Year 11 Matrices Semester 2. Yuk

Size: px
Start display at page:

Download "Year 11 Matrices Semester 2. Yuk"

Transcription

1 Year 11 Matrices Semester 2 Chapter 5A input/output Yuk 1

2 Chapter 5B Gaussian Elimination an Systems of Linear Equations This is an extension of solving simultaneous equations. What oes a System of Linear Equations mean? Recall that Linear means straight. You woul remember solving simultaneous equations in Maths B is like fining the intersection of 2 straight lines. System - It s a bit like; a couple is two an a few is three well in Maths, as soon as you have three equations, we say it is a System of Linear Equations. We are simply looking to fin the point of intersection of a number of straight lines, an where there are three variables (means we get a line in 3D), we nee three equations. Simply, we nee one point that satisfies all three equations, the point of intersection of three straight lines in 3 Dimensions! Think of how easy it is to make up 2 linear equations in 2D that intersect it s not so easy in 3D!!! Consier the System: 2x + 3y 5z = 8 x + 5y + 7z = 3 6x + 2y = 1 can be written in the form AX = B x y z = Clearly it is VERY important to line everything up in vertical columns PRIOR to putting your equations into the Augmente matrix. ** note the zero in position a!,! ** You coul fin x, y, z by pre-multiplying both sies by the Inverse Matrix, however as matrices get bigger, the process of fining the Inverse Matrix becomes more teious So, lets try Gaussian Elimination J 2

3 Gaussian Elimination Gaussian elimination is applies similar techniques as the elimination process in Maths B, however this is MATHS C, so you MUST comply carefully with the various matrix forms use in these solutions as your exams are going to a MATHS C PANEL. First we nee to put the set of equations into an Augmente Matrix: Augmente Matrix: An augmente matrix is combining two separate matrices into a single matrix form. (Augmente: having been mae greater in size, like an augmente pension if you are over 65; or; containing an interval which is one semitone greater than the corresponing major or perfect interval) *** check you can see how we get from AX = B, to the augmente matrix. *** *** (this is an Example only o not try an solve this one) *** Then procee to manipulate with Permitte Operations: 1. Multiply a Row by a scalar 2. A or subtract one row from another 3. Swap the positions of two rows (we o these in Maths B alreay, but now we just have to get use to Matrix setting out) We are looking for manipulation to get the Augmente Matrix into Reuce Row Echelon Form (example of Reuce Row Echelon form) Reuce Row Echelon Form nees to have the Ientity matrix as the leaing part of the augmente matrix. In the above example, Reuce Row Echelon Form prouces a simple solution to an Augmente matrix. Here, x = 3, y = 5 an z = 2 How o we get that? lets take a closer look 3

4 Take this augmente matrix; We can now pull the Augmente Matrix back apart an re-convert it to a system of three linear equations. Technically, we get x = 3, from the First Row taking back from Augmente matrix form into equations form, Row 1 becomes 1x + 0y + 0z = 3 similarly from Row 2 we get 0x + 1y + 0z = 5 an 0x + 0y + 1z = 2 Whalla x = 3, y = 5 an z = 2 Although you may see a short cut metho here, o NOT take any short cuts. Use legal row operations to get the Augmente matrix all the way to Reuce Row Echelon Form, an then present your solution irectly from this. When performing Gaussian Elimination operations, label clearly what you o on each step an o one step per line. (similar to how you labelle your elimination steps in Maths B) 4

5 We can also use the Gaussian metho to fin an Inverse Matrix. We covere Inverses in Term 1, an this is an Alternative metho that obtains the same result. You woul recall: Given Matrix A = a b c, then A!! =!!"!!" c b a We o a chapter on the Inverse Matrix in a couple of lessons that uses a ifferent technique, but as we are in Maths C, we like to o things many ifferent ways. This is a nice easy way, so lets take a look: To fin A!! We simply input to an Augmente matrix A I an use the Gaussian techniques until we get the Ientity matrix at the front, an we en up with: I A!! Cool hey! Fining Inverse Matrices by the Gaussian metho will be a straight forwar process once you get use to the Row Operations. 5

6 Chapter 5C Determinants Recall that the Determinant of a matrix is a single value! Given Matrix A = a c b The Determinant of A is written as: A = For a 3X3 Matrix: a b c = a bc A = a b c e f g h i = a e f h i b g f i + c e g h = a ei fh b i fg + c(h eg) Note: you can expan ANY row or column I suggest you choose wisely! OK i you notice that you SUBTRACT the b(i-fg), but this is NOT always the case. How o you know when it s a NEGATIVE, or a POSITIVE? There is a pattern, as per the text book page 203, but I prefer you think back to our general form of a Matrix a!! a!" a!" a!" a!! a!" a!" a!" a!! If the sum of the Row an Column subscripts are Even, then its Positive, if its O then its Negative! This process looks harer than it actually is. Take a look at my vieo if you nee. 6

7 Chapter 5D More on Determinants I won t focus too much on tricks, but certainly look to Short-cut your Matrix Determinant calculations if you can: - choose a row with zero s (or small numbers) in it to make calculations Quicker Choose your row carefully: Rather than expan Row 1, lets choose Column 2 as it simplifies the calculations = = = 44 Other Tricks: Page 201 in reality these on t come along too often. It is MORE important that you can Calculate the eterminant, than remember the following tricks - Determinant of a transpose.not too sure when this woul happen in reality? - Ientical Rows et A = 0 - row or column all zero s et A = 0 - interchanging rows not something that I see value in examining - multiples of rows - aing rows/columns - if one row is a scalar multiple of another row, then et A = 0 - Upper Triangular Rule says that if there are zero s in all spaces above the iagonal, then the Determinant is simply the prouct of the iagonals - there is a Lower triangular rule also Lower Triangle rule: Upper Triangle rule: = 30 = 10 *** Do NOT o anything on 4X4 matrices! Nope, not even for question 9 or 10. *** 7

8 Chapter 5E Inverse of a Matrix You woul recall: Given Matrix A = a b c, then A!! =!!"!!" c b a We learnt this by rote, but for bigger Matrices, we will use a Rule: A!! =!"#$! For ANY size Matrix, if the Determinant is 0, then the matrix is Singular an oes NOT have an inverse! So, what is the Ajoint or Ajugate Matrix (aja). First we nee to know about the Cofactor Matrix: If, A = a b c e f g h i, then A!"#$%&"' = e h b h b e f i c i c f g a g a f i c i c f g a g a e h b h b e ** you will notice that pattern again with the negatives ** Once you have the Cofactor Matrix we Transpose it to get aja, so aja = A!! *** Recall, the Text book enotes the Transpose matrix as A!, but I prefer A!. *** An we know how to calculate the Determinant J So, again, where, A!! = aja A aja = A!! Strategy? o it in steps 1. Calculate the eterminant 2. fin the cofactor matrix 3. convert to ajoint matrix 4. then scalar multiply by!!"#"$%&'('# 8

9 Chapter 5F Cramer s Rule As with ifferent areas of maths, there are a number of ways to arrive at the answer. Cramer s rule is just another tool to have with which you may solve problems. It looks way more complicate than it is. Once you see how these matrices go together, it is quite straight forwar J Given a set of linear equations: a 1 x + b 1 y + c 1 z = 1 a 2 x + b 2 y + c 2 z = 2 a 3 x + b 3 y + c 3 z = 3 convert to the form Ax = b " a 1 b 1 c 1 % " x% " $ ' $ ' $ $ a 2 b 2 c 2 ' $ y' = $ # $ a 3 b 3 c 3 &' # $ z& ' # $ % ' ' &' here the values of x,y an z can be foun as per: x = A 1 A y = A 2 A z = A 3 A where A = a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 an 1 b 1 c 1 a 1 1 c 1 a 1 b 1 1 A 1 = 2 b 2 c 2 A 2 = a 2 2 c 2 A 3 = a 2 b b 3 c 3 a 3 3 c 3 a 3 b 3 3 This is one where you just nee to REMEMBER the process. There are ways to make it easier to remember, but I m not too sure we want to try an fin out how & why it all works? 9

10 Set of linear equations: 3x + 5y = 1 x 2y = 4 Task 1. Put this simple set of linear equations into the form Ax = B Pre-multiply both sies by A!! to solve for the unknowns. Task 2. Put the above set of linear equations into an augmente matrix an use row operations to reuce to echelon form, an hence solve for the unknowns. Task 3. Take your previous augmente matrix, an work through to Reuce Row Echelon Form an solve for x an y. Task 4. Use Cramer s rule to solve the equations. Task 5. Ensure your answers in the first 4 tasks are the same! Lets move on to bigger matrices! 10

11 Solve the following systems of linear equations in Every way you can...!!! x + 3y + z = 10 x 2y z = 6 2x + y + 2z = 10 (1, 2 & 3) more practice? x + 2y + 2z = 5 3x 2y + z = 6 2x + y z = 1 (-1. 2 & 1) more practice? x + 2z = 9 2y + z = 8 4x 3y = 2 (1, 2 & 4) 11

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

2 Systems of Linear Equations

2 Systems of Linear Equations 2 Systems of Linear Equations A system of equations of the form or is called a system of linear equations. x + 2y = 7 2x y = 4 5p 6q + r = 4 2p + 3q 5r = 7 6p q + 4r = 2 Definition. An equation involving

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

36 What is Linear Algebra?

36 What is Linear Algebra? 36 What is Linear Algebra? The authors of this textbook think that solving linear systems of equations is a big motivation for studying linear algebra This is certainly a very respectable opinion as systems

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12

Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12 Advanced Math: Linear Algebra Overview Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12 Exeter 3 We will do selected problems, relatively few and spread out, primarily as matrices relate to transformations. Haese

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Vectors Year 12 Term 1

Vectors Year 12 Term 1 Vectors Year 12 Term 1 1 Vectors - A Vector has Two properties Magnitude and Direction - A vector is usually denoted in bold, like vector a, or a, or many others. In 2D - a = xı + yȷ - a = x, y - where,

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

MATH 310, REVIEW SHEET

MATH 310, REVIEW SHEET MATH 310, REVIEW SHEET These notes are a summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive, so please

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

I am trying to keep these lessons as close to actual class room settings as possible.

I am trying to keep these lessons as close to actual class room settings as possible. Greetings: I am trying to keep these lessons as close to actual class room settings as possible. They do not intend to replace the text book actually they will involve the text book. An advantage of a

More information

Systems of equation and matrices

Systems of equation and matrices Systems of equation and matrices Jean-Luc Bouchot jean-luc.bouchot@drexel.edu February 23, 2013 Warning This is a work in progress. I can not ensure it to be mistake free at the moment. It is also lacking

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Matrices. Ellen Kulinsky

Matrices. Ellen Kulinsky Matrices Ellen Kulinsky To learn the most (AKA become the smartest): Take notes. This is very important! I will sometimes tell you what to write down, but usually you will need to do it on your own. I

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

Matrices. Ellen Kulinsky

Matrices. Ellen Kulinsky Matrices Ellen Kulinsky Amusement Parks At an amusement park, each adult ticket costs $10 and each children s ticket costs $5. At the end of one day, the amusement park as sold $200 worth of tickets. You

More information

Numerical Methods Lecture 2 Simultaneous Equations

Numerical Methods Lecture 2 Simultaneous Equations Numerical Methods Lecture 2 Simultaneous Equations Topics: matrix operations solving systems of equations pages 58-62 are a repeat of matrix notes. New material begins on page 63. Matrix operations: Mathcad

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4 MA B PRACTICAL - HOMEWORK SET SOLUTIONS (Reading) ( pts)[ch, Problem (d), (e)] Solution (d) We have matrix form Ax = b and vector equation 4 i= x iv i = b, where v i is the ith column of A, and 4 A = 8

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1 Theorem: Let A n n Then A 1 exists if and only if det A 0 proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix Now, consider reducing A to its

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

A Quick Introduction to Row Reduction

A Quick Introduction to Row Reduction A Quick Introduction to Row Reduction Gaussian Elimination Suppose we are asked to solve the system of equations 4x + 5x 2 + 6x 3 = 7 6x + 7x 2 + 8x 3 = 9. That is, we want to find all values of x, x 2

More information

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Question 1 If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Quang T. Bach Math 18 October 18, 2017 1 / 17 Question 2 1 2 Let A = 3 4 1 2 3

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Introduction to Systems of Equations

Introduction to Systems of Equations Introduction to Systems of Equations Introduction A system of linear equations is a list of m linear equations in a common set of variables x, x,, x n. a, x + a, x + Ù + a,n x n = b a, x + a, x + Ù + a,n

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

a) Identify the kinematical constraint relating motions Y and X. The cable does NOT slip on the pulley. For items (c) & (e-f-g) use

a) Identify the kinematical constraint relating motions Y and X. The cable does NOT slip on the pulley. For items (c) & (e-f-g) use EAMPLE PROBLEM for MEEN 363 SPRING 6 Objectives: a) To erive EOMS of a DOF system b) To unerstan concept of static equilibrium c) To learn the correct usage of physical units (US system) ) To calculate

More information

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus Mathca Lecture #5 In-class Worksheet Plotting an Calculus At the en of this lecture, you shoul be able to: graph expressions, functions, an matrices of ata format graphs with titles, legens, log scales,

More information

System of Equations: An Introduction

System of Equations: An Introduction System of Equations: An Introduction Many books on linear algebra will introduce matrices via systems of linear equations. We tried a different approach. We hope this way you will appreciate matrices as

More information

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero. Finite Mathematics Chapter 2 Section 2.1 Systems of Linear Equations: An Introduction Systems of Equations Recall that a system of two linear equations in two variables may be written in the general form

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Algebra Year 10. Language

Algebra Year 10. Language Algebra Year 10 Introduction In Algebra we do Maths with numbers, but some of those numbers are not known. They are represented with letters, and called unknowns, variables or, most formally, literals.

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

11 a 12 a 13 a 21 a 22 a b 12 b 13 b 21 b 22 b b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23

11 a 12 a 13 a 21 a 22 a b 12 b 13 b 21 b 22 b b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23 Chapter 2 (3 3) Matrices The methods used described in the previous chapter for solving sets of linear equations are equally applicable to 3 3 matrices. The algebra becomes more drawn out for larger matrices,

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

Math Week 1 notes

Math Week 1 notes Math 2270-004 Week notes We will not necessarily finish the material from a given day's notes on that day. Or on an amazing day we may get farther than I've predicted. We may also add or subtract some

More information

Section 5.3 Systems of Linear Equations: Determinants

Section 5.3 Systems of Linear Equations: Determinants Section 5. Systems of Linear Equations: Determinants In this section, we will explore another technique for solving systems called Cramer's Rule. Cramer's rule can only be used if the number of equations

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations Chapter Linear Equations. Systems of Linear Equations A linear equation in the n variables x, x 2,..., x n is one that can be expressed in the form a x + a 2 x 2 + + a n x n = b where a, a 2,..., a n and

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Linear Algebra Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

Determinant: 3.3 Properties of Determinants

Determinant: 3.3 Properties of Determinants Determinant: 3.3 Properties of Determinants Summer 2017 The most incomprehensible thing about the world is that it is comprehensible. - Albert Einstein Goals Learn some basic properties of determinant.

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

Math 1314 Week #14 Notes

Math 1314 Week #14 Notes Math 3 Week # Notes Section 5.: A system of equations consists of two or more equations. A solution to a system of equations is a point that satisfies all the equations in the system. In this chapter,

More information

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise: Math 2270-004 Week 5 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

Sections 6.1 and 6.2: Systems of Linear Equations

Sections 6.1 and 6.2: Systems of Linear Equations What is a linear equation? Sections 6.1 and 6.2: Systems of Linear Equations We are now going to discuss solving systems of two or more linear equations with two variables. Recall that solving an equation

More information

MATH 1130 Exam 1 Review Sheet

MATH 1130 Exam 1 Review Sheet MATH 1130 Exam 1 Review Sheet The Cartesian Coordinate Plane The Cartesian Coordinate Plane is a visual representation of the collection of all ordered pairs (x, y) where x and y are real numbers. This

More information

Lecture 7: Introduction to linear systems

Lecture 7: Introduction to linear systems Lecture 7: Introduction to linear systems Two pictures of linear systems Consider the following system of linear algebraic equations { x 2y =, 2x+y = 7. (.) Note that it is a linear system with two unknowns

More information

Linear Algebra. Chapter Linear Equations

Linear Algebra. Chapter Linear Equations Chapter 3 Linear Algebra Dixit algorizmi. Or, So said al-khwarizmi, being the opening words of a 12 th century Latin translation of a work on arithmetic by al-khwarizmi (ca. 78 84). 3.1 Linear Equations

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition Higher Mathematics Contents 1 1 Representing a Circle A 1 Testing a Point A 3 The General Equation of a Circle A 4 Intersection of a Line an a Circle A 4 5 Tangents to A 5 6 Equations of Tangents to A

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

EXAM 2 REVIEW DAVID SEAL

EXAM 2 REVIEW DAVID SEAL EXAM 2 REVIEW DAVID SEAL 3. Linear Systems and Matrices 3.2. Matrices and Gaussian Elimination. At this point in the course, you all have had plenty of practice with Gaussian Elimination. Be able to row

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

Numerical Methods Lecture 2 Simultaneous Equations

Numerical Methods Lecture 2 Simultaneous Equations CGN 42 - Computer Methods Numerical Methods Lecture 2 Simultaneous Equations Topics: matrix operations solving systems of equations Matrix operations: Adding / subtracting Transpose Multiplication Adding

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS Unit Six Moses Mwale e-mail: moses.mwale@ictar.ac.zm BBA 120 Business Mathematics Contents Unit 6: Matrix Algebra

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Gauss-Jordan elimination ( used in the videos below) stops when the augmented coefficient

Gauss-Jordan elimination ( used in the videos below) stops when the augmented coefficient To review these matrix methods for solving systems of linear equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering all the basic

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information