05, 05A5, 05A30 Absrac The classical Euleria polyomials are defied by seig A ) σ S +desσ) k A,k k where A,k is he umber of permuaios of legh wih k desces. Le A, q) π S +desπ) q ivπ) be he iv q-aalogue of he classical Euleria polyomials whose geeraig fucio is well kow: 0 u A, q) [] q! ) k u k. 0.) [k] q! k I his paper we cosider permuaios resriced i a Ferrers board ad sudy heir desce polyomials. For a geeral Ferrers board F, we derive a formula i he form of permae for he resriced q-euleria polyomial A F, q) : σ F +desσ) q ivσ). If he Ferrers board has he special shape of a square wih a riagular board of size s removed, we prove ha A F, q) is a sum of s + erms, each saisfyig a equaio ha is similar o 0.). The we apply our resuls o permuaios wih bouded drop or excedace) size, for which he desce polyomial was firs sudied by Chug e al. Europea J. Combi., 37) 200): ). Our mehod preses a aleraive approach. Iroducio Le S deoe he symmeric group of order. Give a permuaio σ S, le Desσ) be he desce se of σ, i.e., Desσ) {i σ i > σ i+, i }, ad le desσ) Desσ) deoe he umber of desces of σ. For D {, 2,..., }, we deoe by α D) he umber Suppored i par by NSF Chia gra #07260 ad by he Scieific Research Foudaio for ROCS, Chiese Miisry of Educaio. Suppored i par by NSF gra #DMS ad NSA gra #H

2 of permuaios π S whose desce se is coaied i D, ad by β D) he umber of permuaios π S whose desce se is equal o D. I symbols, α D) : {σ S : Desσ) D}, β D) : {σ S : Desσ) D}. Le D {d, d 2,..., d k } where d < < d k. For coveiece, also le d 0 0 ad d k+. The he followig formulas for α D) ad β D) are well-kow see, for example, [4, p.69]): ) α D).) d, d 2 d,..., d k [ ] [ )] di β D)! de de,.2) d j+ d i )! d j+ d i where i, j) [0, k] [0, k] i he marix of equaio.2). A q-aalogue of he above formulas is give by cosiderig he permuaio saisic ivσ), where ivσ) i<j χσ i > σ j ). By coveio, he symbol χp ) is equivale o if he saeme P is rue ad 0 if o. See [4, Example 2.2.5]. Explicily, le α D, q) q ivπ), β D, q) q ivπ). π S :Desπ) D π S :Desπ)D The [ ] []! α D, q).3) d, d 2 d,..., d k [d ]![d 2 d ]! [ d k ]! [ ] [[ ]] di β D, q) []! de de,.4) [d j+ d i ]! d j+ d i where i, j) [0, k] [0, k] as before. Here we use he sadard oaio [ ] [] : q [] q! )/ q), []! : [][2] [], : k [k]![ k]! for he q-aalogue of he ieger, he q-facorial, ad he q-biomial coefficie, respecively. Someimes i is ecessary o wrie he base q explicily as i [] q, [] q!, ad [ ] k, ec., bu we q omi q i his paper as we do o use he aalogues of ay oher variables. The classical Euleria polyomials are defied by seig A ) σ S +desσ) A,k k, where A,k is called he Euleria umber ha deoes he umber of permuaios of legh wih k desces. Le A 0 ). The polyomials A ) have he geeraig fucio see e.g. Riorda [2]) k A ) u! 0 ) k u k k! k..5) eu ) 2

3 Le A, q) π S +desπ) q ivπ) be he iv q-aalogue of he Euleria polyomials. Saley [3] showed ha 0 u A, q) []! Eu ); q),.6) where Ez; q) 0 z []!. By simple maipulaios we ca see ha a equivale form of.6) is 0 u A, q) []! ) k u k..7) [k]! k Aleraive proofs of.7) have bee give by Gessel [9] ad Garsia [8]. I his paper we cosider permuaios wih resriced posiios, ad exed he above resuls o desce polyomials of permuaios i a Ferrers board. Tradiioally a permuaios σ S is also represeed as a 0-fillig of a by square board: Readig from lef o righ ad boom o op, we simply pu a i he ih row ad he jh colum wheever σ i j for i,...,. Give iegers 0 < r r 2 r, he Ferrers board of shape r,..., r ) is defied by F {i, j) : i, j r i }. I he followig we ideify a permuaio σ wih is 0-fillig represeaio, ad say ha σ is i a Ferrers board F if all he cells i, σ i ) are i F. I Secio 2 we exed he formulas.3) ad.4) o he se of permuaios o a fixed Ferrers shape wih rows ad colums, ad derive a permae formula for he resriced q-euleria polyomial A F, q) : +desσ) q ivσ). σ F I Secio 3 we focus o he Ferrers board ha is obaied from he square by removig a riagular board of size s, ad prove ha he resriced q-eularia polyomial is a sum of s + erms, each deermied by a equaio ha geeralizes.7). Fially i Secio 4, we apply our resuls o permuaios wih bouded drop or excedace) size, for which he desce polyomial was firs sudied by Chug, Claesso, Dukes ad Graham [4]. Our mehod preses a aleraive approach o he resuls i [4]. Noaio o laice pah Here we recall some oaio ad resuls abou he couig of laice pahs wih a geeral righ boudary. These resuls offer he mai ool o describe permuaios resriced i a Ferrers board. For a referece o laice pah couig, see Mohay []. A laice pah P is a pah i he plae wih wo kids of seps: a ui orh sep N or a ui eas sep E. If x is a posiive ieger, a laice pah from he origi 0, 0) o he poi x, ) ca be coded by a legh o-decreasig sequece x, x 2,..., x ), where 0 x i x ad x i is he x-coordiae of he ih orh sep. For example, le x 5 ad 3. The he pah EENENNEE is coded by 2, 3, 3). 3

4 I geeral, le s be a o-decreasig sequece wih posiive ieger erms s, s 2,..., s. A laice pah from 0, 0) o x, ) is oe wih he righ boudary s if x i < s i for i. If x s, he he umber of laice pahs from 0, 0) o x, ) wih he righ boudary s does o deped o x. Le P ah s) be he se of laice pahs from 0, 0) o s, ) wih he righ boudary s, ad LP s) be he cardialiy of P ah s). For a give sequece s s, s 2,..., s ), le LP s; q) q areap ), P P ah s) where areap ) i x i is he area eclosed by he pah P, he y-axis, ad he lie y. Hece LP s) LP s; ). I his paper we will also allow he eries s i o saisfy s s 2 s, i which case [ ] s + LP s; q) LP s, s,..., s ); q). I paricular LP +, +,, + ); q) [ 2 ]. I is also easy o see ha LP, 2,, ); q) C q), where C q) is Carliz-Riorda s q-caala umber [2]. 2 Desces of permuaios i Ferrers boards Le F be a Ferrers board wih rows ad colums, which is aliged o he op ad lef. Idex he rows from boom o op, ad colums from lef o righ. Le r i be he size of row i. Hece r r 2 r. For a se D {d, d 2,..., d k } wih d < < d k, le β F D) be he umber of permuaios i F wih he desce se D, ad α F D) be he umber of permuaios i F whose desce se is coaied i D. The iv q-aalogues of α F D) ad β F D) are defied by α F D, q) σ F :Desσ) D q ivσ), β F D, q) σ F :Desσ)D q ivσ). Clearly α F D, ) α F D) ad β F D, ) β F D). The Iclusio-Exclusio Priciple implies ha α F D, q) β F T, q), β F D, q) T D T D ) D T α F T, q). We shall show ha α F D, q) ad β F D, q) ca be expressed i erms of LP s, q), he area eumeraor of laice pahs wih proper righ boudaries ad leghs. Le s firs compue α F D, q). To ge a permuaio σ i F saisfyig Desσ) D, we firs choose x < x 2 < < x d such ha x i r i, ad pu a i he cell x i, i) for i d. The choose x d + < x d +2 < < x d2 such ha x i r i, ad pu a i he cell x i, i) for d < i d 2, ad so o. We say ha he cell i, j) is a -cell if i is filled wih a. I is clear ha a iversio of σ correspods o a souheas chai of size 2 i he fillig, i.e. a pair of -cells { x i, i ), x i2, i 2 ) } such ha i < i 2 while x i > x i2. 4

5 For i d, he -cell i he ih row i.e. y i) has exacly x i i may oher -cells lyig above i ad o is lef. Hece he -cell i he ih row coribues x i i o he saisic ivσ), ad all he -cells i he firs d rows coribued x ) + x 2 2) + + x d d ) o he saisic ivσ). Noe ha 0 x x 2 2 x d d, ad x i i < r i i +. Hece he umber of choices for he sequece x,..., x d ) is exacly he umber of laice pahs from 0, 0) o r d d +, d ) wih he righ boudary r, r 2,..., r d d + ), ad d i x i i) is he area of he correspodig laice pah. Therefore he firs d rows of F coribue a facor of LP d h,..., h d ); q) o α F D, q). Le h h, h 2,..., h ) where h i r i i +. Le he i-h block of F cosis of rows d i + o d i. Applyig he above aalysis o he i-h block of he Ferrers board F for i 2,..., k +, we ge ha Theorem 2. α F D, q) σ F :Desσ) D q ivσ) k LP di+ d i h di +,..., h di+ ); q) 2.) i0 where we use he coveio ha d 0 0 ad d k+. Accordigly, β F D, q) T D ) D T α F T, q) i <i 2 < <i j k ) k j f0, i )fi, i 2 )... fi j, k + ) where LP dj d i h di +,..., h dj ); q) if i < j fi, j) if i j 0 if i > j. 2.2) Followig he discussio of Saley [4, p.69], we obai ha Theorem 2.2 β F D, q) is he deermia of a k + ) k + ) marix wih is i, j) ery fi, j + ), 0 i, j k. Tha is, where fi, j) is give by 2.2). β F D, q) de[f i,j+ ] k 0 2.3) Whe he Ferrers board F is a square, h i i +, ad [ ] i LP j i h i+,..., h j ); q). j i 5

6 Theorems 2. ad 2.2 reduce o he classical resuls ha [ ] q ivπ) d, d 2 d,..., d k ad π S Desπ) D π S Desπ)D [[ ]] k q ivπ) di de. d j+ d i 0 For a geeral Ferrers board wih rows ad colums, le s check wo exreme cases: D {, 2,..., } ad D. Case. D {, 2,..., }: Theorem 2. yields he ideiy q ivσ) α F {, 2,..., }, q) σ F LP h i ); q) i [h i ]. 2.4) Noe ha permuaio filligs of a Ferrers board wih rows ad colums correspod o complee machigs of {,, 2} wih fixed ses of lef edpois ad righ edpois, ad a iversio of he permuaio is exacly a esig of he machig; See de Mier [6] ad Kasraoui [0]. To see his, for a give Ferrers board F wih rows ad colums, oe raverses he pah from he lower-lef corer o he op-righ corer, ad records he pah by is seps a, a 2,..., a 2 where a i E if he ih sep is Eas, ad a i N if he ih sep is Norh. Le L {i : a i E} ad R {i : a i N}. The 0-filligs of F cosidered here are i oe-o-oe correspodece wih he machigs of {,, 2} for which he se of lef edpois is L ad he se of righ edpois is R. For example, i he followig Ferrers board F, raversig from he lower-lef corer o he op-righ corer, we ge he sequece EENENENN. Thus L, 2, 4, 6 ad R 3, 5, 7, 8. The fillig give i he figure correspods o he machig {, 7), 2, 3), 4, 5), 6, 8)}. i I follows ha equaio 2.4) is exacly he geeraig fucio of he saisic e 2 M), which is he umber of esigs i a machig M, coued over all he machigs wih give ses of lef ad righ edpois. Tha is, q e2m) which maches he kow resuls i [7, 0]. M [h i ], i 6

7 Case 2, D : We have α F, q) β F, q) LP h,..., h ), q) Noe ha h, hece LP h,..., h ), q) iff r i i for all i, where he oly permuaio i he Ferrers board F wih o desces is he ideiy permuaio; oherwise P ah h,..., h ) ad LP h,..., h ), q) 0. Theorems 2. ad 2.2 ca be used o ge a formula for he joi disribuio of desσ) ad ivσ) over permuaios i F. Le A F, q) σ F +desσ) q ivσ). 2.5) Theorem 2.3 A F, q) ) perm), 2.6) where M is a marix whose i, j)-ery is give by LP j i+h i h j ); q) if i j M ij if i j + 0 if i > j +, ad perm) is he permae of he marix M. Proof. We have +desσ) q ivσ) σ F D {,2,..., } D {,2,..., } T {,2,..., } ) + D β F D, q) + D α F T, q) T {,..., k } < ) perm), T :T D D:T D ) D T α F T, q) ) D T + T + D T )+k T LP h)) where M is a marix as described i Theorem, ad D LP h)) deoes he righ-had side of 2.). Remark 2. We remark ha desces of permuaios i a Ferrers board provide a example of oe-depede deermiaal poi processes, as sudied by Borodi, Diacois ad Fulma []. Le χ be a fiie se. A poi process o χ is a probabiliy measure P o he 2 χ subses of χ. Oe simple way o specify P is via is correlaio fucios ρa), where for A χ, ρa) P {S : S A}. 7

8 A poi process is deermiaal wih kerel Kx, y) if ρa) de[kx, y)] x,y A. I is oe-depede if ρx Y ) ρx)ρy ) wheever disx, Y ) 2. Borodi e al. showed ha may examples from combiaorics, algebra ad group heory are deermiaal oe-depede poi processes, for example, he carries process, he desce se of uiformly radom permuaios, ad he desce se i Mallows model []. For hese hree cases, he poi processes are saioary, while he desce se of permuaios i a Ferrers board correspods o a deermiaal oe-depede poi process ha is o saioary. Explicily, for ay se D {d,..., d k } wih d < < d k, le P F D) β F D)/ i h i). Usig [, Theorem 7.5] we obai ha P F is a deermiaal, oe-depede process wih correlaio fucios ρd) α F D) de[kd i, d j )] k i,j ad wih correlaio kerel Kx, y) δ x,y + E ) x,y+, where E is he upper riagular marix E [ei, j)] i,j whose eries are give by LP j i h i+,..., h j ) if i < j ei, j) if i j 0 if i > j. 3 Permuaios i he rucaed board s For a geeral o-decreasig sequece of posiive iegers s, LP s, q) ca be compued by a deermia formula see, for example, []). Bu here is o simple closed formula. I he special cases ha he Ferrers board F is obaied from rucaig he square board by a riagular board i he corer, we ca describe he joi disribuio of he saisics desσ) ad ivσ) by ideiies of heir bi-variae geeraig fucios. Le s be he riagular board wih row size s, s,..., ). For s, le Λ,s be he rucaed board s cosisig of cells ha are lyig i 0 x, y ad above he lie y x s). I oher words, Λ,s is he Ferrers board whose row leghs are s, s +,...,,..., ). See he followig figure for Λ,s wih wih 7 ad s 4. Now le D {d,, d k } wih d < < d k. We shall compue he joi disribuio of des ad iv over all permuaios i Λ,s usig he formulas obaied i Secio 8

9 2. Agai le d 0 0 ad d k+. Le d i d i for i,..., k +, ad assume ha j is he paricular idex o make d j s < d j+ occur. Firs we compue α Λ,s D, q). Le r i be he size of row i i Λ,s. The Le h i r i i +. The r i { s + i if i s if s < i.. For 0 i < j, [ ] s + δi+ LP di+ d i h di +,..., h di+ ), q) LP δi+ s,..., s), q). 2. For i j, LP dj+ d j h dj +,..., h di+ ), q) LP δj+ s) s d j, s,..., d j+ + ), q) [ ] dj+ + δ j+ δ j+ [ ] dj. 3. For i > j, δ j+ LP di+ d i h di +,..., h di+ ), q) LP δi+ d i, d i,..., d i+ + ), q) [ ] di [ ] di. Summig over all permuaios σ wih Desσ) D i he Ferrers board Λ,s, we obai α Λ,s D, q) σ Λ,s Desσ) D q ivσ) + j [ ] s + δi i j [ s + δi i where D j ) represes he sequece δ j+,..., δ k+. Hece he Priciple of Iclusio-Exclusio leads o β Λ,s I, q) σ Λ,s Desσ)I q ivσ) D I [ ] j ) I D dj D j ) i ] k [ ] di ij + [ ] dj, D j ) [ s + δi + ]. 3.) 9

10 Le F,s q, ) be he bi-variae geeraig fucio of he saisics iv ad des over all permuaios i he board Λ,s. Tha is, F,s q, ) +desσ) q ivσ) σ Λ s + I I {,2,..., } σ Λ,s Desσ)I q ivσ). Le a; q) a) aq) aq ) ad a, q) i0 aqi ). Our mai resul here is a aalog of he formula.7). Explicily, we show ha F,s q, ) ca be expressed as a liear combiaio of s + erms, each of which saisfies a q-ideiy similar o.7). Theorem 3. For s, F,s q, ) 0. For > s, we have F,s q, ) θ 0 F 0),s q, ) + θ F ),s q, ) + + θ s F s),sq, ), 3.2) where θ k s are defied by he formal power series θ k z k k0 ) ), 3.3) z; q) s ad for each i 0,,..., s, he erm F i),sq, ) is give by he ideiy s+ z [ i]! F i),sq, ) ) k s+ i z k [k]! z k. 3.4) [k]! Proof. As before assume D {d, d 2,..., d k } wih d 0 0 ad d k+. Le j be he idex uiquely decided by d j s < d j+. For s +, by he equaio 3.) we have F,s q, ) [ ] j [ ] + I ) I D dj s + δi D j ) δ I {,2,..., } D I i i [ ] j [ ] dj s + δi ) I D + I D j ) D {,2,..., } D {,2,..., } i [ ] j dj D j ) +k ) k k0 i [ s + δi δ +δ δ k+ δ +...+δ j s<δ +...+δ j+ k I:D I ] ) D + D [ d j ]! j i [ s + ]! [δ ]! [δ k+ ]![ s ]!) j. 0

11 Le d i l ad γ F,s q, ) ) s l0 k 0 s l0 γ +k j δ +...+δ j l. The, δ +δ δ k+ lδ +...+δ j s<δ +...+δ j+ γ j j [ ] s + δi i Le θ 0 ad for l,..., s, θ l : j δ +...+δ j l [ l]! j i [ s + ]! [δ ]! [δ k+ ]![ s ]!) j. γ j k;δ j+ s+ l δ j+ +δ j δ k+ l j [ ] s + δi, i γ k+ j [ l]! [δ j+ ]! [δ k+ ]! 3.5) ad F l),s : ) k;τ 0 s+ l τ 0 +τ +...+τ k l γ k+ [ l]! [τ 0 ]! [τ k ]!. 3.6) The F,s q, ) θ 0 F 0),s q, ) + θ F ),s q, ) + + θ s F s),sq, ). We show ha θ l ad F,sq, l) ) saisfy 3.3) ad 3.4). Firs, observe ha for l > 0, θ l is he coefficie of z l i he formal power series [ ] ) j s + k γ z k 3.7) k j0 k Usig he q-aalog of he biomial heorem k0 a; q) k q; q) k z k az; q) z; q), where a; q) a) aq) aq ) ad a, q) i0 aqi ), we have ) j θ l z l [ s + k ][ s + k 2] [ s] γ z k [k]! l0 j0 k ) j γ q s z; q) ) z; q) j0 ) γ ). z; q) s

12 This proves he formula 3.3). To ge he formula 3.4), observe ha 3.6) ca be wrie as F,s l) [ l]! ) z [z l ] γ τ 0 [τ 0 ]! γ k z τ [τ]! )k. This leads o he ideiy s+ z l [ l]! τ 0 s+ l F l),sq, ) ) k0 k s+ l τ z k [k]! z k. [k]! I he case ha s 0, F,s q, ) F,s 0) q, ) A, q), ad equaio 3.4) reduces o he well-kow ideiy.7) by leig u z. k 4 Permuaios wih bouded drop or excedace size Permuaios wih bouded drop size is relaed o he bubble sor ad sequeces ha ca be raslaed io jugglig paers [5], whose eumeraio was firs sudied by Chug, Claesso, Dukes, ad Graham [4]. For a permuaio σ, we say ha i is a drop of σ if σ i < i ad he drop size is i σ i. Similarly, we say ha i is a excedace of σ if σ i > i, ad he excedace size is σ i i. I is well-kow ha he umber of excedaces is a Euleria saisic, i.e., has he same disribuio as des over he se of permuaios. Followig [4], we use maxdropσ) o deoe he maximum drop of σ, maxdropσ) : max{i σ i i }, ad similarly, maxexcσ) o deoe he maximum excedace size of σ, maxexcσ) : max{σ i i i }. Le B,k {σ S maxdropσ) k}. I is easy o see ha B,k k!k + ) k : Jus oe ha here are k + ) k ways o deermie σ,, σ k+ i he correc order, oe afer aoher, ad he remaiig is clear e.g., see [5, Thm.]). I [4], Chug e al. defied he k-maxdrop desce polyomials B,k ) : desσ). σ B,k ad obaied recurreces ad a formula for he geeraig fucio B k, z) : 0 B,k)z. I his secio, we will use he aalysis i he previous secio o derive a varia geeraig fucio for B k, z). Explicily, we ge a exac formula for E k, z) : B,k )z desσ) z. 4.) k k σ B,k 2

13 Firs, le B,k {σ S maxexcσ) k}. I is clear ha he map a a 2... a + a ) + a )... + a ) is a bijecio from B,k o B,k ha preserves he saisic desσ) ad ivσ). I follows ha B,k ) desσ) ad hece E k, z) k desσ) z. σ B,s σ B,k Noe ha B,k is he se of permuaios σ S saisfyig σ i i + k. I is easy o check ha i is exacly he se of permuaios o he rucaed board Λ, k. Hece for k +, we have σ B,k +desσ) q ivσ) F, k q, ) ad Theorem 3. wih s k gives a descripio of F, k. To obai he ordiary geeraig fucio for B,k ), se q. As before, le γ / ). The Formula 3.5) becomes he followig equaio for k + : k B,k ) ) l0 j δ +...+δ j l γ j j ) k + δi i p;δ j+ > k l δ j+ +δ j δ p+ l Noe ha from he aalysis, he upper limi of l ca iclude k. ) Le θ k) 0 ad for l, θ k) l : j;δ +...+δ j l >0 γ j j ) k + δi, i γ p+ j l)! δ j+! δ k+!. ad c k) l : τ 0 > k l ) l γ τ 0 τ + +τp l τ 0 τ i ) l γ p τ0, for k > 0. τ,..., τ p For k 0, le c 0) δ,0. The for ay fixed k 0 ad k +, we have k B,k ) ) l0 θ k) l c k) l, 4.2) Leig q ad k s i equaio 3.3), we obai Θ k z) θ k) z ) ). 4.3) z) k+ 0 For he coefficie c k) i, usig Formula 3.5) wih s 0, we ge ha ) γ p A ) τ,..., τ p ), τ + +τp τ i 3

14 where A ) is he classical Euleria polyomial defied by A ) σ S +desσ), > 0. By coveio, we se A 0 ). I follows ha for k > 0, c k) γ p> k ) k A p ) p ) p γ ) Ap ) p ) p. 4.4) p0 Wriig as a geeraig fucio, we obai ha for k > 0, C k z) k c k) k z γ p0 A p ) ) p k ) z p which leads o C k z) k p0 A p ) ) p z p k z) p+ p ) )z. 4.5) p For k 0, C 0 z). Observe ha equaio 4.2) is rue for k as well. I fac i is equivale o he ideiy k ) k A k ) ) k p A p ), p p0 which ca be readily checked by usig he followig expressio of he Euleria polyomial, see, for example [3, Lemma 4., p.57], Therefore for all k, A ) ) + j j, 0. B,k ) j0 ) k l0 θ k) l c k) l, Muliplyig boh sides by z ad summig over k, we have obaied he geeraig fucio E k, z). Theorem 4. Le E k, z) B,k )z k k σ B,k desσ) z. The E 0, z) / z) ad for k, E k, z) Θ k )z)c k )z), 4.6) 4

15 where Θ k z) ad C k z) are give i formulas 4.3) ad 4.5). Explicily, E k, z) k A p ) p0 z p k )z) p+ Example 4. For he case k, formula 4.7) gives E, z) p ) ) ) p z p )z) k+. 4.7) )z )z) 2 z )z) z2 )z). Comparig wih equaio 5) i [4], ad oig ha he summaio of B k z, y) i [4] sars from 0, oe checks easily ha he wo formulas agree wih each oher. Refereces [] Alexei Borodi, Persi Diacois, ad Jaso Fulma, O addig a lis of umbers ad oher oe-depede deermiaal processes, Bull. Amer. Mah. Soc. N.S.). America Mahemaical Sociey. Bullei. New Series, 474): , 200. [2] Leoard Carliz ad Joh Riorda. Two eleme laice permuaio umbers ad heir q-geeralizaio. Duke Mah. J., 3:37 388, 964. [3] Charalambos A. Charalambides. Eumeraive combiaorics. CRC Press Series o Discree Mahemaics ad is Applicaios. Chapma & Hall/CRC, Boca Rao, FL, [4] Fa Chug, Aders Claesso, Mark Dukes, ad Roald Graham. Desce polyomials for permuaios wih bouded drop size. Europea J. Combi., 37): , 200. [5] Fa Chug ad Ro Graham. Primiive jugglig sequeces. Amer. Mah. Mohly, 53):85 94, [6] Aa de Mier. O he symmery of he disribuio of k-crossigs ad k-esigs i graphs. Elecro. J. Combi., 3):Noe 2, 6 pp. elecroic), [7] M. de Saie-Caherie. Couplages e pfaffies e combiaoire, physique e iformaique. Maser s hesis, Uiversiy of Bordeaux I, 983. [8] Adriao M. Garsia. O he maj ad iv q-aalogues of Euleria polyomials. Liear ad Muliliear Algebra, 8):2 34, 979/80. [9] Ira M. Gessel. Geeraig fucios ad eumeraio of sequeces. PhD hesis, M.I.T., 977. [0] Aisse Kasraoui. Asces ad desces i 0-filligs of moo polyomioes. Europea J. Combi., 3):87 05, 200. [] Sri Gopal Mohay. Laice pah couig ad applicaios. Academic Press [Harcour Brace Jovaovich Publishers], New York, 979. Probabiliy ad Mahemaical Saisics. 5

16 [2] Joh Riorda. A iroducio o combiaorial aalysis. Wiley Publicaios i Mahemaical Saisics. Joh Wiley & Sos Ic., New York, 958. [3] Richard P. Saley. Biomial poses, Möbius iversio, ad permuaio eumeraio. J. Combiaorial Theory Ser. A, 203): , 976. [4] Richard P. Saley. Eumeraive combiaorics. Vol., volume 49 of Cambridge Sudies i Advaced Mahemaics. Cambridge Uiversiy Press, Cambridge, 997. Wih a foreword by Gia-Carlo Roa, Correced repri of he 986 origial. 6

Descents of Permutations in a Ferrers Board

Descents of Permutations in a Ferrers Board Descets of Permutatios i a Ferrers Board Chuwei Sog School of Mathematical Scieces, LMAM, Pekig Uiversity, Beijig 0087, P. R. Chia Catherie Ya Departmet of Mathematics, Texas A&M Uiversity, College Statio,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Some identities related to reciprocal functions

Some identities related to reciprocal functions Discree Mahemaics 265 2003 323 335 www.elsevier.com/locae/disc Some ideiies relaed o reciprocal fucios Xiqiag Zhao a;b;, Tiamig Wag c a Deparme of Aerodyamics, College of Aerospace Egieerig, Najig Uiversiy

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Manipulations involving the signal amplitude (dependent variable).

Manipulations involving the signal amplitude (dependent variable). Oulie Maipulaio of discree ime sigals: Maipulaios ivolvig he idepede variable : Shifed i ime Operaios. Foldig, reflecio or ime reversal. Time Scalig. Maipulaios ivolvig he sigal ampliude (depede variable).

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Enumeration of Sequences Constrained by the Ratio of Consecutive Parts

Enumeration of Sequences Constrained by the Ratio of Consecutive Parts Eumeraio of Seueces Cosraied by he Raio of Cosecuive Pars Sylvie Coreel Suyoug Lee Carla D Savage November 13, 2004; Revised March 3, 2005 Absrac Recurreces are developed o eumerae ay family of oegaive

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Descents of Permutations in a Ferrers Board

Descents of Permutations in a Ferrers Board Desces of Permuaos a Ferrers Board Chuwe Sog School of Mahemacal Sceces, LMAM, Pekg Uversy, Bejg 0087, P. R. Cha Cahere Ya y Deparme of Mahemacs, Texas A&M Uversy, College Sao, T 77843-3368 Submed: Sep

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials Absrac ad Applied Aalysis Volume 04, Aricle ID 696454, 0 pages hp://dx.doi.org/0.55/04/696454 Research Aricle O a Class of -Beroulli, -Euler, ad -Geocchi Polyomials N. I. Mahmudov ad M. Momezadeh Easer

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

arxiv: v1 [math.co] 30 May 2017

arxiv: v1 [math.co] 30 May 2017 Tue Polyomials of Symmeric Hyperplae Arragemes Hery Radriamaro May 31, 017 arxiv:170510753v1 [mahco] 30 May 017 Absrac Origially i 1954 he Tue polyomial was a bivariae polyomial associaed o a graph i order

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

A Generalization of Hermite Polynomials

A Generalization of Hermite Polynomials Ieraioal Mahemaical Forum, Vol. 8, 213, o. 15, 71-76 HIKARI Ld, www.m-hikari.com A Geeralizaio of Hermie Polyomials G. M. Habibullah Naioal College of Busiess Admiisraio & Ecoomics Gulberg-III, Lahore,

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS Aales Uiv. Sci. Budapes., Sec. Comp. 44 05) 53 64 ON THE -TH ELEMENT OF A SET OF POSITIVE INTEGERS Jea-Marie De Koick ad Vice Ouelle Québec, Caada) Commuicaed by Imre Káai Received July 8, 05; acceped

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Discrete Mathematics. Independence polynomials of circulants with an application to music

Discrete Mathematics. Independence polynomials of circulants with an application to music Discree Mahemaics 309 (2009 2292 2304 Coes liss available a ScieceDirec Discree Mahemaics joural homepage: wwwelseviercom/locae/disc Idepedece polyomials of circulas wih a applicaio o music Jaso Brow,

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION U.P.B. ci. Bull. eries A Vol. 69 No. 7 IN 3-77 DETERMINATION OF PARTIULAR OLUTION OF NONHOMOGENEOU LINEAR DIFFERENTIAL EQUATION BY DIRETE DEONVOLUTION M. I. ÎRNU e preziă o ouă meoă e eermiare a soluţiilor

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017 Deparme of Ecoomics The Ohio Sae Uiversiy Ecoomics 8723 Macroecoomic Theory Problem Se 2 Professor Sajay Chugh Sprig 207 Labor Icome Taxes, Nash-Bargaied Wages, ad Proporioally-Bargaied Wages. I a ecoomy

More information

Integrality Gap for the Knapsack Problem

Integrality Gap for the Knapsack Problem Proof, beiefs, ad agorihms hrough he es of sum-of-squares 1 Iegraiy Gap for he Kapsack Probem Noe: These oes are si somewha rough. Suppose we have iems of ui size ad we wa o pack as may as possibe i a

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS UNIT : ANALYTICAL METHODS FOR ENGINEERS Ui code: A// QCF Level: Credi vale: OUTCOME TUTORIAL SERIES Ui coe Be able o aalyse ad model egieerig siaios ad solve problems sig algebraic mehods Algebraic mehods:

More information

A NEW q-analogue FOR BERNOULLI NUMBERS

A NEW q-analogue FOR BERNOULLI NUMBERS A NEW -ANALOGUE FOR BERNOULLI NUMBERS O-YEAT CHAN AND DANTE MANNA Absrac Ispired by, we defie a ew seuece of -aalogues for he Beroulli umbers uder he framewor of Srod operaors We show ha hey o oly saisfy

More information

Prakash Chandra Rautaray 1, Ellipse 2

Prakash Chandra Rautaray 1, Ellipse 2 Prakash Chadra Rauara, Ellise / Ieraioal Joural of Egieerig Research ad Alicaios (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue, Jauar -Februar 3,.36-337 Degree Of Aroimaio Of Fucios B Modified Parial

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Sigals ad Sysems Lecure 8 March 2, 2010 6.003: Sigals ad Sysems Mid-erm Examiaio #1 Tomorrow, Wedesday, March 3, 7:30-9:30pm. No reciaios omorrow. Coverage: Represeaios of CT ad DT Sysems Lecures

More information

On The Generalized Type and Generalized Lower Type of Entire Function in Several Complex Variables With Index Pair (p, q)

On The Generalized Type and Generalized Lower Type of Entire Function in Several Complex Variables With Index Pair (p, q) O he eeralized ye ad eeralized Lower ye of Eire Fucio i Several Comlex Variables Wih Idex Pair, Aima Abdali Jaffar*, Mushaq Shakir A Hussei Dearme of Mahemaics, College of sciece, Al-Musasiriyah Uiversiy,

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

ECE 350 Matlab-Based Project #3

ECE 350 Matlab-Based Project #3 ECE 350 Malab-Based Projec #3 Due Dae: Nov. 26, 2008 Read he aached Malab uorial ad read he help files abou fucio i, subs, sem, bar, sum, aa2. he wrie a sigle Malab M file o complee he followig ask for

More information

Zhi-Wei Sun and Hao Pan (Nanjing)

Zhi-Wei Sun and Hao Pan (Nanjing) Aca Arih. 5(006, o., 39. IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su ad Hao Pa (Najig Absrac. We esabish wo geera ideiies for Beroui ad Euer poyomias, which are of a ew ype ad have

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information