Topology, quantum entanglement, and criticality in the high temperature superconductors

Size: px
Start display at page:

Download "Topology, quantum entanglement, and criticality in the high temperature superconductors"

Transcription

1 HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation, Alexandria VA Subir Sachdev September 21, 2017 Talk online: sachdev.physics.harvard.edu

2 SM FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

3 Undoped insulating antiferromagnet

4 Antiferromagnet with p mobile holes per square

5 Filled Band

6 Antiferromagnet with p mobile holes per square But relative to the band insulator, there are 1+ p holes per square

7 Antiferromagnet In a conventional metal (a Fermi liquid), with no broken symmetry, the area with p mobile holes per square enclosed by the Fermi surface must be 1+p But relative to the band insulator, there are 1+ p holes per square

8 M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, (2005) SM FL A conventional metal: the Fermi liquid with Fermi surface of size 1+p

9 c B (T) 50 5 Tl2201 t/b (a.u.) 0 5 YBa 2 Cu 4 O /B (T 1 ) 2 Overdoped Figure 1 Quantum oscillations in Tl2201. a, Raw data on interlayer resistance (R H ) with B//c for a Tl2201 single crystal at T K. R H (B) rises rapidly above the irreversibility field B irr, passes through a small. Vignolle B, Carrington A, Cooper RA, French MMJ, Mackenzie AP, Jaudet C, Vignolles D, Proust C and Hussey NE Nature 455: plateau, then grows quasi-quadratically with field up to 60 T. Inset, magnified view of the high-field region of the down sweep. Small but welldefined oscillations are clearly resolved in the raw data, with an amplitude that grows with increasing field strength. The maximum amplitude of the oscillations is only 0.5 mv. b, Averaged magnetic torque data (from five sweeps at temperatures between 0.6 K and 0.8 K) with B close to the c axis for a different Tl2201 crystal. The temperatures of the torque sweeps are subject to an additional uncertainty of 150 mk due to the weak thermal link inside the dilution refrigerator 5 and the high currents needed to observe the oscillations. Below B 5 14 T, the torque shows hysteretic behaviour due to flux trapping and expulsion in the superconducting mixed state. Again, welldefined oscillations are clearly resolved in the expanded region shown in the inset. The value of T c for both crystals is 10 K (defined by their zero-resistive state), compared with the maximal TS. c insebastian Tl2201 of 92 K. and The torque C. Proust, crystal showed a very small kink in the zero-field r H data around 20 K, suggesting Annual Reviews thatof some Condensed fraction of the crystal, Matter presumably Physics, the surface 6 (2015) layer, had a higher T value. Note that the difference in B exhibited by both crystals is

10 c B (T) 50 5 Tl2201 t/b (a.u.) 0 5 YBa 2 Cu 4 O /B (T 1 ) 2 Underdoped Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison JB, Liang R, Bonn DA, Hardy WN, Taillefer L Nature 447: Overdoped Figure 1 Quantum oscillations in Tl2201. a, Raw data on interlayer resistance (R H ) with B//c for a Tl2201 single crystal at T K. R H (B) rises rapidly above the irreversibility field B irr, passes through a small. Vignolle B, Carrington A, Cooper RA, French MMJ, Mackenzie AP, Jaudet C, Vignolles D, Proust C and Hussey NE Nature 455: plateau, then grows quasi-quadratically with field up to 60 T. Inset, magnified view of the high-field region of the down sweep. Small but welldefined oscillations are clearly resolved in the raw data, with an amplitude that grows with increasing field strength. The maximum amplitude of the oscillations is only 0.5 mv. b, Averaged magnetic torque data (from five sweeps at temperatures between 0.6 K and 0.8 K) with B close to the c axis for a different Tl2201 crystal. The temperatures of the torque sweeps are subject to an additional uncertainty of 150 mk due to the weak thermal link inside the dilution refrigerator 5 and the high currents needed to observe the oscillations. Below B 5 14 T, the torque shows hysteretic behaviour due to flux trapping and expulsion in the superconducting mixed state. Again, welldefined oscillations are clearly resolved in the expanded region shown in the inset. The value of T c for both crystals is 10 K (defined by their zero-resistive state), compared with the maximal T c in Tl2201 of 92 K. The torque crystal S. Sebastian and C. Proust, Annual Reviews of Condensed Matter Physics, 6 (2015) showed a very small kink in the zero-field r H data around 20 K, suggesting that some fraction of the crystal, presumably the surface layer, had a higher T value. Note that the difference in B exhibited by both crystals is

11 B. Vignolle, A. Carrington, R.A. Cooper, M.M.J. French, 0.15 A.P. Mackenzie, C. Jaudet, D. Vignolles, C. Proust and N.E. Hussey, Nature 455, 952 (2008) c B (T) Tl2201 SM t/b (a.u.) 0 5 YBa 2 Cu 4 O /B (T 1 ) FL A conventional Figure 1 Quantum oscillations in Tl2201. a, Raw resistance (R H ) with metal: B//c for a Tl2201 single crysta R H (B) rises rapidly above the irreversibility field B ir plateau, then the grows Fermi quasi-quadratically liquid with field u magnified view of the high-field region of the down defined oscillations are clearly resolved in the raw d that grows with with increasingfermi field strength. The maxi oscillations is only 0.5 mv. b, Averaged magnetic to sweeps at temperatures surface between of 0.6size K and 0.8 K) wit a different Tl2201 crystal. The temperatures of the to to an additional uncertainty 1+p of 150 mk due to the w the dilution refrigerator 5 and the high currents nee oscillations. Below B 5 14 T, the torque shows hyst flux trapping and expulsion in the superconducting defined oscillations are clearly resolved in the expan

12 N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.B. Bonnemaison, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 447, 565 (2007) a 4 1 / (530 T) 2 SM R xy (mω) / B (T 1 ) FL Quantum oscillations of a Fermi surface of size close to p

13 Harrison N, Sebastian SE Phys. Rev. Lett. 106: Great deal of evidence that underdoped quantum oscillations are due to an electron pocket which is created by field-induced long-range charge density wave order

14 Allais A, Chowdhury D, Sachdev S Nature Commun. 5:5771 p al Q 1 0 Q 2 -p -p 0 p- Reconstructing the large Fermi surface by CDW order inevitably leads to many more Fermi surfaces, apart from the electron pocket

15 Specific heat measurements in field-induced normal state of under doped YBCO Zero field gamma 50 YBCO Riggs SC, Vafek O, Kemper JB, Betts JB, Migliori A, Balakirev FF, Hardy WN, Liang R, Bonn DA, Boebinger GS Nature Phys. 7: C/T (mj mol K ) γ= mj/mol K 0T Temperature (K ) Lowest values for LSCO values range from 2 2. YBCO ~2 mj/ mol K 0.4 to 4 mj/ mol K Value is only consistent with a single electron pocket (Wright et al, Handbook of High Tc) Wen et al Physical Review B 70, (2004)

16 Sawtooth waveform characteristic of an ideal 2D Fermi gas 2D electrons in GaAs/AlGaAs heterostructures Y. T. Hsu, M. Hartstein, J. Porras, T. Loew et al. (unpublished) A. Potts et al. J. Phys.: Condens. Matter 8, (1996) Consistent with a single electron pocket

17 Single reconstructed Fermi surface pocket in an underdoped single layer cuprate superconductor M. K. Chan, 1, 2, N. Harrison, 1, R. D. McDonald, 1 B. J. Ramshaw, 1 K. A. Modic, 1 N. Barišić, 3, 2 and M. Greven 2 c f/f (%) B (T) FIG. 2. Observation of quantum oscillations in Hg1201 with contactless resistivity. (a) Evolution of the PDO circuit frequency coupled to Hg1201 UD71 with applied magnetic field B along the c axis of the sample at T =1.8 K.Thesampleundergoesatransitionfromsuperconducting (SC, only black shaded a single region) electron to normal pocket (blue region) at B 35 T. (b) Derivative of the raw data with respect us to make an up Using m 2.7 m e we obtain a c-axis h revealing it to be nearest neighbor h CuO 2 planes. Our than the bare valu (t = 10 mev [45 normalization. Our ability to se in Hg1201 contrast timates of the c-ax from the effects of in Y123 range from the observed beat effects of bilayer-sp neling [8] or Fermi Fermi surface The simple crystal ideal system for rel Fermi surface pock ray scattering [18] the unreconstructe Nature Communications 7, (2016) And shape of quantum oscillations also support vides the magnitu Following Allais et reconstructed hole

18 The parent pseudogap metal, without CDW order, cannot have a large Fermi surface, and should be gapped in the anti-nodal region Such a Fermi surface violates the Luttinger theorem of Fermi-liquid theory However, such a Fermi surface can appear in a metal with bulk topological order, which has long-range, many-body quantum entanglement

19 The parent pseudogap metal, without CDW order, cannot have a large Fermi surface, and should be gapped in the anti-nodal region Such a Fermi surface violates the Luttinger theorem of Fermi-liquid theory However, such a Fermi surface can appear in a metal with bulk topological order, which has long-range, many-body quantum entanglement

20 The parent pseudogap metal, without CDW order, cannot have a large Fermi surface, and should be gapped in the anti-nodal region Such a Fermi surface violates the Luttinger theorem of Fermi-liquid theory However, such a Fermi surface can appear in a metal with bulk topological order, which has long-range, many-body quantum entanglement T. Senthil, M. Vojta and S. Sachdev, PRB 69, (2004) A. Paramekanti and A. Vishwanath, PRB 70, (2004).

21 A simple model: Fluctuating antiferromagnetism leads to small Fermi surfaces and bulk topological order with long-range quantum entanglement

22 Begin with the spin-fermion model. Electrons c i on the square lattice with dispersion H c = X t c i, c i+v, + c i+v, c i, µ X c i, c i, + H int i, i are coupled to an antiferromagnetic order parameter ` = x, y, z X H int = `(i)c i i, ` c i, + V where i = ±1 on the two sublattices. i `(i), When `(i) =constant independent of i, we have long-range AFM, and a gap in the fermion spectrum at the anti-nodes.

23 Begin with the spin-fermion model. Electrons c i on the square lattice with dispersion H c = X t c i, c i+v, + c i+v, c i, µ X c i, c i, + H int i, i are coupled to an antiferromagnetic order parameter ` = x, y, z X H int = `(i)c i i, ` c i, + V where i = ±1 on the two sublattices. i `(i), When `(i) =constant independent of i, we have long-range AFM, and a gap in the fermion spectrum at the anti-nodes.

24 Begin with the spin-fermion model. Electrons c i on the square lattice with dispersion H c = X t c i, c i+v, + c i+v, c i, µ X c i, c i, + H int i, i are coupled to an antiferromagnetic order parameter ` = x, y, z X H int = `(i)c i i, ` c i, + V where i = ±1 on the two sublattices. i `(i), When `(i) =constant independent of i, we have long-range AFM, and a gap in the fermion spectrum at the anti-nodes. In

25 For fluctuating antiferromagnetism, we transform to a rotating reference frame using the SU(2) rotation R i ci" i,+ = R i, c i# in terms of fermionic chargons s and a Higgs field H a (i) i, ` `(i) =R i a H a (i) R i The Higgs field is the AFM order in the rotating reference frame.

26 Fluctuating antiferromagnetism The simplest e ective Hamiltonian for the fermionic chargons is the same as that for the electrons, with the AFM order replaced by the Higgs field. H = X i, t i,s i+v,s + i+v,s i,s µ X i i,s i,s + H int H int = X i H a (i) i,s a ss 0 i,s 0 + V H i

27 Fluctuating antiferromagnetism The simplest e ective Hamiltonian for the fermionic chargons is the same as that for the electrons, with the AFM order replaced by the Higgs field. H = X i, t i,s i+v,s + i+v,s i,s H int = X i i H a (i) i,s µ X i a ss 0 i,s 0 + V H i,s i,s + H int IF we can transform to a rotating reference frame in which H a (i) = a constant independent of i and time, THEN the fermions in the presence of fluctuating AFM will inherit the anti-nodal gap of the electrons in the presence of static AFM. In

28 Fluctuating antiferromagnetism We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order A.V. Chubukov, T. Senthil and S. Sachdev, PRL 72, 2089 (1994); S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, (2016)

29 Fluctuating antiferromagnetism We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order R ( 1) n R A.V. Chubukov, T. Senthil and S. Sachdev, PRL 72, 2089 (1994); S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, (2016)

30 Topological order We cannot always find a single-valued SU(2) rotation R i to make the Higgs field H a (i) a constant! n-fold vortex in AFM order R ( 1) n R Vortices with n odd must be suppressed: such a metal with fluctuating antiferromagnetism has BULK Z 2 TOPOLOGICAL ORDER and fermions which inherit the pocket Fermi surfaces of the antiferromagnetic metal i.e. a pseudogap. Odd vortices in antiferromagnetism are stable bulk quasiparticles ( visons ) which could be observed in STM.

31 Pseudogap metal SM with bulk topological FL order?

32 Gauge theory for a SM topological FL Higgs-toconfinement phase transition

33 Gauge theory for a SM topological FL Higgs-toconfinement phase transition

34 Phase diagram in a high magnetic field Quantum oscillations and DW order B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, James Day, B. S. Tan, Z. Zhu, J. B. Betts, Ruixing Liang, D. A. Bonn, W. N. Hardy, N. Harrison, Science 348, 6232 (2105).

35 Phase diagram in a high magnetic field b YBCO T NMR H = 50 T Badoux, Proust, Taillefer et al., Nature 531, 210 (2016) T ( K ) 40 T c 20 SDW CDW p* p Quantum oscillations and DW order

36 Hall effect measurements in YBCO b p* 1.5 SDW CDW FL n H = V / e R H p Fermi liquid (FL) with carrier density 1+p p p Badoux, Proust, Taillefer et al., Nature 531, 210 (2016)

37 Hall effect measurements in YBCO b p* n H = V / e R H SDW CDW FL p 1 + p Spin density wave (SDW) breaks translational invariance, and the Fermi liquid then has carrier density p p Badoux, Proust, Taillefer et al., Nature 531, 210 (2016)

38 Hall effect measurements in YBCO b p* 1.5 SDW CDW FL n H = V / e R H p 1 + p Charge density wave (CDW) leads to complex Fermi surface reconstruction and negative Hall resistance p Badoux, Proust, Taillefer et al., Nature 531, 210 (2016)

39 Hall effect measurements in YBCO b p* 1.5 SDW CDW FL n H = V / e R H p 1 + p Rapid increase in carrier density due to a quantum phase transition at p=0.19? p Badoux, Proust, Taillefer et al., Nature 531, 210 (2016)

40 Scale-invariant magnetoresistance in a cuprate superconductor P. Giraldo-Gallo, 1 J. A. Galvis, 1 Z. Stegen, 1 K. A. Modic, 2 F. F Balakirev, 3 J. B. Betts, 3 X. Lian, 1 C. Moir, 1 S. C. Riggs, 1 J. Wu, 4 A. T. Bollinger, 4 X. He, 4, 5 I. Božović, 4, 5 B. J. Ramshaw, low temperatures 6, 3 R. D. McDonald, is poorly 3 G. understood, S. Boebinger, especially 1, 7 and A. near Shekhter critical 1, doping, x = Here we report a high-field magnetoresistance study of thin films of La 2 x Sr x CuO 4 cuprates in close vicinity to critical doping, apple x apple We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 80T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity T arxiv: x crit x B

41 High field studies of cuprates have been crucial to unraveling their phase diagram Plethora of evidence for an exotic metal underlying the underdoped regime A metal with bulk topological order (i.e. long-range quantum entanglement) can explain existing experiments Novel quantum criticality likely associated with a deconfined-confined transition in a

42 Novel quantum criticality likely associated with a deconfined-confined transition in a gauge theory Higher field studies, with more experimental probes (STM ), promise to answer many open questions, and could lead to direct detection of topological order. An understanding of these issues is crucial to understanding the origin of the high critical temperature for superconductivity

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse, France Collaborations F. Laliberté W. Tabis D. Vignolles

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates Lecture # 2 1 Phenomenology of High Tc Cuprates II Pseudogap in Underdoped Cuprates Mohit Randeria Ohio State University 2014 Boulder School on Modern aspects of Superconductivity T T* Strange metal Mott

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Thermodynamic phase diagram of static charge order in underdoped YBa 2 Cu 3 O y

Thermodynamic phase diagram of static charge order in underdoped YBa 2 Cu 3 O y 1 Thermodynamic phase diagram of static charge order in underdoped YBa Cu 3 O y David LeBoeuf 1, S. Krämer, W.N. Hardy 3,4, Ruixing Liang 3,4, D.A. Bonn 3,4, and Cyril Proust 1,4 1 Laboratoire National

More information

Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO

Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO Scott C. Riggs 1* ; O. Vafek 1, J. B. Kemper 1, J.B. Betts 2, A. Migliori 2, W. N. Hardy 3;4, Ruixing

More information

The cuprate phase diagram: insights from neutron scattering and electrical transport. Mun Chan University of Minnesota, Minneapolis

The cuprate phase diagram: insights from neutron scattering and electrical transport. Mun Chan University of Minnesota, Minneapolis The cuprate phase diagram: insights from neutron scattering and electrical transport Mun Chan University of Minnesota, Minneapolis Acknowledgements Martin Greven, University of Minnesota CRYSTAL GROWTH

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

LETTER. Change of carrier density at the pseudogap critical point of a cuprate superconductor

LETTER. Change of carrier density at the pseudogap critical point of a cuprate superconductor doi:10.1038/nature16983 Change of carrier density at the pseudogap critical point of a cuprate superconductor S. Badoux 1, W. Tabis 2,3, F. Laliberté 2, G. Grissonnanche 1, B. Vignolle 2, D. Vignolles

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

Florida State University. University of Florida

Florida State University. University of Florida National High Magnetic Field Laboratory Florida State University 1.4 GW Generator Los Alamos National Laboratory 45T Hybrid DC Magnet University of Florida Advanced Magnetic Resonance Imaging and Spectroscopy

More information

Bachelor of Science (Honours): Physics and Computer Science

Bachelor of Science (Honours): Physics and Computer Science Dr. Brad Ramshaw Curriculum Vitae Pulsed Field Facility Los Alamos National Laboratory TA-35, Buildilng 127, E536 Los Alamos, NM, 87545 Education Phone: 505-500-5559 Email: bradramshaw@gmail.com Doctorate

More information

High Tc cuprates: Recent insights from X-ray scattering

High Tc cuprates: Recent insights from X-ray scattering High Tc cuprates: Recent insights from X-ray scattering Mathieu Le Tacon Max Planck Institute for Solid State Research Stuttgart Collaborators B. Keimer, S. Blanco-Canosa, A. Fraño, M. Minola, H. Gretarsson,

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates. Y. Dagan 1, A. Biswas 2, M. C. Barr 1, W. M. Fisher 1, and R. L. Greene 1. 1 Center for Superconductivity Research,

More information

The phase diagrams of the high temperature superconductors

The phase diagrams of the high temperature superconductors The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD The cuprate superconductors Square lattice

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

arxiv: v1 [cond-mat.str-el] 18 Sep 2014

arxiv: v1 [cond-mat.str-el] 18 Sep 2014 Density wave instabilities of fractionalized Fermi liquids Debanjan Chowdhury 1 and Subir Sachdev 1, 2 1 Department of Physics, Harvard University, Cambridge, Massachusetts-02138, U.S.A. 2 Perimeter Institute

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Nambu Memorial Symposium University of Chicago March 12, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Nambu and superconductivity

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y J. Chang 1,2, E. Blackburn 3, A. T. Holmes 3, N. B. Christensen 4, J. Larsen 4,5, J. Mesot 1,2,

More information

New insights into high-temperature superconductivity

New insights into high-temperature superconductivity New insights into high-temperature superconductivity B. Keimer Max-Planck-Institute for Solid State Research introduction to conventional and unconventional superconductivity empirical approach to quantitative

More information

Anomalous quantum criticality in the electron-doped cuprates

Anomalous quantum criticality in the electron-doped cuprates Anomalous quantum criticality in the electron-doped cuprates P. R. Mandal, Tarapada Sarkar, and Richard L. Greene Center for Nanophysics & Advanced Materials and Department of Physics, University of Maryland,

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

High-T c superconductors

High-T c superconductors High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap, superconducting gap, superfluid Nodal states Bilayer, trilayer Stripes High-T c superconductors Parent

More information

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s. 1957-2 Miniworkshop on Strong Correlations in Materials and Atom Traps 4-15 August 2008 Superconductivity, magnetism and criticality in the 115s. THOMPSON Joe David Los Alamos National Laboratory Materials

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==

More information

arxiv: v2 [cond-mat.supr-con] 9 Feb 2016

arxiv: v2 [cond-mat.supr-con] 9 Feb 2016 epl draft Hall effect and Fermi surface reconstruction via electron pockets in the high-t c cuprates. arxiv:5.v [cond-mat.supr-con] 9 Feb 6 J.G. Storey Robinson Research Institute, Victoria University

More information

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4 Umesh Kumar Yadav Centre for Condensed Matter Theory Department of Physics Indian Institute of Science August

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information