Enumeration of Sequences Constrained by the Ratio of Consecutive Parts

Size: px
Start display at page:

Download "Enumeration of Sequences Constrained by the Ratio of Consecutive Parts"

Transcription

1 Eumeraio of Seueces Cosraied by he Raio of Cosecuive Pars Sylvie Coreel Suyoug Lee Carla D Savage November 13, 2004; Revised March 3, 2005 Absrac Recurreces are developed o eumerae ay family of oegaive ieger seueces λ =(,,λ ) saisfyig he cosrais: λ 2 λ 1 λ 0, a 1 a 2 a 1 a for a give cosrai seuece a =a 1,,a of posiive iegers They are applied o derive ew couig formulas, o reveal ew relaioships bewee families, ad o give simple proofs of he rucaed lecure hall ad ai-lecure hall heorems Nous développos des récurreces pour éumérer des familles de suies d eiers λ =(,,λ ) saisfaisa les coraies λ 2 λ 1 λ 0, a 1 a 2 a 1 a pour ue suie d eiers posiifs doée a =a 1,,a Ces récurreces permee de dériver de ouvelles formules déuméraio, de révéler de ouvelles relaios ere ceraies familles, e de doer des preuves simples des héorèmes des pariios Lecure Hall rouées e des composiios Lecure Hall rouées 1 Iroducio We cosider he problem of eumeraig oegaive ieger seueces λ =(,,λ ) saisfyig he cosrais: λ 2 λ 1 λ 0, (1) a 1 a 2 a 1 a CNRS PRiSM, UVSQ, 45 Aveue des Eas-Uis, Versailles, Frace (syl@prismuvsfr) Compuer Sciece, Norh Carolia Sae Uiversiy, Box 8206, Raleigh, NC 27695, USA (slee7@uiycsuedu) Research suppored i par by NSF gra DMS Compuer Sciece, Norh Carolia Sae Uiversiy, Box 8206, Raleigh, NC 27695, USA (savage@csccsuedu) Research suppored i par by NSF gras DMS ad INT

2 for a give cosrai seuece a =a 1,,a of posiive iegers We refer o a seuece λ =(,,λ ) of oegaive iegers as a composiio io oegaive pars If he pars of λ are oicreasig, he λ is a pariio Pariios ad composiios are commoly defied by he se of pars allowed, he umber of occurreces of a par, or he differece bewee cosecuive pars I coras, he composiios saisfyig (1) are cosraied by he raio of cosecuive pars ad we refer o hem as raio composiios Geeraig fucios are ow for raio composiios oly for some special cosrai seueces, a, icludig: a =1, 1,,1: ordiary pariios 1; a =1, 2, 4,,2 1 : Cayley composiios 8, 2, 14, 4; a =r 1,r 2,,r,1: Hicerso pariios 13; a =, 1,,1: lecure hall pariios 5, 6, 7, 15, 16, 3; a =1, 2,,: ai-lecure hall composiios 9; a =1, 2, 1, 2,, 2 ( 1) : oe-wo composiios 11; a =, 1, + 1: rucaed lecure hall pariios 10; a = +1,,,: rucaed ai-lecure hall composiios 10 I his paper, we iroduce a commo approach for he eumeraio of raio composiios by usig as a saisic a boud o he size of he firs par This geeralizes he eumeraio of ordiary pariios via he Gaussia polyomials I Secio 2, we derive a recurrece for he geeraig fucio of ay family of raio composiios wih firs par bouded We use his o derive ew couig formulas ad heir -aalogs Amog hese, we discover a family of polyomials wih several ieresig properies which arise i he eumeraio of lecure hall pariios I addiio, we fid a fucioal relaioship bewee he geeraig fucios for he raio composiios cosraied by a seuece a 1,a 2,,a ad hose cosraied by is reverse seuece a,a 1,a 1 This reveals for he firs ime he relaioship bewee, eg, lecure hall pariios ad ai-lecure hall composiios ad bewee Hicerso pariios ad Cayley composiios I Secio 3, we derive a differe recurrece for he eumeraio of raio composiios wih firs par bouded By allowig he boud o approach ifiiy, we ge a recurrece for he geeraig fucio of ay family of raio composiios wih firs par ubouded As oe coseuece, we discover ew easy proofs of he (rucaed) lecure hall ad (rucaed) ai-lecure hall heorems I coras o earlier proofs, where derivig a recurrece was a challege, here he recurrece is geeric ad he wor is moved eirely o sadard -series maipulaio i a iducio proof 2

3 2 Eumeraio of raio composiios wih firs par bouded To build a recurrece, we firs cosider he case where he cosrai seuece a i (1) saisfies a 1,,a =s,s 1,,s 1 for a ifiie seuece of posiive iegers {s i } For 0, le S be he se of composiios λ =(,λ 2,,λ ) saisfyig s λ 2 s 1 λ 1 s 2 λ s 1 0 (2) Le S (j,i) be he se of λ S wih js + i ad le S (j,i) () = λ λ S (j,i) Theorem 1 For 0, j 0, ad0 i s, S (j,i) () = 1 if =0or j = i =0,else S (j 1,s) () if i =0,else S (j,i 1) ()+ js+i S (j, is 1/s ) 1 () oherwise Proof The heorem is clearly rue for = 0 ad for j = i =0 Le(, j, i) saisfy>0, (j, i) > (0, 0) If i = 0, he j>0adjs +i = js =(j 1)s +s, so he heorem is rue Assume, he, ha 1 i s By defiiio, λ S (j,i) if ad oly if eiher λ S (j,i 1) λ S ad = js + i Bu (js + i, λ 2,,λ ) S ifadolyif(λ 2,,λ ) S 1 ad (js + i)/λ 2 s /s 1 Tha is, λ 2 s 1 (js + i) =js 1 + i s 1 s s So, sice λ 2 is a ieger, λ 2 js 1 + i s 1 s Noe, sice 1 i s, is 1 /s s 1,so(λ 2,,λ ) S (j, is 1/s ) 1 Remar 1 For ordiary pariios, P, io oegaive pars, {s i } = {1} ad is 1 /s = i, so he recurrece of Theorem 1 reduces o he recurrece P (j,i) () =P (j,i 1) he familiar recurrece for Gaussia polyomials ()+ j+i P (j,i) 1 (), The lecure hall pariios 5, L, are hose composiios, ecessarily pariios, saisfyig λ 2 1 λ 1 2 λ 1 or 0 (3) The L = S wih {s i } = {i} i (2) Sice i( 1)/ = i 1 we ge he followig from Theorem 1 3

4 Corollary 1 For 0, j 0, ad0 i, lel (j,i) () be he geeraig fucio for he lecure hall pariios λ L wih j + i L (j,i) = 1 if =0or j = i =0,else L (j 1,) () if i =0,else L (j,i 1) ()+ j+i L (j,i 1) 1 () oherwise For fixed >0, ay 0 ca be wrie uiuely i he form = j + i, where 0 i< So, we ge a ice couig formula for lecure hall pariios wih larges par a mos Theorem 2 For 0, j 0, ad0 i, he umber of lecure hall pariios i L wih firs par bouded by j + i is L (j,i) =(j +1) i (j +2) i Proof If = 0 he i =0,so(j +1) 0 0 (j +2) 0 =1 Ifi = j = 0, he (1) 0 (2) 0 =1 Le (, j, i) saisfy>0, (j, i) > (0, 0) ad assume he heorem is rue for (,i,j ) < (, i, j) If i = 0, he j>0ad by Corollary 1, L (j,0) (j) (j +1) =(j +1) (j +2) 0 Oherwise, by Corollary 1, L (j,i) (1) = L (j 1,) (1), which, by iducio, is (1) = L (j,i 1) (1) + L (j,i 1) 1 (1) = (j +1) i+1 (j +2) i 1 +(j +1) i (j +2) i 1 = (j +1) i (j +2) i I 5, i was show ha he geeraig fucio for he lecure hall pariios, L is: 1 L () = (; 2, (4) ) where (a; ) =(1 a)(1 a) (1 a 1 ) Le D be he se of pariios io disic pars ad le O be he se of pariios io odd pars The ses D ad O have geeraig fucios D() =( ; ) ad O() =(; 2 ) 1, respecively Sice lim L = D, he Lecure Hall Theorem (4) is a fiie versio of Euler s Theorem which says ha D() = O() The polyomial L (j) () =L (j,0) () ca be viewed as a -aalog of (j +1) ha ecapsulaes a furher fiiizaio of Euler s Theorem i he followig sese Corollary 2 The lecure hall polyomials L (j) () saisfy (i) L (j) (1) = (j +1), (ii) lim L (j) () =( ; ),ad (iii) lim j L (j) () =(; 2 ) 1 4

5 Proof The firs euaio follows from Theorem 2 The secod ad hird follow from he observaios ha lim L (j) = D ad lim j L (j) = L The ai-lecure hall composiios 9, A, are hose seueces saisfyig 1 λ 2 2 λ 1 1 λ 0 (5) I was show i 9 ha A has geeraig fucio A () =(, ) /( 2 ; ) The cosrai seuece for A, i he sese of (1), is 1, 2,,, he reverse of he cosrai seuece, 1,,1 for L We iroduce some oaio o describe he relaioship bewee heir geeraig fucios Le Sa 1,a 2,,a be he se of composiios λ =(,λ 2,,λ ) saisfyig a 1 λ 2 a 2 λ 1 a 1 λ a 0, (6) wih S (j,i) a 1,a 2,,a deoig hose wih ja 1 + i ad le S (j) a 1,a 2,,a = S (j,0) a 1,a 2,,a Theorem 3 The geeraig fucios for S (j) a 1,a 2,,a ad S (j) a,a 1,,a 1 saisfy: S (j) a 1,a 2,,a () = j(a 1+a 2 + +a ) S (j) a,a 1,,a 1 (1/) Proof The resul follows if we show ha λ S (j) a,a 1,,a 1 if ad oly if µ S (j) a 1,a 2,,a, where µ is defied by µ i = js i λ +1 i So, assume λ S (j) a,a 1,,a 1, ha is, ja ad a i λ i a i+1 λ +1 i for 1 i The for 1 i, λ +1 i a i a i+1 a i+1 a i+2 a 1 a a j = a i j, so µ i = ja i λ +1 i 0 Also, µ 1 = ja 1 λ saisfies µ 1 ja 1 To show µ S (j) a 1,a 2,,a, i remais o show a i+1 µ i a i µ i+1 : a i+1 µ i = a i+1 (ja i λ +1 i )=ja i a i+1 a i+1 λ +1 i ja i a i+1 a i λ i = a i µ i+1 The coverse is similar Remar 2 The proof of Theorem 3 also shows ha for 1 i, λ S (j) a,a 1,,a 1 if ad oly if µ S (j+1) a 1,a 2,,a adµ a i Corollary 3 Lecure hall pariios, L (j), wih firs par bouded by j ad ai-lecure hall composiios, A (j) wih firs par bouded by j have he followig relaioship: A (j) () = j(+1)/2 L (j) (1/) 5

6 Proof Observe ha A (j) Theorem 3 = S (j) 1, 2,,adL (j) This gives a couig formula for ai-lecure hall composiios = S (j), 1,,1 ad apply Corollary 4 The umber of ai-lecure hall composiios i A wih firs par bouded by j is A (j) (1) = (j +1) Proof By Theorem 3, A (j) (1) = L (j) (1) By defiiio, L (j) () = L (j,0) (), ad by Corollary 2, L (j,0) (1) = (j +1) (j +2) 0 As aoher example of he applicaio of Theorems 1 ad 3, we cosider Hicerso pariios H (for r = 2) ad Cayley composiios, C H is he se of composiios io oegaive pars saisfyig λ i 2λ i+1 ad C is he se of composiios io oegaive pars saisfyig λ i λ i+1 /2 So, H = S2 1, 2 2,,1 ad C = S1, 2, 4,,2 1 Le B() be he umber of biary pariios of, ie, he umber of pariios of io powers of 2 I is easy o chec ha B(0) = B(1) = 1, B(2) =B(2 2) + B(), ad B(2) =B(2 +1) Theorem 4 For 0 i<2 1, he umber of Hicerso pariios wih firs par a mos i is H (0,i) = B(2i); wihfirsparamos2 1 + i is H (1,i) = B(2 +2i); wihfirspara mos 2 is H (2,0) = B(2 +1 ) 1 Proof Use he recurrece of Theorem 1 wih he observaio ha sice {s i } = {2 i 1 } for Hicerso pariios, is i 1 /s i = i/2 The heorem follows by iducio usig he properies of B() Cayley s Theorem 8 says ha he umber of composiios i C wih posiive pars ad wih firs par 1 is eual o he umber of pariios of io pars from he se {1, 1, 2, 4,,2 2 } If we apply Theorem 3 ad Remar 2, we ge a geeralizaio ad reformulaio of Cayley s Theorem Theorem 5 For 0 i<2 1, he umber of Cayley composiios io posiive pars wih firs par 1 ad las par a leas 2 1 i is B(2i) The umber wih firs par a mos 2 ad las par a leas 2 i is B(2 +2i) Seig i =2 1 1 i Theorem 5 gives: Corollary 5 The umber of Cayley composiios io posiive pars wih firs par 1 is B(2 2); wihfirsparamos2isb(2 +1 2) These resuls ca be geeralized o r ary Hicerso pariios ad Cayley composiios For oher families of raio composiios, we ca expec Theorem 1 o be mos useful for seueces {s i } where is 1 /s has a ice form 6

7 As ges larger, solvig for H () ges harder This is i spie of he fac ha H has he ice geeraig fucio H () = =1 (1 2 1 ) 1 13 However, we will see i he () has a ice geeraig fucio whe j = 1, here is hope ha () will also ex secio ha if S (j) lim j S (j) I he ex secio we show how o ge a recurrece for he geeraig fucio of raio composiios whe he firs par uresriced 3 Eumeraio of raio seueces wih firs par ubouded We defie wo sligh variaios of he se S (j) a 1,a 2,,a below: P (j) a 1,a 2,,a ={λ S (j) a 1,a 2,,a λ 1}; R (j) a 1,a 2,,a ={λ S (j) a 1,a 2,,a <ja 1 } I P (j), all pars mus be posiive, whereas i R (j) pars ca be oegaive, bu he boud o he firs par becomes sric Theorem 6 For j 1, P (j) a 1,a 2,,a () = (a 1+a 2 + +a ) P (1) a +1,,a ()P (j 1) a 1,,a () Proof Le λ P (j) a 1,a 2,,a adle be he maximum idex such ha λ >a The ( a 1,λ 2 a 2,,λ a ) P (j 1) a 1,,a ad(λ +1,,λ ) P (1) a +1,,a Noe ha P (1) () ca be compued usig Theorem 1 as P (1) s,,s 1 () =S (1,0) s 1,,s () S (1,0) 1 s 2,,s () Thus, aig he limi as j i Theorem 6 gives a recurrece for couig he seueces λ i P a 1,a 2,,a wihou a resricio o he size of he firs par Theorem 7 For, P a 1,a 2,,a () = (a 1+a 2 + +a ) P (1) a +1,,a ()P a 1,a 2,,a () Remar 3 Theorem 6 ad is proof are valid wih all occurreces of P replaced by R We eed oly chage he saeme le be he maximum idex such ha λ >a o le be he maximum idex such ha λ a +1 Similarly, Theorem 7 holds wih P replaced by R 7

8 Theorem 7 ca be used o fid a explici form for he geeraig fucio i families where P (1) a 1,,a (orr (1) a 1,,a ) is ow Remar 4 For ordiary pariios io posiive pars, a i =1,soP a 1,a 2,,a () = (; ) 1 ad P (1) a +1,,a () =, ad he recurrece of Theorem 7 becomes 1 =, (; ) (; ) which cous pariios io posiive pars by summig over he umber,, of pars greaer ha 1 The pariios L, = P, 1,, +1 are called rucaed lecure hall pariios wih all pars posiive The composiios A, = R +1, +2,, are called rucaed ai-lecure hall composiios wih oegaive pars These were iroduced i 10 where heir geeraig fucios were show o be L, () = (+1 2 ) A, () = ( +1 ; ) ( 2 +1 ; ), (7) ( +1 ; ) ( 2( +1) ; ) (8) We ow show how Theorem 7 ca be used o give simple proofs of he (Trucaed) Lecure Hall ad (Trucaed) Ai-lecure Hall Theorems We begi by compuig P (1), 1,, +1() forl, ad R (1) +1, +2,,() fora, Lemma 1 For 1, he geeraig fucio for rucaed lecure hall pariios io posiive pars wih firs par less ha or eual o is P (1), 1,, +1() = (+1 2 ) Proof We show P (1), 1,, +1 is he se of pariios io disic pars from {1, 2,,}, which has he geeraig fucio claimed If λ P (1), 1,, +1, 1 / λ 2 /( 1) λ /( +1) > 0, so he pars of λ are disic ad bouded by Coversely, if λ i λ i+1 +1 for 1 i 1ad, he λ i+1 i, so λ i ( i) (λ i+1 +1)( i) λ i+1 ( i)+ i λ i+1 ( i)+λ i+1 λ i+1 ( i +1), ha is, λ i /( i +1) λ i+1 /( i), so λ P (1), 1,, +1 Lemma 2 For 1, he geeraig fucio for rucaed ai-lecure hall composiios io oegaive pars wih firs par less ha +1 is R (1) +1, +2,,() = 8

9 Proof If λ R (1) +1, +2,,, he for 1 i, λ i < + i ad λ i 1 λ i ( + i 1)/( + i), so λ i 1 λ i λ i (( + i 1)/( + i) 1) = λ i /( + i) > 1 Thus, λ i 1 λ i 0adλis a pariio io a mos pars of size a mos Coversely, ay such pariio is i R (1) +1, +2,, Corollary 6 ( ) L (j), =(j) = A (j), Proof By iducio I is obviously rue for j = 0 The for j>0, by Theorem 6 ad Lemma 2, ( )( ) L (j), (1) = (j 1) We use he classical ideiy ( ( )( ) = )( ) ad he biomial heorem ad ge he resul By Theorem 3, L (j), (1) = A(j), (1) Lemma 3 The geeraig fucio for rucaed lecure hall pariios saisfies for 1 ad L,0 () =1 L, () = (+1 2 ) ( ) L, (), Proof Sice L, = P, 1,, + 1, apply Theorem 7 wih Lemma 1 o ge ad simplify L, () = +( 1)+ +( +1) ( +1 2 ) This gives he Trucaed Lecure Hall Theorem: L, () Theorem 8 10 L, () = (+1 2 ) ( +1 ; ) ( 2 +1 ; ) Proof Le L, () = L, () (+1 2 ) 9

10 We show L, () = ( +1 ; ) ( 2 +1 (9) ; ) Subsiuig for L, () adl, () i he recurrece of Lemma 3 ad simplifyig gives L,1 = 1 ad for >1, as L, () = ( )+(+1 2 ) = L, (), (10) We mae use of (a rasformaio of) oe of he -Chu Vadermode ideiies 152 from 12: ( a; ) = a (+1 2 ) ( (c/a) +1 ; ) (c; ) (c +1 ; ) We do he subsiuio a = ad c = 2 ad ge ( +1 ; ) ( 2 +1 ; ) = ( )+(+1 2 ) ( +1 ; ) ( 2 +1 ; ), which shows ha L, () as give by (9) is he soluio o he recurrece (10) From his we also ge he Lecure Hall Theorem: Theorem 9 5 L () = ( ; ) ( +1 ; ) = 1 (; 2 ) Proof Seig = i Theorem 8 gives L,, which is he se of pariios i L wih all pars posiive So, L, () = (+1 2 ) L () The approach for rucaed ai-lecure hall composiios is similar Lemma 4 For, wih A (0), () =1 A, () = ( )+(+1 2 ) A +, () Proof Sice A, = R +1, +2,,, apply Theorem 7, usig Remar 3, he Lemma 2 ad simplify Now we ge a easy proof of he Trucaed Ai-lecure Hall Theorem 10

11 Theorem A, () = ( +1 ; ) ( 2( +1) ; ) Proof Le The usig Lemma 4, we ge ha as A, () = A, () = A, () ( )+(+1 2 ) + = A +, (), (11) We mae use of aoher rasformaio of he -Chu Vadermode ideiy 152 from 12: ( c/a; ) = (c/a) ( 2) ( a; ) (c; ) (c; ) Se c = 2( +1) ad a = +1 ad ge ( +1 ; ) ( 2( +1) ; ) = ( )+(+1 2 ) ( +1 ; ) ( 2( +1) ; ), showig A, () = ( +1 ;) saisfies he recurrece ( 2( +1) ;) Seig = i Theorem 10 gives he Ai-Lecure Hall Theorem Theorem 11 9 A () = ( ; ) ( 2 ; ) 4 Cocludig Remars The recurreces of Theorems 1 ad 7 provide simple compuaioal ools o ivesigae ay family of raio composiios More imporaly, hey supply he foudaio for a iducive proof of ay cojecured eumeraio resul Our experimes sugges ha couig formulas ad geeraig fucios will be possible for may oher families of raio composiios Oe paricular uesio of ieres is o characerize he subfamily of pariios io odd pars i {1, 3,,2 1} ha is coued by he polyomial L (j) () 11

12 Refereces 1 George E Adrews The heory of pariios Addiso-Wesley Publishig Co, Readig, Mass- Lodo-Amserdam, 1976 Ecyclopedia of Mahemaics ad is Applicaios, Vol 2 2 George E Adrews The Rogers-Ramauja reciprocal ad Mic s pariio fucio Pacific J Mah, 95(2): , George E Adrews MacMaho s pariio aalysis I The lecure hall pariio heorem I Mahemaical essays i hoor of Gia-Carlo Roa (Cambridge, MA, 1996), volume 161 of Progr Mah, pages 1 22 Birhäuser Boso, Boso, MA, George E Adrews, Peer Paule, Axel Riese, ad Voler Srehl MacMaho s pariio aalysis V Bijecios, recursios, ad magic suares I Algebraic combiaorics ad applicaios (Gößweisei, 1999), pages 1 39 Spriger, Berli, Mireille Bousue-Mélou ad Kimmo Erisso Lecure hall pariios Ramauja J, 1(1): , Mireille Bousue-Mélou ad Kimmo Erisso Lecure hall pariios II Ramauja J, 1(2): , Mireille Bousue-Mélou ad Kimmo Erisso A refieme of he lecure hall heorem J Combi Theory Ser A, 86(1):63 84, Arhur Cayley O a problem i he pariio of umbers Philosophical Magazie, 13: , 1857 repried i: The Colleced Mahemaical Papers of A Cayley, Vol III, Cambridge Uiversiy Press, Cambridge, 1890, ) 9 Sylvie Coreel ad Carla D Savage Ai-lecure hall composiios Discree Mah, 263(1-3): , Sylvie Coreel ad Carla D Savage Lecure hall heorems, -series ad rucaed objecs J Combi Theory Ser A, 108(2): , Sylvie Coreel ad Carla D Savage Pariios ad composiios defied by ieualiies Ramauja J, 8(3): , George Gasper ad Miza Rahma Basic hypergeomeric series, volume 35 of Ecyclopedia of Mahemaics ad is Applicaios Cambridge Uiversiy Press, Cambridge, 1990 Wih a foreword by Richard Asey 13 Dea R Hicerso A pariio ideiy of he Euler ype Amer Mah Mohly, 81: , Hery Mic A problem i pariios: Eumeraio of elemes of a give degree i he free commuaive eropic cyclic groupoid Proc Ediburgh Mah Soc (2), 11: , 1958/ Ae Ja Yee O he combiaorics of lecure hall pariios Ramauja J, 5(3): , Ae Ja Yee O he refied lecure hall heorem Discree Mah, 248(1-3): ,

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials Absrac ad Applied Aalysis Volume 04, Aricle ID 696454, 0 pages hp://dx.doi.org/0.55/04/696454 Research Aricle O a Class of -Beroulli, -Euler, ad -Geocchi Polyomials N. I. Mahmudov ad M. Momezadeh Easer

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

A NEW q-analogue FOR BERNOULLI NUMBERS

A NEW q-analogue FOR BERNOULLI NUMBERS A NEW -ANALOGUE FOR BERNOULLI NUMBERS O-YEAT CHAN AND DANTE MANNA Absrac Ispired by, we defie a ew seuece of -aalogues for he Beroulli umbers uder he framewor of Srod operaors We show ha hey o oly saisfy

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics Biod Prasad Dhaal / BIBCHANA 9 (3 5-58 : BMHSS,.5 (Olie Publicaio: Nov., BIBCHANA A Mulidisciliary Joural of Sciece, Techology ad Mahemaics ISSN 9-76 (olie Joural homeage: h://ejol.ifo/idex.h/bibchana

More information

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS Aales Uiv. Sci. Budapes., Sec. Comp. 44 05) 53 64 ON THE -TH ELEMENT OF A SET OF POSITIVE INTEGERS Jea-Marie De Koick ad Vice Ouelle Québec, Caada) Commuicaed by Imre Káai Received July 8, 05; acceped

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Zhi-Wei Sun and Hao Pan (Nanjing)

Zhi-Wei Sun and Hao Pan (Nanjing) Aca Arih. 5(006, o., 39. IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su ad Hao Pa (Najig Absrac. We esabish wo geera ideiies for Beroui ad Euer poyomias, which are of a ew ype ad have

More information

A Generalization of Hermite Polynomials

A Generalization of Hermite Polynomials Ieraioal Mahemaical Forum, Vol. 8, 213, o. 15, 71-76 HIKARI Ld, www.m-hikari.com A Geeralizaio of Hermie Polyomials G. M. Habibullah Naioal College of Busiess Admiisraio & Ecoomics Gulberg-III, Lahore,

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Some identities related to reciprocal functions

Some identities related to reciprocal functions Discree Mahemaics 265 2003 323 335 www.elsevier.com/locae/disc Some ideiies relaed o reciprocal fucios Xiqiag Zhao a;b;, Tiamig Wag c a Deparme of Aerodyamics, College of Aerospace Egieerig, Najig Uiversiy

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

arxiv: v1 [math.co] 30 May 2017

arxiv: v1 [math.co] 30 May 2017 Tue Polyomials of Symmeric Hyperplae Arragemes Hery Radriamaro May 31, 017 arxiv:170510753v1 [mahco] 30 May 017 Absrac Origially i 1954 he Tue polyomial was a bivariae polyomial associaed o a graph i order

More information

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION U.P.B. ci. Bull. eries A Vol. 69 No. 7 IN 3-77 DETERMINATION OF PARTIULAR OLUTION OF NONHOMOGENEOU LINEAR DIFFERENTIAL EQUATION BY DIRETE DEONVOLUTION M. I. ÎRNU e preziă o ouă meoă e eermiare a soluţiilor

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

On The Generalized Type and Generalized Lower Type of Entire Function in Several Complex Variables With Index Pair (p, q)

On The Generalized Type and Generalized Lower Type of Entire Function in Several Complex Variables With Index Pair (p, q) O he eeralized ye ad eeralized Lower ye of Eire Fucio i Several Comlex Variables Wih Idex Pair, Aima Abdali Jaffar*, Mushaq Shakir A Hussei Dearme of Mahemaics, College of sciece, Al-Musasiriyah Uiversiy,

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

Descents of Permutations in a Ferrers Board

Descents of Permutations in a Ferrers Board Desces of Permuaios i a Ferrers Board Chuwei Sog School of Mahemaical Scieces, LMAM, Pekig Uiversiy, Beijig 0087, P. R. Chia Caherie Ya Deparme of Mahemaics, Texas A&M Uiversiy, College Saio, TX 77843-3368

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Discrete Mathematics. Independence polynomials of circulants with an application to music

Discrete Mathematics. Independence polynomials of circulants with an application to music Discree Mahemaics 309 (2009 2292 2304 Coes liss available a ScieceDirec Discree Mahemaics joural homepage: wwwelseviercom/locae/disc Idepedece polyomials of circulas wih a applicaio o music Jaso Brow,

More information

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler Simple proofs of Bressoud s ad Schur s polyomial versios of the Rogers-Ramaua idetities Joha Cigler Faultät für Mathemati Uiversität Wie A-090 Wie, Nordbergstraße 5 Joha Cigler@uivieacat Abstract We give

More information

Conditional Probability and Conditional Expectation

Conditional Probability and Conditional Expectation Hadou #8 for B902308 prig 2002 lecure dae: 3/06/2002 Codiioal Probabiliy ad Codiioal Epecaio uppose X ad Y are wo radom variables The codiioal probabiliy of Y y give X is } { }, { } { X P X y Y P X y Y

More information

6.01: Introduction to EECS I Lecture 3 February 15, 2011

6.01: Introduction to EECS I Lecture 3 February 15, 2011 6.01: Iroducio o EECS I Lecure 3 February 15, 2011 6.01: Iroducio o EECS I Sigals ad Sysems Module 1 Summary: Sofware Egieerig Focused o absracio ad modulariy i sofware egieerig. Topics: procedures, daa

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles Idia Joural of Sciece ad echology Vol 9(5) DOI: 7485/ijs/6/v9i5/8533 July 6 ISSN (Pri) : 974-6846 ISSN (Olie) : 974-5645 Fuzzy Dyamic Euaios o ime Scales uder Geeralized Dela Derivaive via Coracive-lie

More information

ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION

ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION ANTI-LECTURE HALL COMPOSITIONS AND ANDREWS GENERALIZATION OF THE WATSON-WHIPPLE TRANSFORMATION SYLVIE CORTEEL, JEREMY LOVEJOY AND CARLA SAVAGE Abstract. For fixed ad k, we fid a three-variable geeratig

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept Kig Fahd Uiversiy of Peroleum & Mierals Compuer Egieerig g Dep COE 4 Daa ad Compuer Commuicaios erm Dr. shraf S. Hasa Mahmoud Rm -4 Ex. 74 Email: ashraf@kfupm.edu.sa 9/8/ Dr. shraf S. Hasa Mahmoud Lecure

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie The Aals of Probabiliy 999, Vol 27, No 3, 523535 RENEWAL TEORY FOR EMBEDDED REGENERATIVE SETS BY JEAN BERTOIN Uiversie Pierre e Marie Curie We cosider he age processes A A associaed o a moooe sequece R

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Pure Math 30: Explained!

Pure Math 30: Explained! ure Mah : Explaied! www.puremah.com 6 Logarihms Lesso ar Basic Expoeial Applicaios Expoeial Growh & Decay: Siuaios followig his ype of chage ca be modeled usig he formula: (b) A = Fuure Amou A o = iial

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics Academic Forum - Cauchy Cofers wih Weiersrass Lloyd Edgar S Moyo PhD Associae Professor of Mahemaics Absrac We poi ou wo limiaios of usig he Cauchy Residue Theorem o evaluae a defiie iegral of a real raioal

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S. Sochasic Processes Adoped From p Chaper 9 Probabiliy, adom Variables ad Sochasic Processes, 4h Ediio A. Papoulis ad S. Pillai 9. Sochasic Processes Iroducio Le deoe he radom oucome of a experime. To every

More information

Some inequalities for q-polygamma function and ζ q -Riemann zeta functions

Some inequalities for q-polygamma function and ζ q -Riemann zeta functions Aales Mahemaicae e Iformaicae 37 (1). 95 1 h://ami.ekf.hu Some iequaliies for q-olygamma fucio ad ζ q -Riema zea fucios Valmir Krasiqi a, Toufik Masour b Armed Sh. Shabai a a Dearme of Mahemaics, Uiversiy

More information

14.02 Principles of Macroeconomics Fall 2005

14.02 Principles of Macroeconomics Fall 2005 14.02 Priciples of Macroecoomics Fall 2005 Quiz 2 Tuesday, November 8, 2005 7:30 PM 9 PM Please, aswer he followig quesios. Wrie your aswers direcly o he quiz. You ca achieve a oal of 100 pois. There are

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters Mahemaical Problems i Egieerig Aricle ID 782376 10 pages hp://dx.doi.org/10.1155/2014/782376 Research Aricle A MOLP Mehod for Solvig Fully Fuzzy Liear Programmig wih Fuzzy Parameers Xiao-Peg Yag 12 Xue-Gag

More information

SUPER LINEAR ALGEBRA

SUPER LINEAR ALGEBRA Super Liear - Cover:Layou 7/7/2008 2:32 PM Page SUPER LINEAR ALGEBRA W. B. Vasaha Kadasamy e-mail: vasahakadasamy@gmail.com web: hp://ma.iim.ac.i/~wbv www.vasaha.e Florei Smaradache e-mail: smarad@um.edu

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

LIMITS OF SEQUENCES AND FUNCTIONS

LIMITS OF SEQUENCES AND FUNCTIONS ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» VV Koev LIMITS OF SEQUENCES AND FUNCTIONS TeBook

More information