Hierarchical Modelling for Univariate Spatial Data

Size: px
Start display at page:

Download "Hierarchical Modelling for Univariate Spatial Data"

Transcription

1 Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 epartment of Forestry & epartment of Geography, Michigan State University, Lansing Michigan, U.S.A. March 3, 2010 y Frontiers of Statistical ecision Making and Bayesian Analysis Algorithmic Modelling What is a spatial process? Spatial surface observed at finite set of locations S = {s 1, s 2,..., s n } Tessellate the spatial domain (usually with data locations as vertices) Fit an interpolating polynomial: Y(s1) Y(s2) f(s) = i w i (S ; s)f(s i ) Y(sn) Interpolate by reading off f(s 0 ). Issues: Sensitivity to tessellations Choices of multivariate interpolators Numerical error analysis 3 Frontiers of Statistical ecision Making and Bayesian Analysis 4 Frontiers of Statistical ecision Making and Bayesian Analysis Y (s) = µ(s) + ɛ(s), Response: Y (s) at location s Mean: µ = T (s)β Error: ɛ(s) iid N(0, τ 2 ) Assumptions regarding ɛ(s): ɛ(s) iid N(0, τ 2 ) Y (s) = µ(s) + ɛ(s), Y (s), (s) ɛ(s i) ɛ(s j) 5 Frontiers of Statistical ecision Making and Bayesian Analysis 6 Frontiers of Statistical ecision Making and Bayesian Analysis

2 Assumptions regarding ɛ(s): ɛ(s) iid N(0, τ 2 ) Y (s) = µ(s) + ɛ(s), ɛ(s i ) and ɛ(s j ) are uncorrelated for all i j Spatial Gaussian processes (GP ): Say w(s) GP (0, σ 2 ρ( )) and Cov(w(s 1 ), w(s 2 )) = σ 2 ρ (φ; s 1 s 2 ) ɛ(s i) ɛ(s j) w(s i) w(s j) 6 Frontiers of Statistical ecision Making and Bayesian Analysis 7 Frontiers of Statistical ecision Making and Bayesian Analysis Spatial Gaussian processes (GP ): Say w(s) GP (0, σ 2 ρ( )) and Cov(w(s 1 ), w(s 2 )) = σ 2 ρ (φ; s 1 s 2 ) Let w = [w(s i )] n, then Realization of a Gaussian process: Changing φ and holding σ 2 = 1: w N(0, σ 2 R(φ)), where R(φ) = [ρ(φ; s i s j )] n i,j=1 w N(0, σ 2 R(φ)), where R(φ) = [ρ(φ; s i s j )] n i,j=1 w(s i) w(s j) 7 Frontiers of Statistical ecision Making and Bayesian Analysis 8 Frontiers of Statistical ecision Making and Bayesian Analysis Realization of a Gaussian process: Changing φ and holding σ 2 = 1: w N(0, σ 2 R(φ)), where R(φ) = [ρ(φ; s i s j )] n i,j=1 Realization of a Gaussian process: Changing φ and holding σ 2 = 1: w N(0, σ 2 R(φ)), where R(φ) = [ρ(φ; s i s j )] n i,j=1 Correlation model for R(φ): e.g., eponential decay ρ(φ; t) = ep( φt) if t > 0. Correlation model for R(φ): e.g., eponential decay ρ(φ; t) = ep( φt) if t > 0. Other valid models e.g., Gaussian, Spherical, Matérn. Effective range, t 0 = ln(0.05)/φ 3/φ 8 Frontiers of Statistical ecision Making and Bayesian Analysis 8 Frontiers of Statistical ecision Making and Bayesian Analysis

3 w N(0, σ 2 wr(φ)) defines comple spatial dependence structures. E.g., anisotropic Matérn correlation function: ρ(s i, s j; φ) = `1/Γ(ν)2 ν 1 2 p νd ij) ν κ p ν(2 νd ij, where d ij = (s i s j) Σ 1 (s i s j), Σ = G(ψ)Λ 2 G(ψ). Thus, φ = (ν, ψ, Λ). + random spatial effects Y (s) = µ(s) + w(s) + ɛ(s), Simulated Predicted Response: Y (s) at some site Mean: µ = T (s)β Spatial random effects: w(s) GP (0, σ 2 ρ(φ; s 1 s 2 )) Non-spatial variance: ɛ(s) iid N(0, τ 2 ) 9 Frontiers of Statistical ecision Making and Bayesian Analysis 10 Frontiers of Statistical ecision Making and Bayesian Analysis 11 Frontiers of Statistical ecision Making and Bayesian Analysis 11 Frontiers of Statistical ecision Making and Bayesian Analysis Third stage: Priors on Ω = (β, τ 2, σ 2, φ) Third stage: Priors on Ω = (β, τ 2, σ 2, φ) Marginalized likelihood: y Ω N(Xβ, σ 2 R(φ) + τ 2 I) 11 Frontiers of Statistical ecision Making and Bayesian Analysis 11 Frontiers of Statistical ecision Making and Bayesian Analysis

4 Third stage: Priors on Ω = (β, τ 2, σ 2, φ) Marginalized likelihood: y Ω N(Xβ, σ 2 R(φ) + τ 2 I) Note: Spatial process parametrizes Σ: y = Xβ + ɛ, ɛ N (0, Σ), Σ = σ 2 R(φ) + τ 2 I 11 Frontiers of Statistical ecision Making and Bayesian Analysis 12 Frontiers of Statistical ecision Making and Bayesian Analysis Conditional model: conjugate full conditionals for σ 2, τ 2 and w easier to program. Conditional model: conjugate full conditionals for σ 2, τ 2 and w easier to program. Marginalized model: need Metropolis or Slice sampling for σ 2, τ 2 and φ. Harder to program. But, reduced parameter space faster convergence σ 2 R(φ) + τ 2 I is more stable than σ 2 R(φ). 12 Frontiers of Statistical ecision Making and Bayesian Analysis 12 Frontiers of Statistical ecision Making and Bayesian Analysis Conditional model: conjugate full conditionals for σ 2, τ 2 and w easier to program. Marginalized model: need Metropolis or Slice sampling for σ 2, τ 2 and φ. Harder to program. But, reduced parameter space faster convergence σ 2 R(φ) + τ 2 I is more stable than σ 2 R(φ). But what about R 1 (φ)?? EXPENSIVE! 12 Frontiers of Statistical ecision Making and Bayesian Analysis 13 Frontiers of Statistical ecision Making and Bayesian Analysis

5 They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw w (g) [w Ω (g), y, X] 13 Frontiers of Statistical ecision Making and Bayesian Analysis 13 Frontiers of Statistical ecision Making and Bayesian Analysis Residual plot: [w(s) y] They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw w (g) [w Ω (g), y, X] w mean of Y NOTE: With Gaussian likelihoods [w Ω, y, X] is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred. 13 Frontiers of Statistical ecision Making and Bayesian Analysis 14 Frontiers of Statistical ecision Making and Bayesian Analysis Another look: [w(s) y] Another look: [w(s) y] w w 15 Frontiers of Statistical ecision Making and Bayesian Analysis 16 Frontiers of Statistical ecision Making and Bayesian Analysis

6 Spatial Prediction Spatial Prediction Prediction: Summary of [Y (s) y] Often we need to predict Y (s) at a new set of locations { s 0,..., s m } with associated predictor matri X. Sample from predictive distribution: [ỹ y, X, X] = [ỹ, Ω y, X, X]dΩ = [ỹ y, Ω, X, X] [Ω y, X]dΩ, y [ỹ y, Ω, X, X] is multivariate normal. Sampling scheme: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw ỹ (g) [ỹ y, Ω (g), X, X]. 17 Frontiers of Statistical ecision Making and Bayesian Analysis 18 Frontiers of Statistical ecision Making and Bayesian Analysis Colorado data illustration Temperature residual map Modelling temperature: 507 locations in Colorado. Simple spatial regression model: Y (s) = T (s)β + w(s) + ɛ(s) w(s) GP (0, σ 2 ρ( ; φ, ν)); ɛ(s) iid N(0, τ 2 ) Parameters 50% (2.5%,97.5%) Intercept (2.131,3.866) [Elevation] (-0.527,-0.333) Precipitation (0.002,0.072) σ (0.051, 1.245) φ 7.39E-3 (4.71E-3, 51.21E-3) Range (38.8, 476.3) τ (0.022, 0.092) Frontiers of Statistical ecision Making and Bayesian Analysis 20 Frontiers of Statistical ecision Making and Bayesian Analysis Elevation map Residual map with elev. as covariate Latitude Longitude Frontiers of Statistical ecision Making and Bayesian Analysis 22 Frontiers of Statistical ecision Making and Bayesian Analysis

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data

More information

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Hierarchical Modelling for Univariate and Multivariate Spatial Data Hierarchical Modelling for Univariate and Multivariate Spatial Data p. 1/4 Hierarchical Modelling for Univariate and Multivariate Spatial Data Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Hierarchical Modeling for non-gaussian Spatial Data

Hierarchical Modeling for non-gaussian Spatial Data Hierarchical Modeling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modelling for non-gaussian Spatial Data

Hierarchical Modelling for non-gaussian Spatial Data Hierarchical Modelling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Univariate spatial models Spatial Domain Hierarchical Modeling for Univariate Spatial Data Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Model Assessment and Comparisons

Model Assessment and Comparisons Model Assessment and Comparisons Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Modelling Multivariate Spatial Data

Modelling Multivariate Spatial Data Modelling Multivariate Spatial Data Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. June 20th, 2014 1 Point-referenced spatial data often

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Hierarchical Modeling for Spatial Data

Hierarchical Modeling for Spatial Data Bayesian Spatial Modelling Spatial model specifications: P(y X, θ). Prior specifications: P(θ). Posterior inference of model parameters: P(θ y). Predictions at new locations: P(y 0 y). Model comparisons.

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Hierarchical Modelling for non-gaussian Spatial Data

Hierarchical Modelling for non-gaussian Spatial Data Hierarchical Modelling for non-gaussian Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Generalized Linear Models Often data

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging Cheng Li DSAP, National University of Singapore Joint work with Rajarshi Guhaniyogi (UC Santa Cruz), Terrance D. Savitsky (US Bureau of Labor

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software April 2007, Volume 19, Issue 4. http://www.jstatsoft.org/ spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O.

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017 Lecture 23 Spatio-temporal Models Colin Rundel 04/17/2017 1 Spatial Models with AR time dependence 2 Example - Weather station data Based on Andrew Finley and Sudipto Banerjee s notes from National Ecological

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Bayesian Dynamic Modeling for Space-time Data in R

Bayesian Dynamic Modeling for Space-time Data in R Bayesian Dynamic Modeling for Space-time Data in R Andrew O. Finley and Sudipto Banerjee September 5, 2014 We make use of several libraries in the following example session, including: ˆ library(fields)

More information

MULTILEVEL IMPUTATION 1

MULTILEVEL IMPUTATION 1 MULTILEVEL IMPUTATION 1 Supplement B: MCMC Sampling Steps and Distributions for Two-Level Imputation This document gives technical details of the full conditional distributions used to draw regression

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Sudipto Banerjee University of California, Los Angeles, USA Based upon projects involving: Abhirup Datta (Johns Hopkins University)

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets

Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets Andrew O. Finley, Sudipto Banerjee, Patrik Waldmann, and Tore Ericsson 1 Correspondence author:

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

arxiv: v1 [stat.me] 28 Dec 2017

arxiv: v1 [stat.me] 28 Dec 2017 A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging Raarshi Guhaniyogi, Cheng Li, Terrance D. Savitsky 3, and Sanvesh Srivastava 4 arxiv:7.9767v [stat.me] 8 Dec 7 Department of Applied Mathematics

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15 Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 15 Contingency table analysis North Carolina State University

More information

Introduction to Bayes and non-bayes spatial statistics

Introduction to Bayes and non-bayes spatial statistics Introduction to Bayes and non-bayes spatial statistics Gabriel Huerta Department of Mathematics and Statistics University of New Mexico http://www.stat.unm.edu/ ghuerta/georcode.txt General Concepts Spatial

More information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information p. 1/27 Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Shengde Liang, Bradley

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley, Sudipto Banerjee, and Bradley P. Carlin 1 Department Correspondence of Forest Resources,

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop Bayesian Gaussian / Linear Models Read Sections 2.3.3 and 3.3 in the text by Bishop Multivariate Gaussian Model with Multivariate Gaussian Prior Suppose we model the observed vector b as having a multivariate

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information