Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Size: px
Start display at page:

Download "Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD"

Transcription

1 Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

2 <latexit sha1_base64="k7jx8efbma2lrujxy27hncmbd18=">aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==</latexit> Ubiquitous Strange, Bad, Incoherent, or Ultra-quantum metal has a resistivity,, which obeys T, and in some cases h/e 2 (in two dimensions), where h/e 2 is the quantum unit of resistance.

3 Ultra-quantum metals just got stranger B-linear magnetoresistance!? Ba-122 LSCO I. M. Hayes et. al., Nat. Phys P. Giraldo-Gallo et. al., arxiv:

4 Ultra-quantum metals just got stranger Scaling between B and T!? Ba-122 Ba-122 I. M. Hayes et. al., Nat. Phys. 2016

5 Interactions between L. Balents, J. McGreevy, S. Sachdev, T. Senthil (partly nucleated by student, Aavishkar Patel) Quantum spin liquids and the metal-insulator transition in doped semiconductors, Andrew C. Potter, Maissam Barkeshli, John McGreevy, T. Senthil, Phys. Rev. Lett. 109, (2012). A strongly correlated metal built from Sachdev-Ye-Kitaev models, Xue-Yang Song, Chao-Ming Jian, Leon Balents, Phys. Rev. Lett. 119, (2017). Magnetotransport in a model of a disordered strange metal, Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv: Translationally invariant non-fermi liquid metals with critical Fermi-surfaces: Solvable models, Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arxiv:

6 H = The Sachdev-Ye-Kitaev (SYK) model 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Pick a set of random positions

7 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Place electrons randomly on some sites

8 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

9 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

10 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

11 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

12 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

13 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

14 The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X This describes both a strange metal and a black hole!

15 The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

16 The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) X G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) Low frequency analysis shows that the solutions must be gapless and obey (z) =µ 1 Ap z +..., G(z) = A pz where A = e i /4 ( /U 2 ) 1/4 at half-filling. The ground state is a non-fermi liquid, with a continuously variable density Q. <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

17 The SYK model Many-body level spacing 2 N = e N ln 2 Non-quasiparticle excitations with spacing e Ns 0 There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S = Ns 0 with s 0 = G + ln(2) 4 < ln 2 = where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, (2001) W. Fu and S. Sachdev, PRB 94, (2016)

18 The SYK model Many-body level spacing 2 N = e N ln 2 There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S = Ns 0 with s 0 = G + ln(2) 4 < ln 2 = Non-quasiparticle excitations with spacing e Ns 0 W. Fu and S. Sachdev, PRB 94, (2016) where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, (2001) For SYK models with N =2supersymmetry,GPS=BPS <latexit sha1_base64="hy0bptipu7u4cqjcamcnhahepgg=">aaacqhicbvdpsxtbgj21ttq1rbeevqzgqg8lbijepqiiuavbijgakg1hdvbbzhb+ldozsljyr3npf9bb7714uphqydm4qmv9to/3vh/ve1hkmbfb8nubetp79t3c/ht/4cpht4uvpc+nrmwaqocqrnq3igy4k9cxzhlophqiidicred7hx52adowju/soiw+iepjekajddsg0g0jgdkzu5aw9mt/rjru/zjeqsxadb5kdhsgec0uxi4o4fnrzluxhk2wup1jicdq8te832pv77bafggyft40qfsdwjathntwt5rnzgfkpl6ckiqrnaj8cmnfm+hgksfg9opbavs50zzrdhm/zaykhj6tifqclesa6eftbcb4i2nindjziziwt9m/j3iijpmbuc7ie/nsk8jxtf5mk81+zmsawzd06vcscwwvlulemdnalr87qkhmziumi6ijdrky34vqf/ny/6dtqg3vgungdwe3tgmerabv9bxv0qbaqqeohtqioiv0b92gw++nd+3defdprtneobom/inv4rg1kk//</latexit> <latexit sha1_base64="hy0bptipu7u4cqjcamcnhahepgg=">aaacqhicbvdpsxtbgj21ttq1rbeevqzgqg8lbijepqiiuavbijgakg1hdvbbzhb+ldozsljyr3npf9bb7714uphqydm4qmv9to/3vh/ve1hkmbfb8nubetp79t3c/ht/4cpht4uvpc+nrmwaqocqrnq3igy4k9cxzhlophqiidicred7hx52adowju/soiw+iepjekajddsg0g0jgdkzu5aw9mt/rjru/zjeqsxadb5kdhsgec0uxi4o4fnrzluxhk2wup1jicdq8te832pv77bafggyft40qfsdwjathntwt5rnzgfkpl6ckiqrnaj8cmnfm+hgksfg9opbavs50zzrdhm/zaykhj6tifqclesa6eftbcb4i2nindjziziwt9m/j3iijpmbuc7ie/nsk8jxtf5mk81+zmsawzd06vcscwwvlulemdnalr87qkhmziumi6ijdrky34vqf/ny/6dtqg3vgungdwe3tgmerabv9bxv0qbaqqeohtqioiv0b92gw++nd+3defdprtneobom/inv4rg1kk//</latexit>

19 The SYK model Low energy, many-body density of states (E) e Ns 0 sinh( p 2(E E 0 )N ) D. Stanford and E. Witten, A. M. Garica-Garcia, J.J.M. Verbaarschot, D. Bagrets, A. Altland, and A. Kamenev, Low temperature entropy S = Ns 0 + N T +... T = 0 fermion Green s function G( ) 1/2 at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T>0Green sfunction has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arxiv:

20 Black holes Black holes have an entropy and a temperature, T H = ~c 3 /(8 GMk B ). The entropy is proportional to their surface area. They relax to thermal equilibrium in a time ~/(k B T H ).

21 LIGO September 14, 2015 The ring-down is predicted by General Relativity to happen in a time 8 GM c 3 8 milliseconds. Curiously this happens to equal ~ k B T H : so the ring down can also be viewed as the approach of a quantum system to thermal equilibrium at the fastest possible rate.!

22 The SYK model Low energy, many-body density of states (E) e Ns 0 sinh( p 2(E E 0 )N ) D. Stanford and E. Witten, A. M. Garica-Garcia, J.J.M. Verbaarschot, D. Bagrets, A. Altland, and A. Kamenev, Low temperature entropy S = Ns 0 + N T +... T = 0 fermion Green s function G( ) 1/2 at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T>0Green sfunction has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arxiv:

23 Black hole horizon SYK and black holes ~x Black holes with a near-horizon AdS2 geometry (described by quantum gravity in 1+1 spacetime dimensions) match the properties of the 0+1 dimensional SYK model in the previous slide: Ns0 is the Bekenstein-Hawking entropy S. Sachdev, PRL 105, (2010); A. Kitaev (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arxiv:

24 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arxiv:

25 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

26 Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! Large N solution (with or without microscopic disorder) yields a marginal Fermi liquid metal, with conductivities of the form: xx(b,t) = 1 B T L T xy(b,t) = B B T 2 H T where the scaling functions interpolate as L,H(b! 0) constant ; L,H(b!1) 1/b 2 This solution exhibits B/T scaling, but the magnetoresistance xx saturates for B T. <latexit sha1_base64="nvhrmartpt4gwjshxqwwoa/+row=">aaaedxicjvpfsyrheb7xtfq2vzr5pdikudekss5ucv6440ambb8kgfhzguntenpqzorr6r67a3sxyf/puz8i73kk6dlduymh6zcuurq+qvrqq7hu5dgmpy61ltuffb6y+qzzxzdfff3n2vq3fzhtwynn0ihjl2lhujhgcyzweffafews8g38/pfg//ygrsojhzwp8aoqmaaupgd/nfpvxufake5qc+du2ayh+1sxnffv44etw+icjixmnhvdqdiaj01jehjyxizot2fcqbihav4spazpoebxtawbouukkh+hqbzqz4yc0uikkkw3xiqotaqci6tgfq86uyw+vmzrlawvk2kncpqvylspx1pyot6b4tzsvtmeklvc1v1ppzxcdjbt6bqihslvltzhc4+llodt8c3qqojrqhtdi06eqgzi3g0wmcf/c7mtou4evhybo8vzs04kp5ym0krlhk0hpbltazrgbohuuvu8lkpmcsg5b7jjxj/unpjq4ku2j2xuifrjhruqfbez155fx0kzr+i6esnr+qwfdo9ipzxzypr343edeewpsg9zcvftx3fombgd7vhushvxzw7exghng42wki1fr00t0osnsrmztct/f1xz36lrzushimoyghz7o7wnsncfho693anvhid7ywpsvxwc/brcvxfozkawogejtb+ixmiq8bqvsjh32q9lvqqfzzikpwwvw1li9ylds29quac7qme7myuf/esyqya1mmh2+jcifovzkyl2pxsk3h99m16e8f1wnb5c1atlilhleak0usagmkxz22frspp4q0jrts5b5silyuvaizn0u6ozzuuiccy3lpg89c+kp56foxlg08b5ohfyc38fbbwdl4hadz4h3wdbqt/yd46ck+asoa9k60prn+wv5dxlv9sv2t325vxra2kr813w6lr3/wu613d1</latexit> Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

27 Infecting a Fermi liquid and making it SYK Need mesoscopic disorder to obtain linear-in-b magnetoresistance Current path length increases linearly with B at large B due to local Hall effect, which causes the global resistance to increase linearly with B at large B. Exact numerical solution of charge-transport equations in a random-resistor network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))

28 Infecting a Fermi liquid and making it SYK n b /n a =0.8 b/ a =0.8 a =0.1k B T t/100 (B =0.0025) Scaling between B and T (T = t/100) ~ 50 T (a = 3.82 A) Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:

29 <latexit sha1_base64="muuuoyjnbgbjqjkic9mruaxqeoe=">aaad5xicfznlb9naemfdhecjrxaoxezusevqiidvh5yo6kxhijw0uhnv6/xyxnuf1u66brd6ftghrnwujnwavgozttocalaynjrz/c9vhk5kkzyp429lne6du/fulz/opxz0+mntldvnh5yplmcxn9lyk4q5lelj2asv8as0yfqi8tg53w/x4wu0thh95gclthxltcgez55cz6tl3ycj5ki3wqmsh/gqnwlw76gqdpxqputwtelzo0qjuxtqjkujktpuryioggiswxnmeuwginmpfupc8ajig2ak6aaqzaalcm+ndia0+akbub1q3j50izjthj4zhuhiw6eqcmdsinywj4peptpgkljnc5yeb7owajsjs0z7psgtomwgr41w8jdt2nltnjnr3+sj3p/lu+z4u+aigdwgwq2hzbpferypsowngfugshjm0wvjlxwb68a2hqn86xu9jbzkpk8q59fa4kltw522ggil2zjhuahnwyik4uz2oagjvwghcplvjghj7maizytr8sde2h7tbeiwrttb22tsbsbdoibhig7pwrq4h2crpyap4zwiffwy506hcemnddupuawbujksgt9noz6sqzlcn23axbycv+qhako0m4tyen990tdl3ewldjnwpxb/xolzb7htyme700bosvi0knmirjlgdytfpn5amp6ckcfonykvemhcagn9exoh9g/o3bfnxoolr0vkezpnoun/rpsa/zbgo8gbqfx+tlb3btgo5ehf9djaj4brtrqxhush0tjinyoo7tsdy27r/dt93p0yv9pzwrx5hv12ul9/armesos=</latexit> This simple two-component model describes a new state of matter which is realized by electrons in the presence of strong interactions and disorder. Can such a model be realized as a fixed-point of a generic theory of strongly-interacting electrons in the presence of disorder? Can we start from a single-band Hubbard model with (or without) disorder, and end up with such two-band fixed point, with emergent local conservation laws?

30 Electrons in doped silicon appear to separate into two components: localized spin moments and itinerant electrons 10' P 2 [ " T(K) F1G. 1. Temperature dependence of normalized susceptibility g/gp, ~; of three Si:P,B samples with dia'erent normalized electron densities, n/n, =0. 58, I.I, and 1.8. Solid lines through data are a guide to the eye. M. J. Hirsch, D.F. Holcomb, R.N. Bhatt, and M.A. Paalanen PRL 68, 1418 (1992) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989) A.C. Potter, M. Barkeshli, J. McGreevy, T. Senthil, PRL 109, (2012)

31 Magnetic excitations are localized (eigenmodes of the spin susceptibility) Charged fermionic excitations are extended (eigenmodes of the electron Hamiltonian) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989)

32 <latexit sha1_base64="fo91dwskzs4pr/lzhpdfdyle7si=">aaaemhicdzpnbhrhemehxukctqigjlxkmch2tlsa20hrvfghsjfcbjg9gchjltu9ttst93spu2vwguz+cj6fa9fkmthfuxlhfajznveioqwraqqruv79q+q0ndpwhl+51ole/ulkl2tf9b7+5tur19av3/gtumormihnnh+wyicjlu1ys6fnpscsuknp05oh7f7tbfmgnt3kuqtjaudwz7rcftf0euf7jkw5to1mkvqlou8lrqw9sdb2drkcmpdy5lobwpqftaepbznze/jimnqz81kffkgtoskloc17l1wkmucc4pnzrzwwlxulyf3q5myfbiem1ftr7f4yopx2niiemymta8kclhmpwkctb6nlajit0hjvqkhdq864qaekkpyvwc1ac5cymjuacixmsjxrtjbksnaoykwfq3jgzoo22kauk9/chk3hh48fbony3pnbdn67l8ezkbyscv1cdkaiufmsrkhpqtbcdikz2igqfsefxkkcxehd8mx0ka3wbxiutjf3hwrop5dmpkomyvp0580ujkwgk+kdojqostlhedc7d0thiin1lqg7wwcldyjexiteamg2dsaqmlr0ywc8hm8p4vcohvz+mxqui7o6uwpqnbttpjyu/kitgbrdmrvqxpchife+jce5dqtqw5wifydjur4rd+o90wg/hni4f+/vj1sjhv0who1gzxgv10z0sz5m198lmvnvqzavwrcoduksjxv0rjvpr60kviounnormbylcsfncqjp4u7v3lggsz7lspt+n6pbios6scwyhrx+v7ci+oneucwz/eng27jismpvafaztp/tc4fme1jsajfqerkq1xzwmsbyjnpjihlkds55kzd9wwc6kzrn3vcutudc6amg+lwx2r2oh/gvuxv3hlygwoturd9fw9fonirurt9ft6jjpdovo687f3b+6r7qvun+3f1nfdq5djfzm/podd++b5kayg0=</latexit> Many-body quantum chaos and transport Using holographic analogies, Shenker, Stanford, Maldacena introduced the Lyapunov time, L,thetime over which a generic many-body quantum system loses memory of its initial state (defined via an outof-time-order (OTOC) correlator), and established a shortest-possible time to reach quantum chaos L ~ 2 k B T A related bound was proposed earlier (Sachdev, 1999). The SYK model, and black holes in Einstein gravity, saturate this bound.

33 <latexit sha1_base64="rhtlzneykppqwlj1lmqohawsjp8=">aaadzxicdvjlb9naelybhsvaaqfx4ccibpvdmw4lsnqrcgcoibupozxi4k7x43hve9faxscnvv4e/4f/wagje5wzj+frbctzhs3jm2++mbjmhbfb8mldav26foxq6jxv+o2ba7fwn26/m6rshptc5uqfxmxglit2rba5npqawrhnebyfvwjix2purijzs9mshwubszekziy5og03cmmccvkli4x4gdmvbczvtcuzsbkqjzasc5gofqyzm4dnrkbmcxaljfigxkcmdoioquiy4blt5fkvtlabyqqkzkbsjdib1uyaumklhldpmcumaqu1pvqyheizc1rfff1+wwnhwtwwgzrynyyuifii0rqyyizsnhw624b2y6jx9pbzjmkuozswzgyzjwiqglhaodp8vwuhzvx02gtrjhfzjosm0kas9rwpdtw9jstruaf5fmayk07dtraawzhkgjradftqvbirs2j8bewvoap1zcap9jqdbgcbvxd0u/unexse7xc6somh87fpln9rtp41tbsvclkf58yywu5q2mhnno0hb/ztgswzp2mjhjapwyfmwm8vyqapyjnaqjr9stgqvh9w1kwwzlrelnlmbp6ozwx4r2xq2bq7riusk4uslxqlvt7fc50v7ultskijrdcubxftlngmk3sezjauu45svocwz+1ejnsn3vofczkjhx7kap83+rv+vh+83d08ofxktercdx46j50dp+mcok+ci6fvcpej+8x95n5f+dxaa91t3vukrrjlmjvohdd68aoobbnx</latexit> Many-body quantum chaos and transport Much theoretical work has examined connections between this chaos bound, and measurable transport co-e cients. The most robust connection is to the thermal di usivity, D T D T v 2 B L (Kapitulnik) where v B is the butterfly velocity at which chaos propagates. A. A. Patel and S. Sachdev, PNAS 114, 1844 (2017) M. Blake, R. A. Davison, and S. Sachdev, PRD 96, (2017)

34 <latexit sha1_base64="c70wv0ds5ti9hj5mdninck/7mmq=">aaadrhicfvlbbtnaehutlivqaogrlxetgodi3aauvakptc9iplsocs1kons9hturenfnxkin1d/hn/gkfofxgq4crri8mss5s2cmlgthxrr9wwq1r1y9dn35rufmrzxbd1bx7r6z2huoq64lbu5izreqcodouajpsonmxguex2f7tf74ixortbq4qssjzjksqedmuwi6tvr5hgmmvc0csvejlzrjxuu8gkqy5a64vor+vawzzggtyzhnlwmcmbozogkxi6bck1xulka+iqopewsmknn2yhcwb0eis94ilqhpmbyhdhjhgvnrjvo4tbquiimoj0cn/wh1jth9mrpur7xajghg42y6b4ontzjlguda0dfwejfbxivgj5viunaw9gkjirx5qmpwgxhyxsqwhikj92/mziwdv4hiojosjoagtrsi3pxnofnea3hekkikidqgiwugy0vrnvc+ciy9+eczcl6sbo4r6ey4xhshflaizmyjxjqoxlj5ymzygankfm5luroehvg31+theixdqn/fazyo92yn14otmjrbercww+nq13giosmrhc9i49fwvlpjvacinxuljennlmmrusqm2kk9p6gleeirbfjt6fpndvd0146aswsrgvolzc63f+aa4n9yi+/s/qqwqvqofb8ksn3rlls5zsxrfc3ogteczm1uxtds1hcsrtpwlbm8hjs8dzoree/ddz8lduekfzcb/u0mt8odmhq7vb67t5bqobgfpageb1tbl9gnxgehwtdgrzvwt/wi9bl9td1sj9qty9lw0qlnxvcbtdnvpg4xqg==</latexit> Many-body quantum chaos and transport A quantum hydrodynamical description for scrambling and many-body chaos Mike Blake, Hyunseok Lee, and Hong Liu arxiv: A direct connection was established between the energy di usion mode and the OTOCs measuring chaos. This assumes dominance of the energy di usion mode up to energies of order k B T, which is beyond the hydrodynamic regime. Such a dominance holds in SYK models and holographic theories, and can be expected more generally in ultra-quantum metals without quasiparticle excitations.

35 Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder)

36 <latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high (Son) temperature superconductors Pseudogap state of hole-doped cuprates

37 <latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high temperature superconductors Pseudogap state of hole-doped cuprates

38 SM FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

39 SM FL YBa 2 Cu 3 O 6+x Deconfinement transition of a gauge theory? Figure: K. Fujita and J. C. Seamus Davis

40 <latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high temperature superconductors Pseudogap state of hole-doped cuprates

41 <latexit sha1_base64="8bjcuulnfkn/rzb5/mvhsg1uero=">aaadf3icfvjnb9naef2brxi+mscry4oiivpqpepatltaovxqkqitfefrej22v13vwrvr0gd1j3dgcj+de+lkkv/bx2a2maggye5pm2/mzbzdpjlcuij6fosxll+5em3reufgzvu3t7u9o6+trg2hkddsm5oewzbcwdqjj+gkmsdkrmjxcvru14+xykzq6pvbvtavwa5ejjhzmfr0gl6cqc5uixyu4i2cd2kpos9qwijuafxgdet1rl0bngd1dh5ps6kckzoatdfuvba2gjtcehqvynpimoiufhqh3488bviwrcjzu55y25pjyrxk8iislns5fhlud1k4kkpcyi/bjwkocgx2gnj1xvxf6xer9uivqa5n4n2svloohyez9jikgup/obdo9qnbnj6m9napb6pjeijgfzcarheddqj19ekbr4vu9zjvvpalcsmsnq2jys0bzlboekdrcxxjpyyhgulfsrdzzv125/qbzlka4tkz9of67mwohpxwrsoemsvzhf2z5pn/q81ql+3pg6gq2qevg6gsltrp6j8cmmsao7lcwdbwuf4wwzgajzms4f9susua2mgzeyns1glgg7fq3qgfntb/g+lo8ggqvrz1d560vm2re+q+euigzi8ckenyrkaeb2fb++bd8df8f34kp4dfntqwahvukt8i/pod4sh/ea==</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Distinct phases of the gauge theory can be distinguished even in the presence of disorder Is the usual confinement/higgs/deconfinement criterion general enough in the presence of disorder? Novel critical points or phases?

42 A solvable model Fractionalize the electron (c i, i =1...N, =1...M) into an orthogonal fermion f i and an Ising spin i z = ±1: c i = This introduces a Z 2 gauge invariance z i f i z i! i z i, f i! i f i The solvable model is (closely related to) the N!1, M!1limit of H = X µf i f i g i x i + p 1 X z z t ij i j f i f j + 1 X p J ij f i f i f j f j NM NM i,j (Senthil, Metlitski, Vishwanath, Sachdev ) where t ij and J ij are random numbers. What is the fate of the Z 2 gauge theory as a function of the coupling g? i,j

43 A solvable model Fractionalize the electron (c i, i =1...N, =1...M) into an orthogonal fermion f i and an Ising spin i z = ±1: c i = This introduces a Z 2 gauge invariance z i f i z i! i z i, f i! i f i The solvable model is (closely related to) the N!1, M!1limit of H = X µf i f i g i x i + p 1 X z z t ij i j f i f j + 1 X p J ij f i f i f j f j NM NM i,j (Senthil, Metlitski, Vishwanath, Sachdev ) where t ij and J ij are random numbers. What is the fate of the Z 2 gauge theory as a function of the coupling g? i,j

44 <latexit sha1_base64="du47f7vjqkj5ijvhrhydnbqckp0=">aaachhicdvfdb9mwfhxcx0bhr/l64swiq/bclhbtonhae/da45aom1sxcupcjnyco7kdjrjv/e5+am/8bdy0lqdblswdnxpupdjxuklhxrx/d8irv69d39m90dm7eev2ne7dex+trg3hcddsm7meleqhcokek3hwgyqykxianl9z6acxakzq6onbvdgrivciexycp+bdbyzbxkigo3jolp23ylxk/lguvow/+5ixcvqzn8l5hum1cyxotfkwrafyacryzz/bpzlueq2lofk6dbcasyiv4dpx1ljhgnuyqnqboo/24mh0ndgchti4itvxyhgwho9j2t8wpbkzk3n3j0s1r0u/zivyo+3hlzs1yhyixgwh1ryr4oeq49rdbsxawdmwtarppjpstbv/lkmt+/tga6w1izlxzhjcyf/wvus/tgntsqnzi1rvo1r8hztvkjpnv63tvbjkti48ghu7lbdggpso/cwl/unu7oqgofzilkxqc5phnbjq1dc2bvp/mblel6l4/ab3/hpt1s55rb6tz6rpxusyvcmnzei4+rhsbq+ch+fo+dw8cedraxhsdu6tpyz89qtekspi</latexit> <latexit sha1_base64="uipqfli2sv3p+6x1xepmimn1ykw=">aaacjhicdvfdi9nafj3erzv+bhufvrgssj5odtrsdkweruh2cywtu9cu7mrykww7myszg9cs+uxv9eeif8fj0wuvvtbwoofce4dz40pji4x99/wbn2/dvrnzn7h3/8hd3d6jx59twrsbm1gq0pzh3iksgmyoucf5zyaxsykz+pjdq599awnlqu9xvcgi4jmwqrqchbxsfyt0kxucgopthaxqaakuqsh1krxu2cgxzdjlq9zteexjgile23jhujrcw9moozhgfyb2ugldceg6v8b14uilc2gcvxd1ejn4f7+tw2wvz0i2ngyni9qc4wq8cebwxaam0uhintun2zpz9n5gssnqwv1ckg7tfmaqxdtcuokk1kfuw6i4uoqzzb3uvac7adabreklxyq0ly17gumg/b2j4yw1qyj2zojjbv/wwvjf2rzg9hdrsf3vcfp0i9jausxpmz5npagbauua75kgiuegc3q3ciil7oa6w7yjel7iluzcnmyutqveu4suy6d/b7nh+czkn4b9o/fbqhbie/kcvcqdmivh5jickbkr5ie35z31nvm7/th/67/rrl637dkjf5t/8rdolmbo</latexit> <latexit sha1_base64="z/w7rvojjt1g12b0lgxypniawlc=">aaacdxicdvfna9taffyp+ar6ebc5fsjsu6wxkrlrxmktnjcce6ibgowap9wtvgs1wnzxbrzhvxnir+i1hx6ythvos/ngyziznw9meyw4svf05/lp1ty3nreebs+ev3i53xr1+qspk81wyepr6ssedaoucwi5fxipnekrclxirk4w+sv31iax8oudkrwxkeuecqbwuzowihpmuawzsot6hpxobp0opp7ypddutv12gmdbj+vqhjrayyjilllgt9riw/mcvt08yglilondhumrhyx7h72d/ggnwmg5dvq/dqadihybpk2aozu0fszpyarcrtmbxoy6kbljgrqlfzgp4sqganyfoy4clfcggdflzub0nwnsmpxapwnpkv1zo4bcmfmrogcbdmr+1rbk/7rrzbpdcc2lqixktjquvylaki5qpinxykyyoqcriiibggbmonbjbt1pydxo69jitf3bu3en7of7xc4aeqibpg6gvfaojm577epptvvb5a15sz6qlhmqy3jkzsiqmhjlfnvr3ob3y9/1o/77ldx3mp0d8tf4e/f+a7/s</latexit> <latexit sha1_base64="2mrnkh2ivjctmqnorg3ix6n58gq=">aaacchicdvdltgjbejz1ifhcpxqzccae1gvr9eb04letv0iaknmhgymzs5uzxpvs+aipxvuzpbmv/ovf4s84iczqtjjoklxd6e4kyikmet6bmzu9mzs3n1nili4tr6zm1tyvtzrodj6pzktratmghqifbuqoxxpygeiobvcni792ddqisf3giizwyhpkdavnacw/unztfdq5vofuh5yoygfuc70xlcnvvsovjxynsp5mcnbovtc7eu9cumglm6zr9gjspuyj4bkg2wziigb8ivwgyaliizhwoj52slet0qhdsntssmfq94muhcymwsb2hgz75rc3ev/yggl2d1upuhgcopjnom4ikuz09dntca0c5casxrwwt1lez5pxtplkmwzsekqh/bsjcis3omp3pgv3x6ihtegrbvo/8uvukeudl/lv40lugbjjtsgokzikqzjtckz8wokg9+sbpdp3zppz7lx8tk45k5kn8gpo6wf5qzo+</latexit> A solvable model There is no confining/higgs phase, but there is a phase transition between a deconfined phase and a critical-higgs phase. Critical-Higgs point. f gapless and critical. z gapless and critical. Deconfined phase: a critical orthogonal metal. f gapless and critical. z gapped. Critical-Higgs phase. f gapless and critical. z gapless and critical. g c 1/g (Wenbo Fu, Yingfei Gu, SS, G. Tarnopolsky)

45 <latexit sha1_base64="du47f7vjqkj5ijvhrhydnbqckp0=">aaachhicdvfdb9mwfhxcx0bhr/l64swiq/bclhbtonhae/da45aom1sxcupcjnyco7kdjrjv/e5+am/8bdy0lqdblswdnxpupdjxuklhxrx/d8irv69d39m90dm7eev2ne7dex+trg3hcddsm7meleqhcokek3hwgyqykxianl9z6acxakzq6onbvdgrivciexycp+bdbyzbxkigo3jolp23ylxk/lguvow/+5ixcvqzn8l5hum1cyxotfkwrafyacryzz/bpzlueq2lofk6dbcasyiv4dpx1ljhgnuyqnqboo/24mh0ndgchti4itvxyhgwho9j2t8wpbkzk3n3j0s1r0u/zivyo+3hlzs1yhyixgwh1ryr4oeq49rdbsxawdmwtarppjpstbv/lkmt+/tga6w1izlxzhjcyf/wvus/tgntsqnzi1rvo1r8hztvkjpnv63tvbjkti48ghu7lbdggpso/cwl/unu7oqgofzilkxqc5phnbjq1dc2bvp/mblel6l4/ab3/hpt1s55rb6tz6rpxusyvcmnzei4+rhsbq+ch+fo+dw8cedraxhsdu6tpyz89qtekspi</latexit> <latexit sha1_base64="uipqfli2sv3p+6x1xepmimn1ykw=">aaacjhicdvfdi9nafj3erzv+bhufvrgssj5odtrsdkweruh2cywtu9cu7mrykww7myszg9cs+uxv9eeif8fj0wuvvtbwoofce4dz40pji4x99/wbn2/dvrnzn7h3/8hd3d6jx59twrsbm1gq0pzh3iksgmyoucf5zyaxsykz+pjdq599awnlqu9xvcgi4jmwqrqchbxsfyt0kxucgopthaxqaakuqsh1krxu2cgxzdjlq9zteexjgile23jhujrcw9moozhgfyb2ugldceg6v8b14uilc2gcvxd1ejn4f7+tw2wvz0i2ngyni9qc4wq8cebwxaam0uhintun2zpz9n5gssnqwv1ckg7tfmaqxdtcuokk1kfuw6i4uoqzzb3uvac7adabreklxyq0ly17gumg/b2j4yw1qyj2zojjbv/wwvjf2rzg9hdrsf3vcfp0i9jausxpmz5npagbauua75kgiuegc3q3ciil7oa6w7yjel7iluzcnmyutqveu4suy6d/b7nh+czkn4b9o/fbqhbie/kcvcqdmivh5jickbkr5ie35z31nvm7/th/67/rrl637dkjf5t/8rdolmbo</latexit> <latexit sha1_base64="z/w7rvojjt1g12b0lgxypniawlc=">aaacdxicdvfna9taffyp+ar6ebc5fsjsu6wxkrlrxmktnjcce6ibgowap9wtvgs1wnzxbrzhvxnir+i1hx6ythvos/ngyziznw9meyw4svf05/lp1ty3nreebs+ev3i53xr1+qspk81wyepr6ssedaoucwi5fxipnekrclxirk4w+sv31iax8oudkrwxkeuecqbwuzowihpmuawzsot6hpxobp0opp7ypddutv12gmdbj+vqhjrayyjilllgt9riw/mcvt08yglilondhumrhyx7h72d/ggnwmg5dvq/dqadihybpk2aozu0fszpyarcrtmbxoy6kbljgrqlfzgp4sqganyfoy4clfcggdflzub0nwnsmpxapwnpkv1zo4bcmfmrogcbdmr+1rbk/7rrzbpdcc2lqixktjquvylaki5qpinxykyyoqcriiibggbmonbjbt1pydxo69jitf3bu3en7of7xc4aeqibpg6gvfaojm577epptvvb5a15sz6qlhmqy3jkzsiqmhjlfnvr3ob3y9/1o/77ldx3mp0d8tf4e/f+a7/s</latexit> <latexit sha1_base64="2mrnkh2ivjctmqnorg3ix6n58gq=">aaacchicdvdltgjbejz1ifhcpxqzccae1gvr9eb04letv0iaknmhgymzs5uzxpvs+aipxvuzpbmv/ovf4s84iczqtjjoklxd6e4kyikmet6bmzu9mzs3n1nili4tr6zm1tyvtzrodj6pzktratmghqifbuqoxxpygeiobvcni792ddqisf3giizwyhpkdavnacw/unztfdq5vofuh5yoygfuc70xlcnvvsovjxynsp5mcnbovtc7eu9cumglm6zr9gjspuyj4bkg2wziigb8ivwgyaliizhwoj52slet0qhdsntssmfq94muhcymwsb2hgz75rc3ev/yggl2d1upuhgcopjnom4ikuz09dntca0c5casxrwwt1lez5pxtplkmwzsekqh/bsjcis3omp3pgv3x6ihtegrbvo/8uvukeudl/lv40lugbjjtsgokzikqzjtckz8wokg9+sbpdp3zppz7lx8tk45k5kn8gpo6wf5qzo+</latexit> A solvable model There is no confining/higgs phase, but there is a phase transition between a deconfined phase and a critical-higgs phase. Distinct exponents Critical-Higgs point. f gapless and critical. z gapless and critical. Deconfined phase: a critical orthogonal metal. f gapless and critical. z gapped. Critical-Higgs phase. f gapless and critical. z gapless and critical. g c 1/g (Wenbo Fu, Yingfei Gu, SS, G. Tarnopolsky)

46 <latexit sha1_base64="g0am6ho2e7vx53epw3xykyamo98=">aaaeghicfvplbhmxfj0mpep5twxj5oowcaqstrkiwq4qeiq7ijw0ulnvjudoxorhnvqrmizyjszywmewqmzz8rx8atezteafwlj0df/n3ovrysgfdxh8fanrvhl12vxlgys3b92+c3d1bf2n1d5w7hmtttkamotskow74sqefqzzppr4oby/cp7dcrortdpwzyenorspkqrohjlo1xrrgygohkqew1y8w9nkicdypsljre8v6btoploiymyjltgcwtmvdahrjfyj4nqtvajoawopp4akzagkh5tinzgg5drbrelxcpiumfahoiftdgumsejb1faezgldhmcpqjfmqge0r0urimidjrdbfimc5ytypoduoexckjzl8ix0lakpsqskquawvawwsn6kjgotg5mgozgvqw39r24dfs7nstunvj7tz8zw2iyayby+i+ejwqjp9jphvd1h5xy+bzudcfjqf7zje8gezygpz72jpqfczxoapzyl6bqstlxgibp2ih1yvolsdoyi9ckbf9gikw1gvahczmorbi0sw0tj5khy3aiktlelvzbgdhujbsxd9vbtdhciu504jtbr9+jef9pkcwcjwpz909ufg0rzh9i4znyet+pcnvslhagv8hylxsdshmcefcvrnltz5z3bq7ikkgpdvzmyw3/pqfhubzkpktjnlroxfch4n9+xd+mzk0qoggaqee2u+npk9bmgor3mtpyewp2ewdnmgkcfo0ow6topkcuqgco3bios4qm6rz5qm5rq+rjg36dfat1vxa87gzu7i1etr/ejb9gjqb1trzvrxrqf9spekbsfgh8bn5rvm5+bx5pf69dg0ilnxvthax77cy5gxom=</latexit> Thoughts on field theories of ultra-quantum metals Breakdown of quasiparticles requires strong coupling to a low energy collective mode In all known cases, we can write down the singular processes in terms of a continuum field theory of the fermions near the Fermi surface coupled to the collective mode. In all known cases, the continuum critical theory has a conserved total (pseudo-) momentum, P ~, which commutes with the Hamiltonian. This momentum may not be equal to the crystal momentum of the underlying lattice model.

47 <latexit sha1_base64="szc+obw1wr/hdkokgkvymuoxd94=">aaaefhicdzpfbxtfemevsyfiwkjhkzcrcave1kdzqii8lsihxfoqelipf0xrvfhdkhuzl/1h1z35d+wbv4e/awztoyyivjppbnz2vjofnz11hnwoit8f7q2gh3z40eopr588efrpz/vppv/n2+g0xmhrrhszux4nmv4ecgbfda5vozn4obv9me1fltb5snwevh1et6pmmpnwqvw3z/yw5qxr4p4ctvqo16mywfcdb2o5buvhxoqgbvpygbr/zf0cnsbzeg0l4x0uyzhcnuhq4ryryyapoufagzo4ktkgo3pi4wjjr3kdg0mv3dgcwgrsfopxjsimwn6sw6u0zeqkxwqux7dkb7ocd+jsoofzrrz3qloaac6q5c/gurmnbhkezhyq0duriwsyitrun5lke9frkaekq3rgmldysyu5ulb4kia7qdx1ykllbv3osfw8giuam7llu2tovcd4qxty8usnda4m3uwsje6x76wlqdvbsrxszz0ldvnrjvolycfkravibwiljvqvpcsreiev4lr6jd6sjoceocgf4gcxvtwq60bb8eku7vmkowukgnsmlgtqpuycxqnw0ac60d/quz8mexiv9aiojmwvzwvoogljxqmgtmuuz4uuuipamkk6keumxjpx+fib+khert5p2c3+qzexj9ox3xydgmxjcvgicto9lu5pycqeta6y3tq72f+zrkyoruyrnsr7q2nrhet+dzeyttjyp/stqvfktfyt+ut+80dw8fw8fcytk0/obbz3t/sq9x7vzisyvahx/95lzv/au4ph/t11t9zfgky3qvnoeqt02grb4iqjvphajjforjmzzbmauelrhizxoenlgg/dkirr6u/yu+k1epoha/y/cxgcf58xvx4fvhq9q/u4+zl7kjvmptnl7fx2c3awxwr674/bypbk8htw1/d58ovhzbu692h35ovswrp++zf7nx3g</latexit> Thoughts on field theories of ultra-quantum metals As long as J, ~ P ~ 6=0(where J ~ is the electrical current) the d.c. resistivity of the critical theory is exactly zero. This is the case even though the electron self energy can be highly singular and there are no fermionic quasiparticles (many well-known papers on non-fermi liquid transport ignore this point.) We need to include additional (dangerously) irrelevant umklapp corrections to obtain a non-zero resistivity. Because these additional corrections are irrelevant, it is di cult to see how they can induce a linear-in-t resistivity.

48 Thoughts on field theories of ultra-quantum metals Theories of metallic states without quasiparticles in the presence of disorder Well-known perturbative theory of disordered metals has 2 classes of known fixed points, the insulator at strong disorder, and the metal at weak disorder. The latter state has long-lived, extended quasiparticle excitations (which are not plane waves). Needed: a metallic fixed point at intermediate disorder and strong interactions without quasiparticle excitations. Although disorder is present, it largely self-averages at long scales. SYK models

The disordered Hubbard model: from Si:P to the high temperature superconductors

The disordered Hubbard model: from Si:P to the high temperature superconductors The disordered Hubbard model: from Si:P to the high temperature superconductors Subir Sachdev April 25, 2018 Workshop on 2D Quantum Metamaterials NIST, Gaithersburg, MD HARVARD 1. Disordered Hubbard model

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

From the SYK model to a theory of the strange metal

From the SYK model to a theory of the strange metal HARVARD From the SYK model to a theory of the strange metal International Centre for Theoretical Sciences, Bengaluru Subir Sachdev December 8, 2017 Talk online: sachdev.physics.harvard.edu Magnetotransport

More information

Quantum matter without quasiparticles

Quantum matter without quasiparticles HARVARD Quantum matter without quasiparticles Frontiers in Many Body Physics: Memorial for Lev Petrovich Gor kov National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 13, 2018 Talk

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Strange metals and black holes

Strange metals and black holes HARVARD Strange metals and black holes Homi Bhabha Memorial Public Lecture Indian Institute of Science Education and Research, Pune November 14, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Chaos and Order: from Strongly Correlated Systems to Black Holes, Kavli Institute for Theoretical Physics University

More information

Equilibrium and non-equilibrium dynamics of SYK models

Equilibrium and non-equilibrium dynamics of SYK models Equilibrium and non-equilibrium dynamics of SYK models Strongly interacting conformal field theory in condensed matter physics, Institute for Advanced Study, Tsinghua University, Beijing, June 25-27, 207

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Superconductor, levitated by an unseen magnet, in which countless

More information

NEW HORIZONS IN QUANTUM MATTER

NEW HORIZONS IN QUANTUM MATTER The 34 th Jerusalem School in Theoretical Physics NEW HORIZONS IN QUANTUM MATTER 27.12, 2016 5.1, 2017 Photo credit Frans Lanting / www.lanting.com Modern quantum materials realize a remarkably rich set

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Local criticality and marginal Fermi liquid in a solvable model Erez Berg Local criticality and marginal Fermi liquid in a solvable model Erez Berg Y. Werman, D. Chowdhury, T. Senthil, and EB, arxiv:xxxx.xxxx Yochai Werman (Weizmann Berkeley) Debanjan Chowdhury (MIT) Senthil

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Emergence of Causality Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Bounds on quantum dynamics Quantum dynamics is a large subject, but one natural anchor point is to ask

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Perimeter Institute and Harvard University Sorry, Einstein. Quantum Study Suggests Spooky Action Is Real. By JOHN MARKOFF OCT. 21, 2015 In a landmark

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

UNIVERSAL BOUNDS ON DIFFUSION

UNIVERSAL BOUNDS ON DIFFUSION 9th Crete Regional Meeting in String Theory UNIVERSAL BOUNDS ON DIFFUSION with B. Gouteraux, E. Kiritsis and W.Li +... Matteo Baggioli UOC & Crete Center for Theoretical Physics Is there a miminum (Planckian)

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Building a theory of transport for strange metals. Andrew Lucas

Building a theory of transport for strange metals. Andrew Lucas Building a theory of transport for strange metals Andrew Lucas Stanford Physics 290K Seminar, UC Berkeley February 13, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev Harvard Physics

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Perimeter Institute January 19, Subir Sachdev

Perimeter Institute January 19, Subir Sachdev HARVARD Emergent light and the high temperature superconductors Perimeter Institute January 19, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Debanjan Chowdhury Andrea Allais Yang Qi Matthias

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview Emergent Phenomena in Quantum Materials Program Overview Each talk to be 45min with 15min Q&A. Monday 8/3 8:00AM Registration & Breakfast 9:00-9:10 Welcoming Remarks 9:10-10:10 Eugene Demler Harvard University

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Indian Institute of Science Education and Research, Pune Subir Sachdev November 13, 2017 Talk online: sachdev.physics.harvard.edu 1. Classical XY model in 2

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

arxiv: v1 [cond-mat.str-el] 16 Mar 2016

arxiv: v1 [cond-mat.str-el] 16 Mar 2016 Numerical study of fermion and boson models with infinite-range random interactions Wenbo Fu and Subir Sachdev, 2 Department of Physics, Harvard University, arxiv:63.5246v [cond-mat.str-el] 6 Mar 26 Cambridge,

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu HARVARD Gauge theory for the cuprates near optimal doping Developments in Quantum Field Theory and Condensed Matter Physics Simons Center for Geometry and Physics, Stony Brook University November 7, 2018

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

An Upper Bound on Transport

An Upper Bound on Transport An Upper Bound on Transport Sean Hartnoll (Stanford) From Quantum Fields to Condensed Matter @ Long Island August 2017 Unconventional transport Unconventional transport regimes are ubiquitous and represent

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Transport bounds for condensed matter physics. Andrew Lucas

Transport bounds for condensed matter physics. Andrew Lucas Transport bounds for condensed matter physics Andrew Lucas Stanford Physics High Energy Physics Seminar, University of Washington May 2, 2017 Collaborators 2 Julia Steinberg Harvard Physics Subir Sachdev

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Topology, quantum entanglement, and criticality in the high temperature superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation,

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Bekenstein-Hawking entropy and strange metals

Bekenstein-Hawking entropy and strange metals HARVARD Bekenstein-Hawking entropy and strange metals CMSA Colloquium Harvard University September 16, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Quantum matter without quasiparticles

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Large N fermionic tensor models in d = 2

Large N fermionic tensor models in d = 2 Large N fermionic tensor models in d = 2 Sylvain Carrozza Quantum spacetime and the Renormalization roup 2018 Bad Honnef Sylvain Carrozza Large N fermionic tensor models Bad Honnef 20/6/2018 1 / 17 Context

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, Subir Sachdev

Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, Subir Sachdev HARVARD Quantum matter without quasiparticles Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Foundations of quantum many body

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Black holes and random matrices

Black holes and random matrices Black holes and random matrices Stephen Shenker Stanford University Kadanoff Symposium Stephen Shenker (Stanford University) Black holes and random matrices Kadanoff Symposium 1 / 18 Black holes and chaos

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information