GEOG 4110/5100 Advanced Remote Sensing Lecture 12. Classification (Supervised and Unsupervised) Richards: 6.1, ,

Size: px
Start display at page:

Download "GEOG 4110/5100 Advanced Remote Sensing Lecture 12. Classification (Supervised and Unsupervised) Richards: 6.1, ,"

Transcription

1 GEOG 4110/5100 Advanced Remote Sensing Lecture 12 Classification (Supervised and Unsupervised) Richards: 6.1, , GEOG 4110/5100 1

2 Fourier Transforms Transformations in the Frequency Domain Sinusoid in horiz. direction with low spatial frequency Sinusoid in horiz. direction with high spatial frequency A Fourier transform encodes not just a single sinusoid, but a whole series of sinusoids through a range of spatial frequencies from zero (i.e. no modulation, i.e. the average brightness of the whole image) all the way up to the "nyquist frequency When you display a forward FFT image, ENVI displays the natural log of the magnitude of the complex pixel values. GEOG 4110/5100 2

3

4 Original Magnitude ( f(u,v) ) Phase (f) When you display a forward FFT image, ENVI displays the natural log of the magnitude of the complex pixel values. 4

5 Original Magnitude ( f(u,v) ) Phase (f) Fundamentals of Image Processing, Ian T. Young Jan J. Gerbrands Lucas J. van Vliet DelftUniversityofTechnology, 1998 Inversion of Magnitude Only Inversion of Phase Only 5

6 Original Magnitude ( f(u,v) ) Phase (f) Using the Complex Lookup Function For complex data types, use Complex Lookup Function to determine which image to display. 1. In the Header Info dialog, click Edit Attributes and select Complex Lookup Function. The Complex Data Lookup Function dialog appears. 2. Select the desired lookup function from the drop-down list: Real (real portion of number) Imaginary (imaginary portion) Power (ln(magnitude)) (default) Magnitude (square root of sum of the squares of the real and imaginary) Phase (arc tangent of imaginary divided by real). 6

7 Basic Terms Radiometric Enhancement: Modification of pixel brightness values to improve the visual impact of an image and facilitate extraction of certain information from within the image. Radiometric enhancement techniques are point operations New brightness value for a pixel is only generated by its pixel value Neighboring pixels have no influence Enhancement procedures in which they do are geometric enhancement Geometric Enhancement: Enhances geometric detail in an image, as opposed to radiometric detail. Changes in pixel brightness are driven by geometric considerations, and thus are directly influenced by the character of other surrounding pixels Scalar and Vector Images. Scalar image: each pixel has only a single brightness value associated with it; e.g black and white image Vector image: each pixel is represented by a vector (or combination) of brightness values GEOG 4110/5100 7

8 Multi-Spectral Space and Spectral Classes Multi-spectral data space: N-dimensional coordinate system in which spectral data can be plotted with each axis representing one spectral component (band) key tool for developing algorithms Can contains as many dimensions as there are spectral components (i.e. bands) Illustration of a 2-D multispectral space showing its relation to the spectral reflectance of ground cover types (Fig. 3.5 from Richards and Jia, 2006) GEOG 4110/5100 8

9 There are Spectral Classes Within Clusters Representation of information classes by sets of spectral classes (Fig 3.6 from Richards and Jia, 2006) Rarely this clean Additional dimensions help discriminate further, when there is overlap GEOG 4110/5100 9

10 x = x x! 1 2 x n Vectors and Classification Band Brightness x =

11 Mean Vector and Covariance Band 4 brightness Vegetation pixel Band 4 brightness 40 Pixel vector Band 3 brightness Band 3 brightness GEOG 4110/

12 Mean Vector and Covariance The mean vector (m) is the vector average of the individual components of a vector The covariance between two real-valued random variables describes how one variable varies in relation to another. Cov(X,Y ) = 1 n 1 n i=1 (X i x)(y i y) C = 1 x n 1 n i=1 (X i x)(x i x) T Which has high covariance and which has a low? GEOG 4110/

13 Mean Vector and Covariance The covariance matrix (S x ) is a matrix of covariance values that describes the scatter or spread between variables. = 1 x n 1 n i=1 (x i m)(x i m) t Computation of Covariance Matrix (Table 8.1 from Richards and Jia, 2006) m = GEOG 4110/

14 Two Dimensional Multi-Spectral Classes Probability of pixels belong to each class Probability tapers with distance from center Each class modeled by a normal distribution specified by a mean vector and covariance matrix, which determine location (mean), width, height, and robustness (covariance matrix) of detection boundaries Two-dimensional multi-spectral space with the spectral classes represented by Gaussian probability distributions. (Fig. 3.8 from Richards and Jia, 2006) GEOG 4110/

15 Classification Unsupervised classification: The assigning of pixels of an image to spectral classes without the knowledge of their existence and names. Performed using clusters. The methods determine the location and the number of classes in the data and the class of each pixel. Identifying the classes using a reference data (maps, field). It is useful in identifying the spectral classes of an image before further analysis (e.g. supervised). Supervised classification A number of statistical and non-statistical methods are available. Statistical methods assume that each spectral class has a particular probability distribution (Gaussian) function in multispectral space. Consists of three broad phases : (1) Selection of training pixels (field data, maps, ), (2) Compute the mean and covariance matrix, and (3) Assigning each pixel to a class using the highest probability. GEOG 4110/

16 Supervised Classification Types of Supervised Classification Maximum Likelihood Minimum Distance Parallelepiped (par al lel e pi ped) Context Classification Others Two underlying principles Probability distribution models for classes of interest Partitioning of multi-spectral space into class-specific regions using optimally located surfaces GEOG 4110/

17 Six Steps in Supervised Classification 1. Decide on set of ground cover types into which the image is classified. 2. Choose representative pixels or training data from each class. Based on knowledge of the region acquired either through ancillary information, or interpretation of the imagery 3. Use the training data to estimate the parameters of the particular classifier algorithm to be used. Properties that define a probability model Equations that define partitions in multi-spectral space Signature of that class 4. Use the trained sets to classify every pixel in the image into one of the information classes. 5. Produce tables or thematic maps that summarize the results of the classification. 6. Assess the accuracy of the classification using a testing dataset. GEOG 4110/

18 Maximum Likelihood Classification Most common supervised classification with remote sensing imagery. We define a vector (x) that is the set of brightness values of a pixel in multi-spectral space. Band Brightness This vector has a certain probability of being in one of M spectral classes (w i ) in an image p(w i x), i = 1, 2, M x = x is classified as follows x, if p(w i i x) > p(w j x) for all j i w i.e. the probability of a given pixel is greatest that it falls into class i rather than any other class [pixel in a class] GEOG 4110/

19 Maximum Likelihood Classification Conversely, we can define the likelihood that class w i will be found at pixel location x in spectral space to be: p(x w i ). [class at a pixel] p(w i x) and p(x w i ) are related by Bayes theorem Where: p(w i x) p(x w i ) p(w i ) p(x) p(w i x) = p(x w i ) p(w i )/p(x) = the probability of a pixel at position x belonging to class w i = the probability of finding a pixel at position x from class w i (known from training data) = the probability of class w i in the image (e.g if 15% of pixels in an image belong to a class; based on a priori knowledge or assumptions about the image) = the probability of finding a pixel from any class at location x (remember, x is in multi-spectral space, not geometric space) x i, if p(x w i )p(w i ) > p(x w j )p(w j ) for all j i w Note: p(x) dropped out because it is common to both i and j The probabilities are now expressed in terms that can be learned from training data. GEOG 4110/

20 Maximum Likelihood Classification For mathematical convenience, we use the log of each of these to yield: g i (x) = ln[p(x w i )p(w i )] or ln[p(x w i ) + ln[p(w i )] x w i if g i (x) > g j (x) for all j i Pixels at every point in multispectral space will be classified into one of the available classes w i, even for extremely small probabilities, resulting in some very poor classifications. We apply a threshold (T i ) to avoid poor classifications. x w i if g i (x) > g j (x) and g i (x) > T i for all j i GEOG 4110/

21 Maximum Likelihood Classification Number of pixels needed for good classification Depends on purity of those pixels V Minimum of N+1 pixels for N spectral bands Rule of thumb for: minimum of 10N, preferably 100N Difficult with hyperspectral imagery, so we sometimes employ other approaches. F W U 21 GEOG 4110/5100

22 Mean Vector and Covariance in Classification W V False Color Composite of Landsat MSS image containing four types of surfaces: water, fire burn, vegetation, and urban Training areas for each are violet, red, green, and dark blue polygons respectively CV x = 1 x n 1 For each training area: n i=1 F m (x i m)(x i m) t = U With four bands in MSS, a 4 element mean vector and a 4x4 covariance matrix can be calculated DN DN DN DN DN 1 DN 2 DN 3 DN 4 DN 1 CV 1,1 CV 2,1 CV 3,1 CV 4,1 DN 2 CV 1,2 CV 2,2 CV 3,2 CV 4,2 DN 3 CV 1,3 CV 2,3 CV 3,3 CV 4,3 DN 4 CV 1,4 CV 2,4 CV 3,4 CV 4,4 GEOG 4110/

23 Signature Class Mean Vector Water Comprised of mean values in each band from a sample population Fire Burn Vegetation Urban GEOG 4110/

24 Mean Vector and Covariance Signatures Class Mean Vector Covariance Matrix Water Fire Burn Vegetation Urban Class signatures generated from the training pixels (adapted from Richards, 2013). GEOG 4110/

GEOG 4110/5100 Advanced Remote Sensing Lecture 15

GEOG 4110/5100 Advanced Remote Sensing Lecture 15 GEOG 4110/5100 Advanced Remote Sensing Lecture 15 Principal Component Analysis Relevant reading: Richards. Chapters 6.3* http://www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf *For

More information

EECS490: Digital Image Processing. Lecture #26

EECS490: Digital Image Processing. Lecture #26 Lecture #26 Moments; invariant moments Eigenvector, principal component analysis Boundary coding Image primitives Image representation: trees, graphs Object recognition and classes Minimum distance classifiers

More information

SATELLITE REMOTE SENSING

SATELLITE REMOTE SENSING SATELLITE REMOTE SENSING of NATURAL RESOURCES David L. Verbyla LEWIS PUBLISHERS Boca Raton New York London Tokyo Contents CHAPTER 1. SATELLITE IMAGES 1 Raster Image Data 2 Remote Sensing Detectors 2 Analog

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Geomatica II Course Guide Version 10.1

Geomatica II Course Guide Version 10.1 Geomatica II Course Guide Version 10.1 Geomatica Version 10.1 2007 PCI Geomatics Enterprises Inc.. All rights reserved. COPYRIGHT NOTICE Software copyrighted by PCI Geomatics, 50 West Wilmot St., Suite

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

LANDSCAPE PATTERN AND PER-PIXEL CLASSIFICATION PROBABILITIES. Scott W. Mitchell,

LANDSCAPE PATTERN AND PER-PIXEL CLASSIFICATION PROBABILITIES. Scott W. Mitchell, LANDSCAPE PATTERN AND PER-PIXEL CLASSIFICATION PROBABILITIES Scott W. Mitchell, Department of Geography and Environmental Studies, Carleton University, Loeb Building B349, 1125 Colonel By Drive, Ottawa,

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Object Recognition. Digital Image Processing. Object Recognition. Introduction. Patterns and pattern classes. Pattern vectors (cont.

Object Recognition. Digital Image Processing. Object Recognition. Introduction. Patterns and pattern classes. Pattern vectors (cont. 3/5/03 Digital Image Processing Obect Recognition Obect Recognition One of the most interesting aspects of the world is that it can be considered to be made up of patterns. Christophoros Nikou cnikou@cs.uoi.gr

More information

1. Introduction. S.S. Patil 1, Sachidananda 1, U.B. Angadi 2, and D.K. Prabhuraj 3

1. Introduction. S.S. Patil 1, Sachidananda 1, U.B. Angadi 2, and D.K. Prabhuraj 3 Cloud Publications International Journal of Advanced Remote Sensing and GIS 2014, Volume 3, Issue 1, pp. 525-531, Article ID Tech-249 ISSN 2320-0243 Research Article Open Access Machine Learning Technique

More information

Deriving Uncertainty of Area Estimates from Satellite Imagery using Fuzzy Land-cover Classification

Deriving Uncertainty of Area Estimates from Satellite Imagery using Fuzzy Land-cover Classification International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 10 (2013), pp. 1059-1066 International Research Publications House http://www. irphouse.com /ijict.htm Deriving

More information

Landslide Classification: An Object-Based Approach Bryan Zhou Geog 342: Final Project

Landslide Classification: An Object-Based Approach Bryan Zhou Geog 342: Final Project Landslide Classification: An Object-Based Approach Bryan Zhou Geog 342: Final Project Introduction One type of natural hazard that people are familiar with is landslide. Landslide is a laymen term use

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

IMPROVING REMOTE SENSING-DERIVED LAND USE/LAND COVER CLASSIFICATION WITH THE AID OF SPATIAL INFORMATION

IMPROVING REMOTE SENSING-DERIVED LAND USE/LAND COVER CLASSIFICATION WITH THE AID OF SPATIAL INFORMATION IMPROVING REMOTE SENSING-DERIVED LAND USE/LAND COVER CLASSIFICATION WITH THE AID OF SPATIAL INFORMATION Yingchun Zhou1, Sunil Narumalani1, Dennis E. Jelinski2 Department of Geography, University of Nebraska,

More information

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI Bayes Classifiers CAP5610 Machine Learning Instructor: Guo-Jun QI Recap: Joint distributions Joint distribution over Input vector X = (X 1, X 2 ) X 1 =B or B (drinking beer or not) X 2 = H or H (headache

More information

Digital Change Detection Using Remotely Sensed Data for Monitoring Green Space Destruction in Tabriz

Digital Change Detection Using Remotely Sensed Data for Monitoring Green Space Destruction in Tabriz Int. J. Environ. Res. 1 (1): 35-41, Winter 2007 ISSN:1735-6865 Graduate Faculty of Environment University of Tehran Digital Change Detection Using Remotely Sensed Data for Monitoring Green Space Destruction

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Comparative Analysis of Supervised and

Comparative Analysis of Supervised and Applied Mathematical Sciences, Vol.,, no., 68-69 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.. Comparative Analysis of Supervised and Unsupervised Classification on Multispectral Data Asmala

More information

7.1 INTRODUCTION 7.2 OBJECTIVE

7.1 INTRODUCTION 7.2 OBJECTIVE 7 LAND USE AND LAND COVER 7.1 INTRODUCTION The knowledge of land use and land cover is important for many planning and management activities as it is considered as an essential element for modeling and

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

AN INTEGRATED METHOD FOR FOREST CANOPY COVER MAPPING USING LANDSAT ETM+ IMAGERY INTRODUCTION

AN INTEGRATED METHOD FOR FOREST CANOPY COVER MAPPING USING LANDSAT ETM+ IMAGERY INTRODUCTION AN INTEGRATED METHOD FOR FOREST CANOPY COVER MAPPING USING LANDSAT ETM+ IMAGERY Zhongwu Wang, Remote Sensing Analyst Andrew Brenner, General Manager Sanborn Map Company 455 E. Eisenhower Parkway, Suite

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Land Cover Classification Over Penang Island, Malaysia Using SPOT Data

Land Cover Classification Over Penang Island, Malaysia Using SPOT Data Land Cover Classification Over Penang Island, Malaysia Using SPOT Data School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia. Tel: +604-6533663, Fax: +604-6579150 E-mail: hslim@usm.my, mjafri@usm.my,

More information

Impacts of sensor noise on land cover classifications: sensitivity analysis using simulated noise

Impacts of sensor noise on land cover classifications: sensitivity analysis using simulated noise Impacts of sensor noise on land cover classifications: sensitivity analysis using simulated noise Scott Mitchell 1 and Tarmo Remmel 2 1 Geomatics & Landscape Ecology Research Lab, Carleton University,

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

USING LANDSAT IN A GIS WORLD

USING LANDSAT IN A GIS WORLD USING LANDSAT IN A GIS WORLD RACHEL MK HEADLEY; PHD, PMP STEM LIAISON, ACADEMIC AFFAIRS BLACK HILLS STATE UNIVERSITY This material is based upon work supported by the National Science Foundation under

More information

Object-based feature extraction of Google Earth Imagery for mapping termite mounds in Bahia, Brazil

Object-based feature extraction of Google Earth Imagery for mapping termite mounds in Bahia, Brazil OPEN ACCESS Conference Proceedings Paper Sensors and Applications www.mdpi.com/journal/sensors Object-based feature extraction of Google Earth Imagery for mapping termite mounds in Bahia, Brazil Sunhui

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Clustering and Gaussian Mixture Models

Clustering and Gaussian Mixture Models Clustering and Gaussian Mixture Models Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 25, 2016 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 1 Recap

More information

Geospatial technology for land cover analysis

Geospatial technology for land cover analysis Home Articles Application Environment & Climate Conservation & monitoring Published in : Middle East & Africa Geospatial Digest November 2013 Lemenkova Polina Charles University in Prague, Faculty of Science,

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Data Fusion and Multi-Resolution Data

Data Fusion and Multi-Resolution Data Data Fusion and Multi-Resolution Data Nature.com www.museevirtuel-virtualmuseum.ca www.srs.fs.usda.gov Meredith Gartner 3/7/14 Data fusion and multi-resolution data Dark and Bram MAUP and raster data Hilker

More information

Sparse Representation-based Analysis of Hyperspectral Remote Sensing Data

Sparse Representation-based Analysis of Hyperspectral Remote Sensing Data Sparse Representation-based Analysis of Hyperspectral Remote Sensing Data Ribana Roscher Institute of Geodesy and Geoinformation Remote Sensing Group, University of Bonn 1 Remote Sensing Image Data Remote

More information

Remote sensing of sealed surfaces and its potential for monitoring and modeling of urban dynamics

Remote sensing of sealed surfaces and its potential for monitoring and modeling of urban dynamics Remote sensing of sealed surfaces and its potential for monitoring and modeling of urban dynamics Frank Canters CGIS Research Group, Department of Geography Vrije Universiteit Brussel Herhaling titel van

More information

Land cover classification methods

Land cover classification methods Land cover classification methods This document provides an overview of land cover classification using remotely sensed data. We will describe different options for conducting land cover classification

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Feature selection and extraction Spectral domain quality estimation Alternatives

Feature selection and extraction Spectral domain quality estimation Alternatives Feature selection and extraction Error estimation Maa-57.3210 Data Classification and Modelling in Remote Sensing Markus Törmä markus.torma@tkk.fi Measurements Preprocessing: Remove random and systematic

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

OBJECT BASED IMAGE ANALYSIS FOR URBAN MAPPING AND CITY PLANNING IN BELGIUM. P. Lemenkova

OBJECT BASED IMAGE ANALYSIS FOR URBAN MAPPING AND CITY PLANNING IN BELGIUM. P. Lemenkova Fig. 3 The fragment of 3D view of Tambov spatial model References 1. Nemtinov,V.A. Information technology in development of spatial-temporal models of the cultural heritage objects: monograph / V.A. Nemtinov,

More information

Comparison between Land Surface Temperature Retrieval Using Classification Based Emissivity and NDVI Based Emissivity

Comparison between Land Surface Temperature Retrieval Using Classification Based Emissivity and NDVI Based Emissivity Comparison between Land Surface Temperature Retrieval Using Classification Based Emissivity and NDVI Based Emissivity Isabel C. Perez Hoyos NOAA Crest, City College of New York, CUNY, 160 Convent Avenue,

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

LAND COVER CATEGORY DEFINITION BY IMAGE INVARIANTS FOR AUTOMATED CLASSIFICATION

LAND COVER CATEGORY DEFINITION BY IMAGE INVARIANTS FOR AUTOMATED CLASSIFICATION LAND COVER CATEGORY DEFINITION BY IMAGE INVARIANTS FOR AUTOMATED CLASSIFICATION Nguyen Dinh Duong Environmental Remote Sensing Laboratory Institute of Geography Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

Module 2.1 Monitoring activity data for forests using remote sensing

Module 2.1 Monitoring activity data for forests using remote sensing Module 2.1 Monitoring activity data for forests using remote sensing Module developers: Frédéric Achard, European Commission (EC) Joint Research Centre (JRC) Jukka Miettinen, EC JRC Brice Mora, Wageningen

More information

Preparation of LULC map from GE images for GIS based Urban Hydrological Modeling

Preparation of LULC map from GE images for GIS based Urban Hydrological Modeling International Conference on Modeling Tools for Sustainable Water Resources Management Department of Civil Engineering, Indian Institute of Technology Hyderabad: 28-29 December 2014 Abstract Preparation

More information

ENVI Tutorial: Vegetation Analysis

ENVI Tutorial: Vegetation Analysis ENVI Tutorial: Vegetation Analysis Vegetation Analysis 2 Files Used in this Tutorial 2 About Vegetation Analysis in ENVI Classic 2 Opening the Input Image 3 Working with the Vegetation Index Calculator

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

A DATA FIELD METHOD FOR URBAN REMOTELY SENSED IMAGERY CLASSIFICATION CONSIDERING SPATIAL CORRELATION

A DATA FIELD METHOD FOR URBAN REMOTELY SENSED IMAGERY CLASSIFICATION CONSIDERING SPATIAL CORRELATION The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 016 XXIII ISPRS Congress, 1 19 July 016, Prague, Czech Republic A DATA FIELD METHOD FOR

More information

DEVELOPMENT OF DIGITAL CARTOGRAPHIC DATABASE FOR MANAGING THE ENVIRONMENT AND NATURAL RESOURCES IN THE REPUBLIC OF SERBIA

DEVELOPMENT OF DIGITAL CARTOGRAPHIC DATABASE FOR MANAGING THE ENVIRONMENT AND NATURAL RESOURCES IN THE REPUBLIC OF SERBIA DEVELOPMENT OF DIGITAL CARTOGRAPHIC BASE FOR MANAGING THE ENVIRONMENT AND NATURAL RESOURCES IN THE REPUBLIC OF SERBIA Dragutin Protic, Ivan Nestorov Institute for Geodesy, Faculty of Civil Engineering,

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION 147 CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION 7.1 INTRODUCTION: Interferometric synthetic aperture radar (InSAR) is a rapidly evolving SAR remote

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Object-Oriented Oriented Method to Classify the Land Use and Land Cover in San Antonio using ecognition Object-Oriented Oriented Image Analysis

Object-Oriented Oriented Method to Classify the Land Use and Land Cover in San Antonio using ecognition Object-Oriented Oriented Image Analysis Object-Oriented Oriented Method to Classify the Land Use and Land Cover in San Antonio using ecognition Object-Oriented Oriented Image Analysis Jayar S. Griffith ES6973 Remote Sensing Image Processing

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

GLOBAL/CONTINENTAL LAND COVER MAPPING AND MONITORING

GLOBAL/CONTINENTAL LAND COVER MAPPING AND MONITORING GLOBAL/CONTINENTAL LAND COVER MAPPING AND MONITORING Ryutaro Tateishi, Cheng Gang Wen, and Jong-Geol Park Center for Environmental Remote Sensing (CEReS), Chiba University 1-33 Yayoi-cho Inage-ku Chiba

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA Shizhi Chen and YingLi Tian Department of Electrical Engineering The City College of

More information

MSA220 Statistical Learning for Big Data

MSA220 Statistical Learning for Big Data MSA220 Statistical Learning for Big Data Lecture 4 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology More on Discriminant analysis More on Discriminant

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

UNIVERSITY OF TRENTO A THEORETICAL FRAMEWORK FOR UNSUPERVISED CHANGE DETECTION BASED ON CHANGE VECTOR ANALYSIS IN POLAR DOMAIN. F. Bovolo, L.

UNIVERSITY OF TRENTO A THEORETICAL FRAMEWORK FOR UNSUPERVISED CHANGE DETECTION BASED ON CHANGE VECTOR ANALYSIS IN POLAR DOMAIN. F. Bovolo, L. UNIVERSITY OF TRENTO DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 38050 Povo Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it A THEORETICAL FRAMEWORK FOR UNSUPERVISED CHANGE DETECTION

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Lecture 11: Unsupervised Machine Learning

Lecture 11: Unsupervised Machine Learning CSE517A Machine Learning Spring 2018 Lecture 11: Unsupervised Machine Learning Instructor: Marion Neumann Scribe: Jingyu Xin Reading: fcml Ch6 (Intro), 6.2 (k-means), 6.3 (Mixture Models); [optional]:

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

o 3000 Hannover, Fed. Rep. of Germany

o 3000 Hannover, Fed. Rep. of Germany 1. Abstract The use of SPOT and CIR aerial photography for urban planning P. Lohmann, G. Altrogge Institute for Photogrammetry and Engineering Surveys University of Hannover, Nienburger Strasse 1 o 3000

More information

INF Anne Solberg One of the most challenging topics in image analysis is recognizing a specific object in an image.

INF Anne Solberg One of the most challenging topics in image analysis is recognizing a specific object in an image. INF 4300 700 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter -6 6inDuda and Hart: attern Classification 303 INF 4300 Introduction to classification One of the most challenging

More information

DETECTION OF CHANGES IN FOREST LANDCOVER TYPE AFTER FIRES IN PORTUGAL

DETECTION OF CHANGES IN FOREST LANDCOVER TYPE AFTER FIRES IN PORTUGAL DETECTION OF CHANGES IN FOREST LANDCOVER TYPE AFTER FIRES IN PORTUGAL Paulo M. Barbosa, Mário R. Caetano, and Teresa G. Santos Centro Nacional de Informação Geográfica (CNIG), Portugal barp@cnig.pt, mario@cnig.pt,

More information

Intelligent Systems Statistical Machine Learning

Intelligent Systems Statistical Machine Learning Intelligent Systems Statistical Machine Learning Carsten Rother, Dmitrij Schlesinger WS2014/2015, Our tasks (recap) The model: two variables are usually present: - the first one is typically discrete k

More information

IR-MAD Iteratively Re-weighted Multivariate Alteration Detection

IR-MAD Iteratively Re-weighted Multivariate Alteration Detection IR-MAD Iteratively Re-weighted Multivariate Alteration Detection Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral,

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

INF Introduction to classifiction Anne Solberg

INF Introduction to classifiction Anne Solberg INF 4300 8.09.17 Introduction to classifiction Anne Solberg anne@ifi.uio.no Introduction to classification Based on handout from Pattern Recognition b Theodoridis, available after the lecture INF 4300

More information

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lesson 1 5 October 2016 Learning and Evaluation of Pattern Recognition Processes Outline Notation...2 1. The

More information

Land cover classification methods. Ned Horning

Land cover classification methods. Ned Horning Land cover classification methods Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1428 Accuracy Assessment of Land Cover /Land Use Mapping Using Medium Resolution Satellite Imagery Paliwal M.C &.

More information

What does Bayes theorem give us? Lets revisit the ball in the box example.

What does Bayes theorem give us? Lets revisit the ball in the box example. ECE 6430 Pattern Recognition and Analysis Fall 2011 Lecture Notes - 2 What does Bayes theorem give us? Lets revisit the ball in the box example. Figure 1: Boxes with colored balls Last class we answered

More information

A MULTI-RESOLUTION HIERARCHY CLASSIFICATION STUDY COMPARED WITH CONSERVATIVE METHODS

A MULTI-RESOLUTION HIERARCHY CLASSIFICATION STUDY COMPARED WITH CONSERVATIVE METHODS A MULTI-RESOLUTION HIERARCHY CLASSIFICATION STUDY COMPARED WITH CONSERVATIVE METHODS G. B. Zhu a, 1, X. L. Liu b, Z. G. Jia c a International School of Software, Wuhan University, 129 Luoyu Road, Wuhan

More information

Title: A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images

Title: A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

A COMPARISON BETWEEN DIFFERENT PIXEL-BASED CLASSIFICATION METHODS OVER URBAN AREA USING VERY HIGH RESOLUTION DATA INTRODUCTION

A COMPARISON BETWEEN DIFFERENT PIXEL-BASED CLASSIFICATION METHODS OVER URBAN AREA USING VERY HIGH RESOLUTION DATA INTRODUCTION A COMPARISON BETWEEN DIFFERENT PIXEL-BASED CLASSIFICATION METHODS OVER URBAN AREA USING VERY HIGH RESOLUTION DATA Ebrahim Taherzadeh a, Helmi Z.M. Shafri a, Seyed Hassan Khalifeh Soltani b, Shattri Mansor

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

An Automated Object-Oriented Satellite Image Classification Method Integrating the FAO Land Cover Classification System (LCCS).

An Automated Object-Oriented Satellite Image Classification Method Integrating the FAO Land Cover Classification System (LCCS). An Automated Object-Oriented Satellite Image Classification Method Integrating the FAO Land Cover Classification System (LCCS). Ruvimbo Gamanya Sibanda Prof. Dr. Philippe De Maeyer Prof. Dr. Morgan De

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) Siruganoor, Tiruchirappalli

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) Siruganoor, Tiruchirappalli SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) Siruganoor, Tiruchirappalli 621 105. FS 81504 DEPARTMENT OF CIVIL ENGINEERING 1. Define remote sensing. CE-1304

More information

CHANGE DETECTION FROM LANDSAT-5 TM SATELLITE DATA

CHANGE DETECTION FROM LANDSAT-5 TM SATELLITE DATA CHANGE DETECTION FROM LANDSAT-5 TM SATELLITE DATA Ummi Kalsom Mohd Hashim 1, Asmala Ahmad 1, Burhanuddin Mohd. Aboobaider 1, Hamzah Sakidin 2, Subatira B. 3 and Mohd Saari Mohamad Isa 4 1 Faculty of Information

More information

Hyperspectral image classification using Support Vector Machine

Hyperspectral image classification using Support Vector Machine Journal of Physics: Conference Series OPEN ACCESS Hyperspectral image classification using Support Vector Machine To cite this article: T A Moughal 2013 J. Phys.: Conf. Ser. 439 012042 View the article

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 3 Spectral information in remote sensing Spectral Information 2 Outline Mechanisms of variations in reflectance Optical Microwave Visualisation/analysis Enhancements/transforms

More information

URBAN MAPPING AND CHANGE DETECTION

URBAN MAPPING AND CHANGE DETECTION URBAN MAPPING AND CHANGE DETECTION Sebastian van der Linden with contributions from Akpona Okujeni Humboldt-Unveristät zu Berlin, Germany Introduction Introduction The urban millennium Source: United Nations,

More information

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Mathieu Fauvel gipsa-lab/dis, Grenoble Institute of Technology - INPG - FRANCE Department of Electrical and Computer Engineering,

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL. Duong Dang KHOI.

EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL. Duong Dang KHOI. EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL Duong Dang KHOI 1 10 Feb, 2011 Presentation contents 1. Introduction 2. Methods 3. Results 4. Discussion

More information