Hidden Markov Models for precipitation

Size: px
Start display at page:

Download "Hidden Markov Models for precipitation"

Transcription

1 Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1

2 Context Part of the project Climate-related risks for energy supply and demand Important part is to assess future climate variability Based on past observations and expected behavior of ENSO, IPO, human-induced climate change,... Aim : developing a stochastic models to simulate realistic scenarios for the future climate. First step: Focus on rainfall Reproduce past conditions Simulated rainfall used as input in models of large-scale hydrology and river flows Estimate risks related to production of hydroelectricity (6% of NZ electricity) Page

3 Outline Data Basic Hidden Markov Model (HMM) HMM with truncated Gaussian distributions Conclusion Page 3

4 Data Data Rainfall data in New Zealand Daily rainfall K=7 locations Y t = ( Y t ( 1),, Y t ( K) )' Data Y t ( k) R + : rainfall (mm) during day t at location k 6 years Focus on April 3 1 Hydroelectric stations Page 4

5 Data Time structure (location 1) Time (year) Time (day) Marginal distribution Two components:. Y t ( k) = if no rainfall occurs. Y t ( k) > if a rainfall occurs % of dry days 4 6 Marginal distribution, location 1 Page 5

6 Data Spatial structure corr(y t ) Page 6

7 HMMs for rainfall: basic model Basic HMM: model description (Zucchini & Guttorp (1991)) Existence of weather types in meteorological time series Another meteorological time series Cyclonic 1 Anticyclonic Wind speed (in m/s), Brittany, January 1991 The weather type depends on the position of high pressure systems, frontal systems... Introduced as a hidden process { 1 Q} S t Page 7

8 HMMs for rainfall: basic model Basic HMM: model description (Zucchini & Guttorp (1991)) Existence of weather types in meteorological time series Introduced as a hidden process Time structure: HMM S t { 1 Q} PS ( t S t 1 = s t 1, Y t 1 = y t 1,, S = s, Y = y ) = PS ( t S t 1 = s t 1 ) PY ( t S t = s t S t 1 = s t 1, Y =,, S= s, Y= y ) = PY ( t S t = s t ), t 1 y t 1 Weather type (not observed) S t-1 S t S t+1 Precipitation (observed) Y t-1 Y t Y t+1...dynamics induced only by { }! S t Page 8

9 HMMs for rainfall: basic model Basic HMM: model description (Zucchini & Guttorp (1991)) Existence of weather types in meteorological time series Introduced as a hidden process Time structure: HMM...Dynamics induced only by { }! Spatial structure: conditional independence S t S t { 1 Q} py ( t ( 1), Y t ( K) S t = s t ) = p( Y t( k) S t = s t ) k { 1 K} Weather type (not observed) S t-1 S t S t+1 Y t-1 (1) Y t (1) Y t+1 (1) Precipitation (observed) Y t-1 (K) Y t (K) Y t+1 (K) Spatial dependence induced only by { }! S t Page 9

10 HMMs for rainfall: basic model Basic HMM: model description (Zucchini & Guttorp (1991)) Existence of weather types in meteorological time series Introduced as a hidden process Time structure: HMM...Dynamics induced only by { }! Spatial structure: conditional independence Spatial dependence induced only by { }! S t S t { 1 Q} py ( t ( 1), Y t ( K) S t = s t ) = p( Y t( k) S t = s t ) S t k { 1 K} py ( t ( k) dy S t = s) = ( ) s 1 p k p k s if dy ( ) γ y α ( s ) ( s) ( ;, β k k ) if dy 1 γ( y; α, β) = y α 1 Γα ( )β exp y α β -- ( s) ( s) ( s) p k [, 1], α k >, β k > Page 1

11 HMMs for rainfall: basic model Parameter estimation 3KQ + Q 1 parameters EM algorithm to compute the Maximum Likelihood Estimates Several random starting values to avoid local extrema Model selection First selection with AIC and BIC Q AIC BIC Focus on the model with Q = 4 Easier interpretation than models with Q 5 Produce more realistic synthetic time series than models with Q 3 Page 11

12 HMMs for rainfall: basic model Model validation Meteorological interpretability Emission probabilities Regime 1 Regime Regime 3 Regime 4 P(Y t > S t ) 9% 5% 3% 4% 7% % 6% 64% 7% 5% 38% 49% 45% 51% 73% 88% 88% 65% 97% 95% 89% 94% 97% 98% 99% 99% 96% 98% E[Y t S t,y t >] var(y t S t,y t >) Page 1

13 HMMs for rainfall: basic model Model validation Meteorological interpretability Emission probabilities Transition matrix, stationary distribution, mean durations Summary Regime 1: dry conditions, long persistence Regime and 3: intermediate patterns, regional differences, higher rainfall in regime 3, short persistence Regime 4: heavy rainfall Similar meteorological interpretation for other datasets Page 13

14 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution Data Model (+95% interval) Location 1 (Winchmore) Page 14

15 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations Data Model (+95% interval) Autocorrelation (Location 1) Autocorrelation (Location 3) Page 15

16 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations Data Model (+95% interval) Dry durations (Location 1) Dry durations (Location 3) Page 16

17 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations: ~OK Spatial structure Data Model Page 17

18 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations: ~OK Spatial structure: not good! Need for a better model! Existence of residual spatial structure within the weather types regime 1 regime Empirical correlation matrices in the different weather types (identified via the Viterbi algo.) regime regime Page 18

19 HMMs for rainfall: basic model Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations: ~OK Spatial structure: not good! Need for a better model! Existence of residual spatial structure within the weather types Introduce spatial structure in the emission probabilities Need model for multivariate mixed discrete-continuous distributions...truncated Gaussian random fields Page 19

20 HMMs for rainfall: HMM with truncated Gaussian fields HMM with truncated Gaussian fields: model description If = s then S t Y t ( k) = if W t ( k) W t ( k) β ( s) ( k) if W t ( k) > = + with Z t NOI (, ) i.i.d W t m ( s) H ( s) Z t m ( s) R K, Σ ( s) = H ( s) ( H ( s) )' R K K and β s.4 ( ) R +* ( ) K.3..1 P[Y=] pdf of W N( 1.88, 3.78) pdf of Y = max( W, ) 1.81 Page

21 HMMs for rainfall: HMM with truncated Gaussian fields Assumptions on the covariance matrices HMMCI model ( Q 1 + 3QK parameters) ( s (, ) σ ) s s = i σ j with σ j Σ ( s) ij ( ) δ i, j ( ) > HMMdist model ( Q 1 + K3Q ( + 1) parameters) ( s (, ) σ ) ( s i σ ) j exp λ ( s) ( s) = ( dz ( i, z j )) with σ j > and λ s Σ ( s) ij ( ) > HMMloc model ( Q 1 + 4QK parameters) Model selection with AIC ( s (, ) σ ) ( s i σ ) ( s j exp λ ) ( s i λ ) ( s) s = ( j dz ( i, z j )) with σ j > and λ i Σ ( s) ij Q Basic HMM HMMCI HMMdist HMMloc HMMfull ( ) > Page 1

22 HMMs for rainfall: HMM with truncated Gaussian fields Model validation Meteorological interpretability Regime 1 Regime Regime 3 Regime 4 P(Y t > S t ) 4% 4% 11% 1% 8% 9% 11% % 8% 3% 7% 3% 31% 4% 56% 97% 76% 65% 6% 66% 59% 86% 73% 84% 87% 93% 9% 9% E[Y t S t,y t >] var(y t S t,y t >) corr(y t S t ) Page

23 HMMs for rainfall: HMM with truncated Gaussian fields Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution (Location 1) Truncation + Power transf. Mixing regime 1 regime regime 3 regime regime 1 regime regime 3 regime mixed data PW ( t ( 1) S t = s) PY ( t ( 1) S t = s) P( Y t( 1) S t = s)ps ( t = s) Page 3

24 HMMs for rainfall: HMM with truncated Gaussian fields Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution (Location 1).8.6 Data Model Page 4

25 HMMs for rainfall: HMM with truncated Gaussian fields Model validation Meteorological interpretability: OK Realism of artificial sequences simulated with the model Marginal distribution: OK Dynamics at the different locations: ~OK Spatial structure: OK Data Model Page 5

26 HMMs for rainfall: HMM with truncated Gaussian fields Parameter estimation Model structure Weather type: Not observed, finite values Conditionally Gaussian vector: Not observed, continuous values S t-1 S t S t+1 W t-1 W t W t+1 Precipitation: Observed, mixed continuous-discrete Y t-1 Y t Y t+1 Monte-Carlo EM algorithm Page 6

27 HMMs for rainfall: HMM with truncated Gaussian fields Need to compute the following smoothing probabilities for the M-step u t ( s) = ps ( t = sy 1T, θ n ) v t s, s' ( ) = ps ( t 1 = s, S t = s' y 1T, θ n ) EW t y 1T, S t [ = s, θ n ] EW [ t W t ' S t = s, y1 T, θ n ] Several algorithms can be used Generic algorithms : Gibbs sampler, particle filter,... More efficient algorithms if we take advantage of the specific structure of the model S t-1 S t S t+1 W t-1 W t W t+1 Y t-1 Y t Y t+1 Page 7

28 HMMs for rainfall: HMM with truncated Gaussian fields Need to compute the following smoothing probabilities for the M-step u t ( s) = ps ( t = sy 1T, θ n ) v t s, s' ( ) = ps ( t 1 = s, S t = s' y 1T, θ n ) EW [ t y 1T, θ n ] EW [ t W t ' y 1T, θ n ] Several algorithms can be used Generic algorithms : Gibbs sampler, particle filter,... More efficient algorithms if we take advantage of the specific structure of the model Forward-backward algorithm for the discrete component Monte-Carlo integration for the gaussian component ( φ pdf of NmΣ (, )) ], ] k ], ] k ], ] k φ( w 1,, w k, w k + 1,, w K ) dw 1 d w i φ( w 1,, w k, w k + 1,, w K ) dw 1 d w k w i w j φ( w 1,, w k, w k + 1,, w K ) dw 1 d w k w k Page 8

29 HMMs for rainfall: HMM with truncated Gaussian fields N=1 N=5 N~n*n 63.5 log(l) m (1) (1) Σ (1) (1,1) 4 β (1) (1) Number of iteration Number of iteration Page 9

30 Conclusion Conclusion Better description of the spatial structure of the data Some perspectives Add an autoregressive part to better describe the local dynamics Incorporate seasonal and inter-annual components in the model Some virtues of HMM Distributional versatility Ability to model diverse time scales Open structure which allows for more physical models Page 3

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5 STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES Richard W Katz LECTURE 5 (1) Hidden Markov Models: Applications (2) Hidden Markov Models: Viterbi Algorithm (3) Non-Homogeneous Hidden Markov Model (1)

More information

Steven L. Scott. Presented by Ahmet Engin Ural

Steven L. Scott. Presented by Ahmet Engin Ural Steven L. Scott Presented by Ahmet Engin Ural Overview of HMM Evaluating likelihoods The Likelihood Recursion The Forward-Backward Recursion Sampling HMM DG and FB samplers Autocovariance of samplers Some

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS

GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA Joint work with Eva

More information

State Space Models for Wind Forecast Correction

State Space Models for Wind Forecast Correction for Wind Forecast Correction Valérie 1 Pierre Ailliot 2 Anne Cuzol 1 1 Université de Bretagne Sud 2 Université de Brest MAS - 2008/28/08 Outline 1 2 Linear Model : an adaptive bias correction Non Linear

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet

Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet Laboratoire de Mathématiques, UMR 6205, Université Européenne de Bretagne, Brest, France IRMAR, UMR 6625, Université

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS

GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS GENERALIZED LINEAR MODELING APPROACH TO STOCHASTIC WEATHER GENERATORS Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA Joint work with Eva

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios

Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Reduced Overdispersion in Stochastic Weather Generators for Statistical Downscaling of Seasonal Forecasts and Climate Change Scenarios Yongku Kim Institute for Mathematics Applied to Geosciences National

More information

An R based rainfall generator using a stochastic seasonal switching model

An R based rainfall generator using a stochastic seasonal switching model An R based rainfall generator using a stochastic seasonal switching model Trevor Carey-Smith a, Peter Thomson b and John Sansom a a National Institute of Water and Atmospheric Research, New Zealand b Statistics

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

Modeling daily precipitation in Space and Time

Modeling daily precipitation in Space and Time Space and Time SWGen - Hydro Berlin 20 September 2017 temporal - dependence Outline temporal - dependence temporal - dependence Stochastic Weather Generator Stochastic Weather Generator (SWG) is a stochastic

More information

Nonlinear and non-gaussian state-space modelling by means of hidden Markov models

Nonlinear and non-gaussian state-space modelling by means of hidden Markov models Nonlinear and non-gaussian state-space modelling by means of hidden Markov models University of Göttingen St Andrews, 13 December 2010 bla bla bla bla 1 2 Glacial varve thickness (General) state-space

More information

Estimating Design Rainfalls Using Dynamical Downscaling Data

Estimating Design Rainfalls Using Dynamical Downscaling Data Estimating Design Rainfalls Using Dynamical Downscaling Data Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering Mater Program in Statistics National Taiwan University Introduction Outline

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Downscaling in Time. Andrew W. Robertson, IRI. Advanced Training Institute on Climate Variability and Food Security, 12 July 2002

Downscaling in Time. Andrew W. Robertson, IRI. Advanced Training Institute on Climate Variability and Food Security, 12 July 2002 Downscaling in Time Andrew W. Robertson, IRI Advanced Training Institute on Climate Variability and Food Security, 12 July 2002 Preliminaries Crop yields are driven by daily weather variations! Current

More information

Statistical downscaling daily rainfall statistics from seasonal forecasts using canonical correlation analysis or a hidden Markov model?

Statistical downscaling daily rainfall statistics from seasonal forecasts using canonical correlation analysis or a hidden Markov model? Statistical downscaling daily rainfall statistics from seasonal forecasts using canonical correlation analysis or a hidden Markov model? Andrew W. Robertson International Research Institute for Climate

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz 1 Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home

More information

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models 02433 - Hidden Markov Models Pierre-Julien Trombe, Martin Wæver Pedersen, Henrik Madsen Course week 10 MWP, compiled

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

A Markov Regime-Switching Framework Application for Describing El Niño Southern Oscillation (ENSO) Patterns

A Markov Regime-Switching Framework Application for Describing El Niño Southern Oscillation (ENSO) Patterns A Markov Regime-Switching Framework Application for Describing El Niño Southern Oscillation (ENSO) Patterns Iván Cárdenas Gallo Graduate Student, Dept. of Civil and Industrial Engineering, Univ. of Los

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management

Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management P. Barry Liu Prof. Mark Hansen University of California, Berkeley September 25th, 2003 1 Background Weather

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic

Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic Julie Bessac, Pierre Ailliot, Julien Cattiaux, Valérie Monbet To cite

More information

arxiv: v2 [stat.ap] 26 Oct 2018

arxiv: v2 [stat.ap] 26 Oct 2018 Bivariate modelling of precipitation and erature using a non-homogeneous hidden Markov model Augustin Touron 1,2, Thi-Thu-Huong Hoang 2, and Sylvie Parey 2 1 Laboratoire de Mathématiques d Orsay, Université

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Master 2 Informatique Probabilistic Learning and Data Analysis

Master 2 Informatique Probabilistic Learning and Data Analysis Master 2 Informatique Probabilistic Learning and Data Analysis Faicel Chamroukhi Maître de Conférences USTV, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2013/2014 Faicel

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Spatio-temporal precipitation modeling based on time-varying regressions

Spatio-temporal precipitation modeling based on time-varying regressions Spatio-temporal precipitation modeling based on time-varying regressions Oleg Makhnin Department of Mathematics New Mexico Tech Socorro, NM 87801 January 19, 2007 1 Abstract: A time-varying regression

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

A weather generator for simulating multivariate climatic series

A weather generator for simulating multivariate climatic series A weather generator for simulating multivariate climatic series Denis Allard, with Nadine Brisson (AgroClim, INRA), Cédric Flecher (MetNext) and Philippe Naveau (LSCE, CNRS) Biostatistics and Spatial Processes

More information

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data An application of the GAM-PCA-VAR model to respiratory disease and air pollution data Márton Ispány 1 Faculty of Informatics, University of Debrecen Hungary Joint work with Juliana Bottoni de Souza, Valdério

More information

Chapter 5 Identifying hydrological persistence

Chapter 5 Identifying hydrological persistence 103 Chapter 5 Identifying hydrological persistence The previous chapter demonstrated that hydrologic data from across Australia is modulated by fluctuations in global climate modes. Various climate indices

More information

DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES

DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES Proceedings of OMAE25 25 24th International Conference on Offshore and Artic Engineering Halkidiki, Greece, June 2-7, 25 OMAE25-6749 DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES Valérie

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models CI/CI(CS) UE, SS 2015 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 23, 2015 CI/CI(CS) SS 2015 June 23, 2015 Slide 1/26 Content

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models 6 Dependent data The AR(p) model The MA(q) model Hidden Markov models Dependent data Dependent data Huge portion of real-life data involving dependent datapoints Example (Capture-recapture) capture histories

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

Prediction of Annual Rainfall Pattern Using Hidden Markov Model (HMM) in Jos, Plateau State, Nigeria

Prediction of Annual Rainfall Pattern Using Hidden Markov Model (HMM) in Jos, Plateau State, Nigeria JASEM ISSN 1119-8362 All rights reserved Full-text Available nline at www.ajol.infoand www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. Sept. 2016 Vol. 20 (3) 617-622 Prediction of Annual Rainfall

More information

Extremes Events in Climate Change Projections Jana Sillmann

Extremes Events in Climate Change Projections Jana Sillmann Extremes Events in Climate Change Projections Jana Sillmann Max Planck Institute for Meteorology International Max Planck Research School on Earth System Modeling Temperature distribution IPCC (2001) Outline

More information

A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis

A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis Journal of Hydrology 275 (2003) 27 48 www.elsevier.com/locate/jhydrol A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis Mark Thyer, George

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

Markov switching autoregressive models for wind time series

Markov switching autoregressive models for wind time series Markov switching autoregressive models for wind time series Pierre Ailliot, Valérie Monbet IFREMER/Metocean, Brest, France UBS/SABRES, Vannes, France pierre.ailliot@univ-ubs.fr, valerie.monbet@univ-ubs.fr

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

CS532, Winter 2010 Hidden Markov Models

CS532, Winter 2010 Hidden Markov Models CS532, Winter 2010 Hidden Markov Models Dr. Alan Fern, afern@eecs.oregonstate.edu March 8, 2010 1 Hidden Markov Models The world is dynamic and evolves over time. An intelligent agent in such a world needs

More information

Changes in Weather and Climate Extremes and Their Causes. Xuebin Zhang (CRD/ASTD) Francis Zwiers (PCIC)

Changes in Weather and Climate Extremes and Their Causes. Xuebin Zhang (CRD/ASTD) Francis Zwiers (PCIC) www.ec.gc.ca Changes in Weather and Climate Extremes and Their Causes Xuebin Zhang (CRD/ASTD) Francis Zwiers (PCIC) Outline What do we mean by climate extremes Changes in extreme temperature and precipitation

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Hidden Markov Models. Terminology, Representation and Basic Problems

Hidden Markov Models. Terminology, Representation and Basic Problems Hidden Markov Models Terminology, Representation and Basic Problems Data analysis? Machine learning? In bioinformatics, we analyze a lot of (sequential) data (biological sequences) to learn unknown parameters

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data 0. Notations Myungjun Choi, Yonghyun Ro, Han Lee N = number of states in the model T = length of observation sequence

More information

Hmms with variable dimension structures and extensions

Hmms with variable dimension structures and extensions Hmm days/enst/january 21, 2002 1 Hmms with variable dimension structures and extensions Christian P. Robert Université Paris Dauphine www.ceremade.dauphine.fr/ xian Hmm days/enst/january 21, 2002 2 1 Estimating

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Dirk Schlabing and András Bárdossy. Comparing Five Weather Generators in Terms of Entropy

Dirk Schlabing and András Bárdossy. Comparing Five Weather Generators in Terms of Entropy Dirk Schlabing and András Bárdossy Comparing Five Weather Generators in Terms of Entropy Motivation 1 Motivation What properties of weather should be reproduced [...]? Dirk Schlabing & András Bárdossy,

More information

Multivariate Non-Normally Distributed Random Variables

Multivariate Non-Normally Distributed Random Variables Multivariate Non-Normally Distributed Random Variables An Introduction to the Copula Approach Workgroup seminar on climate dynamics Meteorological Institute at the University of Bonn 18 January 2008, Bonn

More information

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu AMS Committee on Probability and Statistics

More information

Inference in Explicit Duration Hidden Markov Models

Inference in Explicit Duration Hidden Markov Models Inference in Explicit Duration Hidden Markov Models Frank Wood Joint work with Chris Wiggins, Mike Dewar Columbia University November, 2011 Wood (Columbia University) EDHMM Inference November, 2011 1 /

More information

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS LEARNING DYNAMIC SYSTEMS: MARKOV MODELS Markov Process and Markov Chains Hidden Markov Models Kalman Filters Types of dynamic systems Problem of future state prediction Predictability Observability Easily

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Climate Change: the Uncertainty of Certainty

Climate Change: the Uncertainty of Certainty Climate Change: the Uncertainty of Certainty Reinhard Furrer, UZH JSS, Geneva Oct. 30, 2009 Collaboration with: Stephan Sain - NCAR Reto Knutti - ETHZ Claudia Tebaldi - Climate Central Ryan Ford, Doug

More information

Non-homogeneous Markov Mixture of Periodic Autoregressions for the Analysis of Air Pollution in the Lagoon of Venice

Non-homogeneous Markov Mixture of Periodic Autoregressions for the Analysis of Air Pollution in the Lagoon of Venice Non-homogeneous Markov Mixture of Periodic Autoregressions for the Analysis of Air Pollution in the Lagoon of Venice Roberta Paroli 1, Silvia Pistollato, Maria Rosa, and Luigi Spezia 3 1 Istituto di Statistica

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Testing the shape of distributions of weather data

Testing the shape of distributions of weather data Journal of Physics: Conference Series PAPER OPEN ACCESS Testing the shape of distributions of weather data To cite this article: Ana L P Baccon and José T Lunardi 2016 J. Phys.: Conf. Ser. 738 012078 View

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 7(extra): (Generalized) Hidden Markov Models Henrik Madsen Lecture Notes September 2016 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes

More information

Bayesian Nonparametric Learning of Complex Dynamical Phenomena

Bayesian Nonparametric Learning of Complex Dynamical Phenomena Duke University Department of Statistical Science Bayesian Nonparametric Learning of Complex Dynamical Phenomena Emily Fox Joint work with Erik Sudderth (Brown University), Michael Jordan (UC Berkeley),

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Towards inference for skewed alpha stable Levy processes

Towards inference for skewed alpha stable Levy processes Towards inference for skewed alpha stable Levy processes Simon Godsill and Tatjana Lemke Signal Processing and Communications Lab. University of Cambridge www-sigproc.eng.cam.ac.uk/~sjg Overview Motivation

More information

Trivariate copulas for characterisation of droughts

Trivariate copulas for characterisation of droughts ANZIAM J. 49 (EMAC2007) pp.c306 C323, 2008 C306 Trivariate copulas for characterisation of droughts G. Wong 1 M. F. Lambert 2 A. V. Metcalfe 3 (Received 3 August 2007; revised 4 January 2008) Abstract

More information

Fitting Narrow Emission Lines in X-ray Spectra

Fitting Narrow Emission Lines in X-ray Spectra Outline Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, University of Pittsburgh October 11, 2007 Outline of Presentation Outline This talk has three components:

More information

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations

Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Using Model Selection and Prior Specification to Improve Regime-switching Asset Simulations Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut BYU Statistics Department

More information

Modeling and Simulating Rainfall

Modeling and Simulating Rainfall Modeling and Simulating Rainfall Kenneth Shirley, Daniel Osgood, Andrew Robertson, Paul Block, Upmanu Lall, James Hansen, Sergey Kirshner, Vincent Moron, Michael Norton, Amor Ines, Calum Turvey, Tufa Dinku

More information

ANSWER KEY. Part I: Weather and Climate. Lab 16 Answer Key. Explorations in Meteorology 72

ANSWER KEY. Part I: Weather and Climate. Lab 16 Answer Key. Explorations in Meteorology 72 ANSWER KEY Part I: Weather and Climate Table 2 lists the maximum and minimum temperatures (in F) and precipitation (in inches) for every day during April 2003 at Fairbanks, Alaska. You will compare your

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Markov chain modeling of precipitation time series: Modeling waiting times between tipping bucket rain gauge tips

Markov chain modeling of precipitation time series: Modeling waiting times between tipping bucket rain gauge tips Markov chain modeling of precipitation time series: Modeling waiting times between tipping bucket rain gauge tips H.J.D. Sørup 1*, H. Madsen 2 and K. Arnbjerg-Nielsen 1 1 Technical University of Denmark,

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information