A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data

Size: px
Start display at page:

Download "A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data"

Transcription

1 A non-parametric regression model for estimation of ionospheric plasma velocity distribution from SuperDARN data S. Nakano (The Institute of Statistical Mathematics) T. Hori (ISEE, Nagoya University) K. Seki (University of Tokyo) N. Nishitani (ISEE, Nagoya University)

2 Ionospheric convection pattern The ionospheric flow pattern is one of fundamental property of the ionospheric science. There exist several studies which deduced the velocity distribution pattern in the ionosphere. Ionospheric convection pattern deduced by the spherical harmonics method ( Virginia Tech Website)

3 Existing methods Spherical harmonic fitting Assuming that the divergence-free condition, the vector field can be represented by a scalar stream function. The stream function is expanded with spherical harmonics funcitons. Sensitive to local distrubances and noises Matrix-valued kernel (Narcowich et al., 2007; Fuselier and Wright, 2009) Localized basis function Computationally demanding Designed for interpolating vector-valued data Spherical elementary current system (Amm, 1997) Localized basis function Diverge at the singular point of a basis function Ionospheric convection pattern deduced by the spherical harmonics method ( Virginia Tech Website)

4 Spherical elementary current system (SECS) An example of node distribution The divergence-free SECS basis function is defined so that the curl is constant except at the pole, and the curl-free SECS basis function is defined so that the divergence is constant except at the pole. Nodes of the SECS basis functions can be placed arbitrarily. This can be regarded as one of radial basis function (RBF) networks. They diverge to infinity at the pole.

5 Generalization of SECS The ionospheric plasma drift velocity distribution can be assumed to be divergence-free (no source, no sink). The divergence-free vector field can be represented by a stream function Ψ as follows: V() r = r Ψ. We expand the stream function Ψ by using localized basis functions: Thus, Ψ ( r) = wψ ( rr, ). i i Vr ( ) = r Ψ = w r ψ ( rr, ). i i i i

6 Generalization of SECS Defining vector-valued localized basis function: we obtain vrr (, ) = e ψ (, rr), i r i Vr ( ) = w vrr (, ). θ If ψ ( rr, i ) = 2log sin where 2 θ vrr (, i) = eφ, icot. 2 i i i θ r r arccos, R i = 2 This is the original divergence-free SECS basis function.

7 Generalization of SECS We represent the divergence-free velocity field by ( ψ ) Vr () = wivrr (, i), vrr (, i) = r (, rri). i We choose the spherical Gaussian function for ψ : r r i ψ( rr, i ) = exp η 1 exp 2 = η( cosθ 1 ), R I and obtain the following divergence-free basis function i (, i) ( η )exp r r vrr = ri r η 1. 2 R I

8 Kalman filter We assume the temporal evolution of the weights w p( w w ) = N ( αw, Q). k k 1 k 1 The residual component can then be estimated with the following Kalman filter algorithm: Prediction: w P Filtering: = αw kk 1 k 1 k 1 = α P + Q. 2 kk 1 k 1 k 1, w = w + ( P + H R H ) HR ( y H w ), 1 T 1 1 T 1 kk kk 1 kk 1 k k k k k k k k P = ( P + H R H ) 1 T 1 1 kk kk 1 k k k.

9 Estimation w The covariance matrices Q is given so as to satisfy 1 w exp( ξcos λ) w cos. 2 2 T 1 2 k k kq wk = σq λ 2 2 i cos λ λ + λ cos λ φ i i And R is assumed to be diagonal: The parameters σ Q and ξ are determined by maximizing the marginal likelihood: p( y θ) p( y w ) p( w θ) dw. = 2 k R R 1: K k k k k k R = σ I, ( σ = 500). 2

10 Experiment We conducted experiments with synthetic radar data generated from a certain velocity distribution model. The observation sites and observed echoes were assumed to be the same as observed on March 17, The nodes of the basis functions were placed at every 5 and 2 degrees in longitude and in latitude, respectively.

11 Reconstruction with proposed functions Estimated velocity distribution Original velocity distribution 0800 UT, Mar. 17, 2015

12 Reconstruction with SECS functions Estimated velocity distribution Original velocity distribution 0800 UT, Mar. 17, 2015

13 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

14 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

15 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

16 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

17 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

18 Stream function with proposed The estimate with proposed basis funcitons UT, Mar. 17, 2015

19 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

20 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

21 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

22 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

23 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

24 Stream function with SECS The estimate with SECS basis funcitons UT, Mar. 17, 2015

25 Use of empirical model An empirical model is referred to in estimating the velocity distribution. We assume the weight w can be decomposed into the model-based value ζ and the residual β : w = ζ + β. The model-based value is determined so as to fit an empirical model by Weimber The residual β is estimated with the Kalman filter.

26 Kalman filter We assume the temporal evolution of the resudial component obeys The residual component can then be estimated with the following Kalman filter algorithm: Prediction: β P p( β β ) = N ( α β, Q). k k 1 k 1 = α β kk 1 k 1 k 1 = α P + Q. 2 kk 1 k 1 k 1, Filtering: β β ( y [ ζ β ], P T T 1 kk = kk 1 + Pkk 1 Hk( HkPkk 1Hk + Rk) k Hk k + k ) = P P H ( H P H + R ) T T 1 kk kk 1 kk 1 k k kk 1 k k k kk 1 H P.

27 17 March 2015

28 Result The estimate with actual data 0800 UT, Mar. 17, 2015

29 Result The estimate with actual data 0810 UT, Mar. 17, 2015

30 Result The estimate with actual data 0820 UT, Mar. 17, 2015

31 Result The estimate with actual data 0830 UT, Mar. 17, 2015

32 Result The estimate with actual data 0840 UT, Mar. 17, 2015

33 Result The estimate with actual data 0850 UT, Mar. 17, 2015

34 27 March 2017

35 Result The estimate with actual data 1000 UT, Mar. 27, 2017

36 Result The estimate with actual data 1010 UT, Mar. 27, 2017

37 Result The estimate with actual data 1020 UT, Mar. 27, 2017

38 Result The estimate with actual data 1030 UT, Mar. 27, 2017

39 Result The estimate with actual data 1040 UT, Mar. 27, 2017

40 Result The estimate with actual data 1050 UT, Mar. 27, 2017

41 Summary We have proposed a framework for obtaining global flow vector distribution in the ionosphere. In our framework, the vector field is represented by weighted sum of localized basis functions derived from a spherical Gaussian function. The basis functions consist of two types of functions: curl-free functions and divergence-free functions. Our framework also allows us to combine the SuperDARN data with existing statistical pattern of the velocity distribution.

Lecture 2: Reconstruction and decomposition of vector fields on the sphere with applications

Lecture 2: Reconstruction and decomposition of vector fields on the sphere with applications 2013 Dolomites Research Week on Approximation : Reconstruction and decomposition of vector fields on the sphere with applications Grady B. Wright Boise State University What's the problem with vector fields

More information

Principles of the Global Positioning System Lecture 11

Principles of the Global Positioning System Lecture 11 12.540 Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Statistical approach to estimation Summary Look at estimation from statistical point

More information

2.5 Stokes flow past a sphere

2.5 Stokes flow past a sphere Lecture Notes on Fluid Dynamics.63J/.J) by Chiang C. Mei, MIT 007 Spring -5Stokes.tex.5 Stokes flow past a sphere Refs] Lamb: Hydrodynamics Acheson : Elementary Fluid Dynamics, p. 3 ff One of the fundamental

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Managing Uncertainty

Managing Uncertainty Managing Uncertainty Bayesian Linear Regression and Kalman Filter December 4, 2017 Objectives The goal of this lab is multiple: 1. First it is a reminder of some central elementary notions of Bayesian

More information

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS

UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Monday, June 27, 2011 CEDAR-GEM joint workshop: DA tutorial 1 UNDERSTANDING DATA ASSIMILATION APPLICATIONS TO HIGH-LATITUDE IONOSPHERIC ELECTRODYNAMICS Tomoko Matsuo University of Colorado, Boulder Space

More information

Principles of the Global Positioning System Lecture 18" Mathematical models in GPS" Mathematical models used in GPS"

Principles of the Global Positioning System Lecture 18 Mathematical models in GPS Mathematical models used in GPS 12.540 Principles of the Global Positioning System Lecture 18" Prof. Thomas Herring" Room 54-820A; 253-5941" tah@mit.edu" http://geoweb.mit.edu/~tah/12.540 " Mathematical models in GPS" Review assignment

More information

Occurrence characteristics of subauroral rapid plasma flows observed by the SuperDARN Hokkaido East HF radar

Occurrence characteristics of subauroral rapid plasma flows observed by the SuperDARN Hokkaido East HF radar Occurrence characteristics of subauroral rapid plasma flows observed by the SuperDARN Hokkaido East HF radar Hiroki NAGANO, Nozomu NISHITANI, and Tomoaki HORI (Nagoya Univ. STEL) SAPS Velocity (m/s) SAPS

More information

Spezielle Funktionen 4 Skalare Kugelfunktionen

Spezielle Funktionen 4 Skalare Kugelfunktionen Spezielle Funktionen 4 Skalare Kugelfunktionen M. Gutting 28. Mai 2015 4.1 Scalar Spherical Harmonics We start by introducing some basic spherical notation. S 2 = {ξ R 3 ξ = 1} is the unit sphere in R

More information

A STABLE ALGORITHM FOR DIVERGENCE-FREE AND CURL-FREE RADIAL BASIS FUNCTIONS IN THE FLAT LIMIT

A STABLE ALGORITHM FOR DIVERGENCE-FREE AND CURL-FREE RADIAL BASIS FUNCTIONS IN THE FLAT LIMIT A STABLE ALGORITHM FOR DIVERGENCE-FREE AND CURL-FREE RADIAL BASIS FUNCTIONS IN THE FLAT LIMIT by Kathryn Primrose Drake A thesis submitted in partial fulfillment of the requirements for the degree of Master

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Kody Law Andy Majda Andrew Stuart Xin Tong Courant Institute New York University New York NY www.dtbkelly.com February 3, 2016 DPMMS, University of Cambridge

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Lecture 9. Time series prediction

Lecture 9. Time series prediction Lecture 9 Time series prediction Prediction is about function fitting To predict we need to model There are a bewildering number of models for data we look at some of the major approaches in this lecture

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Pose tracking of magnetic objects

Pose tracking of magnetic objects Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2 Short about me 2005-2010: Applied

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of last Class Review of linear Algebra. Class will be based on the book Linear Algebra, Geodesy, and GPS, G. Strang and K. Borre, Wellesley-Cambridge Press,

More information

Covariate-Assisted Variable Ranking

Covariate-Assisted Variable Ranking Covariate-Assisted Variable Ranking Tracy Ke Department of Statistics Harvard University WHOA-PSI@St. Louis, Sep. 8, 2018 1/18 Sparse linear regression Y = X β + z, X R n,p, z N(0, σ 2 I n ) Signals (nonzero

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Recursive Estimation of Terrestrial Magnetic and Electric Potentials

Recursive Estimation of Terrestrial Magnetic and Electric Potentials Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 2008 Recursive Estimation of Terrestrial Magnetic and Electric Potentials A. M. D Amato, B. O. S. Teixeira, H.

More information

Medium Scale Traveling Ionospheric Disturbances (MSTIDs)

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) Polarization electric field of MSTIDs estimated from simultaneous observations by using all-sky airglow imager and the SuperDARN Hokkaido HF radar over midlatitudes *Takeshi MINOURA (1), Shin SUZUKI (1),

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA BY MIKYOUNG JUN AND MICHAEL L. STEIN Presented by Sungkyu Jung April, 2009 Outline 1 Introduction 2 Covariance Models 3 Application: Level

More information

Classical Field Theory: Electrostatics-Magnetostatics

Classical Field Theory: Electrostatics-Magnetostatics Classical Field Theory: Electrostatics-Magnetostatics April 27, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 1-5 Electrostatics The behavior of an electrostatic field can be described

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Basic Statistics Summary of last class Statistical description and parameters Probability distributions Descriptions: expectations, variances, moments Covariances

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

EnKF and filter divergence

EnKF and filter divergence EnKF and filter divergence David Kelly Andrew Stuart Kody Law Courant Institute New York University New York, NY dtbkelly.com December 12, 2014 Applied and computational mathematics seminar, NIST. David

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Fundamentals of Matrices

Fundamentals of Matrices Maschinelles Lernen II Fundamentals of Matrices Christoph Sawade/Niels Landwehr/Blaine Nelson Tobias Scheffer Matrix Examples Recap: Data Linear Model: f i x = w i T x Let X = x x n be the data matrix

More information

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 24, 69 76, 2011 EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS S. J. Lai 1, *, B. Z. Wang 1, and Y. Duan 2 1 Institute

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

MA3025 Course Prerequisites

MA3025 Course Prerequisites MA3025 Course Prerequisites MA 3025 (4-1) MA3025 (4-1) Logic and Discrete Mathematics: Provides a rigorous foundation in logic and elementary discrete mathematics. Topics from logic include modeling English

More information

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata ' / PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE Noboru Murata Waseda University Department of Electrical Electronics and Computer Engineering 3--

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

FuncICA for time series pattern discovery

FuncICA for time series pattern discovery FuncICA for time series pattern discovery Nishant Mehta and Alexander Gray Georgia Institute of Technology The problem Given a set of inherently continuous time series (e.g. EEG) Find a set of patterns

More information

CS281A/Stat241A Lecture 17

CS281A/Stat241A Lecture 17 CS281A/Stat241A Lecture 17 p. 1/4 CS281A/Stat241A Lecture 17 Factor Analysis and State Space Models Peter Bartlett CS281A/Stat241A Lecture 17 p. 2/4 Key ideas of this lecture Factor Analysis. Recall: Gaussian

More information

One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems

One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems Earth Planets Space, 55, 63 65, 3 One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems Heikki Vanhamäki, Olaf Amm, and Ari Viljanen Finnish

More information

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial 1 Background Errors 1. Background error covariance 2. Multivariate relationships

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

Robust Testing and Variable Selection for High-Dimensional Time Series

Robust Testing and Variable Selection for High-Dimensional Time Series Robust Testing and Variable Selection for High-Dimensional Time Series Ruey S. Tsay Booth School of Business, University of Chicago May, 2017 Ruey S. Tsay HTS 1 / 36 Outline 1 Focus on high-dimensional

More information

ENGINEERING MATHEMATICS I. CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 PART-A

ENGINEERING MATHEMATICS I. CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 PART-A ENGINEERING MATHEMATICS I CODE: 10 MAT 11 IA Marks: 25 Hrs/Week: 04 Exam Hrs: 03 Total Hrs: 52 Exam Marks:100 PART-A Unit-I: DIFFERENTIAL CALCULUS - 1 Determination of n th derivative of standard functions-illustrative

More information

SOLVING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS IN SPHERICAL GEOMETRY WITH RADIAL BASIS FUNCTIONS

SOLVING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS IN SPHERICAL GEOMETRY WITH RADIAL BASIS FUNCTIONS SOLVING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS IN SPHERICAL GEOMETRY WITH RADIAL BASIS FUNCTIONS NATASHA FLYER 1. Introduction Mathematical modeling of space and climate phenomena generally requires

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Nonparametric Regression With Gaussian Processes

Nonparametric Regression With Gaussian Processes Nonparametric Regression With Gaussian Processes From Chap. 45, Information Theory, Inference and Learning Algorithms, D. J. C. McKay Presented by Micha Elsner Nonparametric Regression With Gaussian Processes

More information

Radiation by a dielectric wedge

Radiation by a dielectric wedge Radiation by a dielectric wedge A D Rawlins Department of Mathematical Sciences, Brunel University, United Kingdom Joe Keller,Cambridge,2-3 March, 2017. We shall consider the problem of determining the

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

Class Averaging in Cryo-Electron Microscopy

Class Averaging in Cryo-Electron Microscopy Class Averaging in Cryo-Electron Microscopy Zhizhen Jane Zhao Courant Institute of Mathematical Sciences, NYU Mathematics in Data Sciences ICERM, Brown University July 30 2015 Single Particle Reconstruction

More information

Fractal functional regression for classification of gene expression data by wavelets

Fractal functional regression for classification of gene expression data by wavelets Fractal functional regression for classification of gene expression data by wavelets Margarita María Rincón 1 and María Dolores Ruiz-Medina 2 1 University of Granada Campus Fuente Nueva 18071 Granada,

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Cubature Particle filter applied in a tightly-coupled GPS/INS navigation system

Cubature Particle filter applied in a tightly-coupled GPS/INS navigation system Cubature Particle filter applied in a tightly-coupled GPS/INS navigation system Yingwei Zhao & David Becker Physical and Satellite Geodesy Institute of Geodesy TU Darmstadt 1 Yingwei Zhao & David Becker

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Kadath: a spectral solver and its application to black hole spacetimes

Kadath: a spectral solver and its application to black hole spacetimes Kadath: a spectral solver and its application to black hole spacetimes Philippe Grandclément Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

More information

Observing SAIDs with the Wallops Radar

Observing SAIDs with the Wallops Radar Observing SAIDs with the Wallops Radar Raymond A. Greenwald, Kjellmar Oksavik, J. Michael Ruohoniemi, and Joseph Baker The Johns Hopkins University Applied Physics Laboratory SuperDARN-Storms New Technologies--Antenna

More information

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM A. Srinivasan, E. P. Chassignet, O. M. Smedstad, C. Thacker, L. Bertino, P. Brasseur, T. M. Chin,, F.

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1. Problem Sheet 3. From Theorem 3. we have ζ (s) = + s s {u} u+sdu, (45) valid for Res > 0. i) Deduce that for Res >. [u] ζ (s) = s u +sdu ote the integral contains [u] in place of {u}. ii) Deduce that for

More information

Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) Networks CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks 1 Function approximation We have been using MLPs as pattern classifiers But in general, they are function approximators Depending

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

Spectral transforms. Contents. ARPEGE-Climat Version 5.1. September Introduction 2

Spectral transforms. Contents. ARPEGE-Climat Version 5.1. September Introduction 2 Spectral transforms ARPEGE-Climat Version 5.1 September 2008 Contents 1 Introduction 2 2 Spectral representation 2 2.1 Spherical harmonics....................... 2 2.2 Collocation grid.........................

More information

Toward Scatter Classification at Middle Latitudes

Toward Scatter Classification at Middle Latitudes Toward Scatter Classification at Middle Latitudes E. S. Miller and E. R. Talaat Geospace and Earth Science Group Johns Hopkins University Applied Physics Laboratory 31 May 2011 SuperDARN Network SuperDARN

More information

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris.

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris. /pgf/stepx/.initial=1cm, /pgf/stepy/.initial=1cm, /pgf/step/.code=1/pgf/stepx/.expanded=- 10.95415pt,/pgf/stepy/.expanded=- 10.95415pt, /pgf/step/.value required /pgf/images/width/.estore in= /pgf/images/height/.estore

More information

Fluid mechanics, topology, and complex analysis

Fluid mechanics, topology, and complex analysis Fluid mechanics, topology, and complex analysis Takehito Yokoyama Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan (Dated: April 30, 2013 OMPLEX POTENTIAL

More information

Sample Solutions from the Student Solution Manual

Sample Solutions from the Student Solution Manual 1 Sample Solutions from the Student Solution Manual 1213 If all the entries are, then the matrix is certainly not invertile; if you multiply the matrix y anything, you get the matrix, not the identity

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Optimal Interpolation

Optimal Interpolation Optimal Interpolation Optimal Interpolation and/or kriging consist in determining the BEST LINEAR ESTIMATE in the least square sense for locations xi where you have no measurements: Example 1: Collected

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

Consistent Bivariate Distribution

Consistent Bivariate Distribution A Characterization of the Normal Conditional Distributions MATSUNO 79 Therefore, the function ( ) = G( : a/(1 b2)) = N(0, a/(1 b2)) is a solu- tion for the integral equation (10). The constant times of

More information

Machine Learning - Waseda University Logistic Regression

Machine Learning - Waseda University Logistic Regression Machine Learning - Waseda University Logistic Regression AD June AD ) June / 9 Introduction Assume you are given some training data { x i, y i } i= where xi R d and y i can take C different values. Given

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Free-surface potential flow of an ideal fluid due to a singular sink

Free-surface potential flow of an ideal fluid due to a singular sink Journal of Physics: Conference Series PAPER OPEN ACCESS Free-surface potential flow of an ideal fluid due to a singular sink To cite this article: A A Mestnikova and V N Starovoitov 216 J. Phys.: Conf.

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing ibeltal F. Alem, Daniel H. Chae, and Rodney A. Kennedy The Australian National

More information

S10.G.1. Fluid Flow Around the Brownian Particle

S10.G.1. Fluid Flow Around the Brownian Particle Rea Reichl s introuction. Tables & proofs for vector calculus formulas can be foun in the stanar textbooks G.Arfken s Mathematical Methos for Physicists an J.D.Jackson s Classical Electroynamics. S0.G..

More information

Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine

Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine Y. Dak Hazirbaba, J. Tezcan, Q. Cheng Southern Illinois University Carbondale, IL, USA SUMMARY: The 2009

More information