CHAPTER 2: Mathematics for Microeconomics

Size: px
Start display at page:

Download "CHAPTER 2: Mathematics for Microeconomics"

Transcription

1 CHAPTER : Mahemaics for Microeconomics The problems in his chaper are primarily mahemaical. They are inended o give sudens some pracice wih he conceps inroduced in Chaper, bu he problems in hemselves offer few economic insighs. Consequenly, no commenary is provided. Resuls from some of he analyical problems are used in laer chapers, however, and in hose cases he suden will be direced back o his chaper. Soluions. f y y (, ) = a. f = 8, f = 6 y. y b. Consraining f (, y ) = 6 creaes an implici funcion beween he variables. The dy f 8 slope of his funcion is given by = = for combinaions of and y d f 6y ha saisfy he consrain. c. Since f (, ) = 6, we know ha a his poin y dy d 8 = =. 6 3 d. The f (, y ) = 6 conour line is an ellipse cenered a he origin. The slope of he line a any poin is given by dy d = 8 6 y. Noice ha his slope becomes more negaive as increases and y decreases.. a. Profis are given by π = R C = q + 40q 00. The maimum value is found by seing he derivaive equal o 0: d π = 4 q + 40 = 0, dq implies q = 0 and 00. π = b. Since d = π dq 4 < 0, his is a global maimum. c. MR = dr dq = 70 q. MC = dc dq = q So, MR = MC = 50. q = 0 obeys

2 Chaper : Mahemaics for Microeconomics.3 Firs, use he subsiuion mehod. Subsiuing y = yields f % ( ) = f (, ) = ( ) =. Taking he firs-order condiion, f % ( ) = = 0, and solving yields = 0.5, y = 0.5, and f % ( ) = f (, y ) = 0.5. Since f % ( ) = < 0, his is a local and global maimum. Ne, use he Lagrange mehod. The Lagrangian is L = y + λ( y). The firs-order condiions are L = y λ = 0, L = λ = 0, y L = y = 0. λ Solving simulaneously, = y. Using he consrain gives y = 0.5. = y = 0.5, λ = 0.5, and.4 Seing up he Lagrangian, L = + y + λ(0.5 y). The firs-order condiions are L = λ y, L L y λ = λ, = 0.5 y = 0. So = y. Using he consrain ( y = = 0.5) gives = y = 0.5 and λ =. Noe ha he soluion is he same here as in Problem.3, bu here he value for he Lagrangian muliplier is he reciprocal of he value in Problem.3..5 a. The heigh of he ball is given by f ( ) = 0.5g The value of for which heigh is maimized is found by using he firs-order condiion: df d = g + 40 = 0, implying = 40 g. b. Subsiuing for, Hence, f ( ) = 0.5g + 40 =. g g g df dg ( ) = 800. g c. Differeniaion of he original funcion a is opimal value yields df ( ) = 0.5( ). dg Because he opimal value of depends on g,

3 Chaper : Mahemaics for Microeconomics 3 ( ) = = = df 0.5( ) 0.5, dg g g as was also shown in par (c). d. If g = 3, = 5 4. Maimum heigh is = 5. If g = 3., maimum heigh is = 4.9, a reducion of This could have been prediced from he envelope heorem, since df ( ) = dg (0.0) = a. This is he volume of a recangular solid made from a piece of meal, which is by 3 wih he defined corner squares removed. b. The firs-order condiion for maimum volume is given by V = = 0. Applying he quadraic formula o his epression yields 6 ± ± 0.6 = = = The second value given by he quadraic (. ) is obviously eraneous c. If = 0.5, V So volume increases wihou limi. d. This would require a soluion using he Lagrangian mehod. The opimal soluion requires solving hree nonlinear simulaneous equaions, a ask no underaken here. Bu i seems clear ha he soluion would involve a differen relaionship beween and han in pars (a c)..7 a. Se up he Lagrangian: L = + 5ln + λ( k ). The firsorder condiions are L λ = 0, L L = λ 5 = λ = 0, = k = 0. Hence, λ = = 5. Wih k = 0, he opimal soluion is b. Wih k = 4, solving he firs-order condiions yields = and = = 5. = 5.

4 4 Chaper : Mahemaics for Microeconomics c. If all variables mus be nonnegaive, i is clear ha any posiive value for reduces y. Hence, he opimal soluion is = = and y = 5ln 4. 0, 4, d. If k = 0, opimal soluion is = 5, = 5, and y = 5 + 5ln 5. Because provides a diminishing marginal incremen o y as is value increases, whereas does no, all opimal soluions require ha once reaches 5, any era amouns be devoed enirely o. In consumer heory, his funcion can be used o illusrae how diminishing marginal usefulness can be modeled in a very simple seing..8 a. Because MC is he derivaive of TC, TC is an aniderivaive of MC. By he fundamenal heorem of calculus, q 0 MC( ) d = TC( q) TC(0), where TC (0) is he fied cos, which we will denoe TC(0) = K for shor. Rearranging, TC( q) = MC( ) d + K q = ( + ) d + K 0 = + + K q 0 = q = 0 q = + q + K. b. For profi maimizaion, p = MC( q) = q +, implying q = p. Bu p = 5 implies q = 4. Profi are TR TC = pq TC( q) 4 = K = 98 K. If he firm is jus breaking even, profi equals 0, implying fied cos is K = 98. c. When p = 0 and q = 9, follow he same seps as in par (b), subsiuing fied cos K = 98. Profi are

5 Chaper : Mahemaics for Microeconomics 5 TR TC = pq TC( q) 9 = K = = 8.5. d. Assuming profi maimizaion, we have π ( p) = pq TC( q) ( p ) = p( p ) + ( p ) + 98 ( p ) = 98. e. i. Using he above equaion, π ( p = 0) π ( p = 5) = = 8.5. ii. The envelope heorem saes ha dπ dp = q ( p). Tha is, he derivaive of he profi funcion yields his firm s supply funcion. Inegraing over p shows he change in profis by he fundamenal heorem of calculus: π (0) π (5) = = ( p ) dp 5 dπ dp dp p = p = = 8.5. p= 0 p= 5 Analyical Problems.9 Concave and quasi-concave funcions The proof is mos easily accomplished hrough he use of he mari algebra of quadraic forms. See, for eample, Mas Colell e al.,995, pp Inuiively, because concave funcions lie below any angen plane, heir level curves mus also be conve. Bu he converse is no rue. Quasi-concave funcions may ehibi increasing reurns o scale ; even hough heir level curves are conve, hey may rise above he angen plane when all variables are increased ogeher.

6 6 Chaper : Mahemaics for Microeconomics A couner eample would be he Cobb Douglas funcion, which is always quasiconcave, bu conve when α + β >..0 The Cobb Douglas funcion a. f = α > 0, α β = β > 0, α β f = α ( α ) < 0, f f α β α β = β ( β ) < 0, α β f = f = αβ > 0. Clearly, all he erms in Equaion.4 are negaive. b. A conour line is found by seing he funcion equal o a consan: y c α β = =, β α β implying = c. Hence, d 0. d < Furher, d < 0, d implying he counour line is conve. c. Using Equaion.98, α + β >. f f f = αβ( β α), which is negaive for α β. The power funcion a. Since y > 0 and y < 0, he funcion is concave. b. Because f, f < 0 and f = f = 0, Equaion.98 is saisfied, and he funcion is concave. Because f, f > 0, Equaion.4 is also saisfied, so he funcion is quasi-concave. c. y is quasi-concave as is y γ. However, y is no concave for γδ >. This can be γδ shown mos easily by f (, ) = f (, ).. Proof of envelope heorem

7 Chaper : Mahemaics for Microeconomics 7 a. The Lagrangian for his problem is L(,, a) = f (,, a) + λg(,, a). The firs-order condiions are L = f + λg = 0, L L = f + λg = 0, λ = g = 0. b., c. Muliplicaion of each firs-order condiion by he appropriae deriviaive yields f d + f d d d + λ g + g = 0. da da da da d. The opimal value of f is given by ( ) f ( a), ( a), a. Differeniaion of his wih respec o a shows how his opimal value changes wih a : df d d = f + f + fa. da da da e. Differeniaion of he consrain ( ) dg d d = = + + da da da 0 g g ga. g ( a), ( a), a = 0 yields f. Muliplying he resuls from par (e) by λ and using pars (b) and (c) yields df = f. a + λga = La da This proves he envelope heorem. g. In Eample.8, we showed ha λ = P 8. This shows how much an era uni of perimeer would raise he enclosed area. Direc differeniaion of he original Lagrangian shows also ha da = LP = λ. dp This shows ha he Lagrange muliplier does indeed show his incremenal gain in his problem..3 Taylor approimaions a. A funcion in one variable is concave if f ( ) < 0. Using he quadraic Taylor formula o approimae his funcion a poin a : f ( ) f ( a) + f ( a)( a) f ( a)( a) f ( a) + f ( a)( a). The inequaliy holds because f ( a) < 0. Bu he righ-hand side of his equaion is

8 8 Chaper : Mahemaics for Microeconomics he equaion for he angen o he funcion a poin a. So we have shown ha any concave funcion mus lie on or below he angen o he funcion a ha poin. b. A funcion in wo variables is concave if f f f > 0. Hence, he quadraic form ( fd + fd dy + f dy ) will also be negaive. Bu his says ha he final porion of he Taylor epansion will be negaive (by seing d = a and dy = y b ), and hence he funcion will be below is angen plane..4 More on epeced value a. The angen o g( ) a he poin E( ) will have he form c + d g( ) for all values of and c + de( ) = g( E( )). Bu, because he line c + d is above he funcion g( ), we know E( g( )) E( c + d) = c + de( ) = g( E( )). This proves Jensen s inequaliy. b. Use he same procedure as in par (a), bu reverse he inequaliies. c. Le u = F( ), du = f ( ), = v, and d = dv. = [ ( )] = [( ( )) ] [ ( )] = 0 F d F f d 0 0 = 0 + E( ) = E( ). d. Use he hin o break up he inegral defining epeced value: E( ) = f ( ) d f ( ) d + 0 = f ( ) d f ( ) d f ( ) d = P( ). e.. Show ha his funcion inegraes o :

9 Chaper : Mahemaics for Microeconomics 9 3 = ( ) = = =. = f d d. Calculae he cumulaive disribuion funcion: 3 = ( ) = = =. = F d 3. Using he resul from par (c): [ ] E( ) = F( ) d = d = =. 4. To show Markov s inequaliy use E( ) P( ) = F( ) = < =. f.. Show ha he PDF inegraes o : 3 = 8 d = = = =. Calculae he epeced value: = E( ) = d = = =. 3 4 = 3. Calculae P( 0): 0 3 = 0 d = = = 4. All we mus do is adjus he PDF so ha i now sums o over he new, smaller inerval. Since P( A ) = 8 9, = = f ( ) 3 f ( A) = = defined on The epeced value is again found hrough inegraion: 3 4 = E( A) = d = = = 0 6. Eliminaing he lowes values of increases he epeced value of he remaining values..5 More on variances a. This is jus an applicaion of he definiion of variance:

10 0 Chaper : Mahemaics for Microeconomics [ ] Var( ) = E E( ) = E E( ) + [ E( )] = E( ) [ E( )] + [ E( )] = E( ) [ E( )]. b. Here, we le y = µ and apply Markov s inequaliy o y and remember ha can only ake on posiive values. E( y ) σ P( y k) = P( y k ) =. k k c. Le i, i =,, n be n independen random variables each wih epeced value µ and variance σ. n E i = µ + L + µ = nµ. i= n Var i = σ + L + σ = nσ. i= n Now, le ( n) =. i = i nµ E( ) = = µ. n nσ σ Var( ) = =. n n d. Le X = k + ( k) and E( X ) = kµ + ( k) µ = µ. Var( X ) = k σ + ( k) σ = (k k + ) σ. dvar( X ) = (4k ) σ = 0. dk Hence, variance is minimized for k = 0.5. In his case, k = 0.7, Var( X ) = 0.58σ (no much of an increase). Var( X ) 0.5σ. = If e. Suppose ha Var( ) = σ and Var( ) rσ. = Now Var( X ) = k σ + ( k) rσ = ( + r) k kr + r σ. dvar( X ) = [ ( + r) k r] σ = 0. dk r k =. + r For eample, if r =, hen k = 3, and opimal diversificaion requires ha he lower risk asse consiue wo-hirds of he porfolio. Noe, however, ha i is sill

11 Chaper : Mahemaics for Microeconomics opimal o have some of he higher risk asse because asse reurns are independen..6 More on covariances a. This is a direc resul of he definiion of covariance: Cov(, y) = E ( E( ))( y E( y)) [ ] = E[ y E( y) ye( ) + E( ) E( y)] = E( y) E( ) E( y) E( y) E( ) + E( ) E( y) = E( y) E( ) E( y). b. Var( a ± by) = E[( a ± by) ] [ E( a ± by)] = a E( ) ± abe( y) + b E( y ) a [ E( )] ± abe( )E( y) b [E( y)] = a Var( ) + b Var( y) ± abcov(, y). The final line is a resul of Problems.5a and.6a. c. The presence of he covariance erm in he resul of Problem.6b suggess ha he resuls would differ. In he wo-variable case, however, his is no necessarily he siuaion. For eample, suppose ha and y are idenically disribued and ha Cov(, y) = rσ. Using he prior noaion, Var( X ) = k σ + ( k) σ + k( k) rσ. The firs-order condiion for a minimum is (4k + r 4 rk) σ = 0, implying r k = = r Regardless of he value of r. Wih more han wo random variables, however, covariances may indeed affec opimal weighings. d. If, = k he correlaion coefficien will be eiher + (if k is posiive) or (if k is negaive), since k will facor ou of he definiion leaving only he raio of he common variance of he wo variables. Wih less han a perfec linear relaionship y < [ y) ] 0.5 e. If y = α + β, Cov(, ) Var( )Var(. [ ] Cov(, y) = E ( E( ))( y E( y)) = E[( E( ))( α + β α β E( ))] = βvar( ).

12 Chaper : Mahemaics for Microeconomics Hence, Cov(, y) β =. Var( )

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = =

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = = 20. Assume ha df/d sill equals = F + 0.02RF. df dr df/ d F+ 0. 02RF = = 2 dr/ d R 0. 04RF 0. 01R 10 df 11. 2 R= 70 and F = 1 = = 0. 362K dr 31 21. 0 F (70, 30) (70, 1) R 100 Noe ha he slope a (70, 1) is

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC his documen was generaed a 1:4 PM, 9/1/13 Copyrigh 213 Richard. Woodward 4. End poins and ransversaliy condiions AGEC 637-213 F z d Recall from Lecure 3 ha a ypical opimal conrol problem is o maimize (,,

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

The general Solow model

The general Solow model The general Solow model Back o a closed economy In he basic Solow model: no growh in GDP per worker in seady sae This conradics he empirics for he Wesern world (sylized fac #5) In he general Solow model:

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c John Riley December 00 S O EVEN NUMBERED EXERCISES IN CHAPER 6 SECION 6: LIFE CYCLE CONSUMPION AND WEALH Eercise 6-: Opimal saving wih more han one commodiy A consumer has a period uiliy funcion δ u (

More information

Intermediate Macro In-Class Problems

Intermediate Macro In-Class Problems Inermediae Macro In-Class Problems Exploring Romer Model June 14, 016 Today we will explore he mechanisms of he simply Romer model by exploring how economies described by his model would reac o exogenous

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation Mahcad Lecure #8 In-class Workshee Curve Fiing and Inerpolaion A he end of his lecure, you will be able o: explain he difference beween curve fiing and inerpolaion decide wheher curve fiing or inerpolaion

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Radical Expressions. Terminology: A radical will have the following; a radical sign, a radicand, and an index.

Radical Expressions. Terminology: A radical will have the following; a radical sign, a radicand, and an index. Radical Epressions Wha are Radical Epressions? A radical epression is an algebraic epression ha conains a radical. The following are eamples of radical epressions + a Terminology: A radical will have he

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Applicable Mathematics 2A

Applicable Mathematics 2A Applicable Mahemaics A Lecure Noes Revised: Augus 00 Please noe ha hese are my lecure noes: hey are no course noes. So I will be following hese noes very closely, supplemened by he homework eamples ec

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy Answer 4 of he following 5 quesions. 1. Consider a pure-exchange economy wih sochasic endowmens. The sae of he economy in period, 0,1,..., is he hisory of evens s ( s0, s1,..., s ). The iniial sae is given.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd Maemaisk saisik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY WEDNESDAY THE 9 h OF JANUARY 23 2 pm 7 pm Examinaor : Timo Koski, el 79 7 34, email: jkoski@khse Tillåna hjälpmedel

More information

Chapter 1 Limits, Derivatives, Integrals, and Integrals

Chapter 1 Limits, Derivatives, Integrals, and Integrals Chaper 1 Limis, Derivaives, Inegrals, and Inegrals Problem Se 1-1 1. a. 9 cm b. From o.1: average rae 6. 34 cm/s From o.01: average rae 7. 1 cm/s From o.001: average rae 7. 0 cm/s So he insananeous rae

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Lecture Notes 5: Investment

Lecture Notes 5: Investment Lecure Noes 5: Invesmen Zhiwei Xu (xuzhiwei@sju.edu.cn) Invesmen decisions made by rms are one of he mos imporan behaviors in he economy. As he invesmen deermines how he capials accumulae along he ime,

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for he May/June series 9 FURTHER MATHEMATICS 9/ Paper, maximum raw mark This mark scheme is published as an aid o eachers and candidaes,

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Answers to Algebra 2 Unit 3 Practice

Answers to Algebra 2 Unit 3 Practice Answers o Algebra 2 Uni 3 Pracice Lesson 14-1 1. a. 0, w, 40; (0, 40); {w w, 0, w, 40} 9. a. 40,000 V Volume c. (27, 37,926) d. 27 unis 2 a. h, 30 2 2r V pr 2 (30 2 2r) c. in. d. 3,141.93 in. 2 20 40 Widh

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information