Properties of the Pluto-Charon binary

Size: px
Start display at page:

Download "Properties of the Pluto-Charon binary"

Transcription

1 roperties o the luto-haron binary The orbital period, = ± days, and semi-major axis o haron s orbit, a = ± 8 km, imply a total mass M = ± g (S1). luto s motion relative to the system center o mass constrains the haron-to-luto mass ratio, q M /M, with recent HST observations (S) yielding q = 0.1 ± Radii and density estimates are 1151 ± 6 R (km) 1195 ± 5 and 1.83 ± 0.09 ρ (g/cm 3 ).05 ± 0.11 or luto, and 593 ± 13 R (km) 61 ± 1 and 1.59 ± 0.0 ρ (g/cm 3 ) 1.83 ± 0.18 or haron (e.g., S), indicating a haron that is comparably or less dense than luto. The luto-haron pair is tidally locked, so that the rotational angular velocity o both objects equals their mutual orbital velocity, ω (π/). The angular momentum o the system about its center o mass is L M M = ω M a + K M ωm q qωm a = a K R qk R ( 1 q) q + (1 + q) R + K M R. (S1) where K and K are the moment o inertia constants or luto and haron with K i I i /(M i R i ); or K, K > 0.3, the sum o the two spin terms is < % o L. Disk producing impacts Figure S1 shows the predicted q values vs. J or all o the disk-producing impacts. This is the most consistent scaling or these cases, and as J increases, the results converge to a relationship (dotted line) consistent with a planet rotating with period ~ T min, with the rest o the angular momentum partitioned into the disk. The angular

2 momentum in an object rotating at its stability limit is proportional to its moment o inertia constant, K, so that as K decreases, so too does the raction o the total angular momentum that can be accommodated by the planet. Thus or the disk-mode, orming a highly dierentiated central planet with a low K (as occurs or the IDI composition) increases the yield o orbiting material or a given set o collision parameters. Also shown on Fig. S1 (solid lines) are the limits possible or luto-haron over the range o system variable estimates. lanet-disk systems closest to the luto-haron region are produced by collisions with J imp > 0.4 and v imp ~ v esc, corresponding to oblique impacts (b > 0.8) o like-sized objects (γ ~ 0.5) and initial prograde spins that contribute signiicantly to the total impact angular momentum (10 to 5%). Somewhat higher impact speeds (1.1 (v imp /v esc ) 1.3) between dierentiated objects can produce disks, although they are contain a smaller raction o the planet s mass than their (v imp /v esc ) < 1.1 counterparts. As (v imp /v esc ) exceeds about 1. to 1.3 or an oblique impact, there is typically a rather abrupt transition (also seen in S3) to a non-accretionary event in which the majority o the impactor and the impact angular momentum escape. For IDI collisions with γ = 0.5, resulting disks were composed entirely o water ice, compared to initial objects that were 40% ice and 60% rock. Disks produced by collisions o SIM objects contained at average o 80% ice and 0% serpentine, compared to initial objects than were 50% serpentine and 50% ice. However we note that compositional granularity inherent to SH may tend to over-estimate dierentiation, and this could aect the disk compositions derived rom the collisions involving SIM objects.

3 0.1 Disks 0.08 q J 0.5; IDI; 1.0; no spin 0.5; IDI; 1.0; i10 0.5; SIM; 1.0; i10 0.5; SIM; 1.05; i10 0.5; IDI; 1.0; it10 0.5; IDI; 1.05; it10 0.5; IDI; 1.1; it10 0.5; SIM; 1.0; i7 0.5; SIM; 1.05; i7 0.5; IDI; 1.0; it7 0.5; IDI; 1.0; it7; HR 0.5; IDI; 1.05; it7 0.5; IDI; 1.0; i5 0.5; IDI; 1.0; i5; HR 0.5; IDI; 1.0; it5 0.5; IDI; 1.0; it5; HR 0.5; SIM; 1.0; it5 0.5; SIM; 1.0; i4 0.5; IDI; 1.0, it3 0.3; SER; 1.5; no spin 0.3; SER;.0; no spin 0.3; SER; 1.0; t5 0.3; SER; 1.0; t3 0.; IDI; 1.05; t5 0.; IDI; 1.0; it5 0.; IDI; 1.0; t3 0.; IDI; 1.05; t3 0.; IDI; 1.1; t3 0.; IDI; 1.; t3 0.; IDI; 1.0; it3 0.13; IDI;.0; t5 0.13; IDI;.5; t5 -low -high Tpl = Tmin Figure S1: Results o impact simulations that produced planet-disk systems. Simulation parameters are shown in the legend where the irst value is the ratio o the impactor to the total mass (γ), the second indicates the composition o the

4 colliding objects (see text), the third is the ratio o the impact velocity to the escape velocity, and the ourth is the pre-impact prograde spin period in hours or the impactor ( i ) and/or targer ( t ). The nominal resolution is 0,000 particles; 10,000 particle simulations are indicated with HR. Shown is the estimated satellite-to-planet mass ratio, q, (e.g., S4) vs. the normalized angular momentum o the inal bound system, J. The dotted line is the relationship between q and J or an IDI planet o mass M p rotating with a period equal to its minimum or rotational stability, together with a moon o mass M s qm p at a s = 1.a R, where a R is the Roche limit. Red and black solid lines rame the parameter regime consistent with the luto-haron system.

5 Table S1: arameters and results o impacts that yield disks with estimated 0.1 < q < 0.15* Run M T / M γ b v imp/ v esc J imp L s / L esc / M esc / L orb / M orb / J q L imp L imp M T L imp M T it * it it * it it it * it it it *Simulations here involved dierentiated objects with 40% water ice and 60% rock (with the rock composed o 30% iron and 70% dunite). The nominal resolution is N = 10 4 particles; runs with N = particles are starred. See text or variable deinitions. The pre-impact spin state o r r the objects is shown by the raction L / L ) = ( L L ) / L ; superscripts i and it ( s imp s imp imp correspond respectively to L s contained in the impactor or the impactor and target. Results shown are at approximately 4 hours post-impact. M orb and L orb are the disk mass and angular momentum, and J where M is the total system mass and L / GM R is the normalized inal bound system angular momentum, 3 R ( 3M / 4πρ) =. The inal column shows the predicted mass o a moon that would accumulate rom the resulting disk (e.g., S4). 1/ 3

6 S1. D. J. Tholen, M. W. Buie, in luto and haron, S. A. Stern, D. J. Tholen, Eds. (Univ. Arizona ress, Tucson, 1997), pp S.. B. Olkin, L. H. Wasserman, O. G. Franz, Icarus 164, 54 (003). S3.. B. Agnor, E. Asphaug, Astrophys. J. 613, L157 (004). S4. S. Ida, R. M. anup, G. R. Stewart, Nature 389, 353 (1997).

arxiv: v1 [astro-ph.ep] 23 Mar 2010

arxiv: v1 [astro-ph.ep] 23 Mar 2010 Formation of Terrestrial Planets from Protoplanets under a Realistic Accretion Condition arxiv:1003.4384v1 [astro-ph.ep] 23 Mar 2010 Eiichiro Kokubo Division of Theoretical Astronomy, National Astronomical

More information

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT.

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT. Name: Astronomy 18 - Problem Set 8 1. Fundamental Planetary Science problem 14.4 a) Calculate the ratio of the light reflected by Earth at 0.5 µm to that emitted by the Sun at the same wavelength. The

More information

HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT EVOLUTION

HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT EVOLUTION The Astrophysical Journal, 638:1180 1186, 2006 February 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT

More information

Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime

Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime Sarah T. Stewart Dept. Earth & Planetary Sciences, UC Davis Planet Formation Art by NASA Giant Impacts Art by

More information

Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons

Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons Pascal Rosenblatt * Royal Observatory of Belgium, Av. circulaire 3, B-1180 Uccle, Belgium Sébastien Charnoz Institut

More information

The Earth-Moon system. Origin of the Moon. Mark Wyatt

The Earth-Moon system. Origin of the Moon. Mark Wyatt Origin of the Moon Mark Wyatt The Earth-Moon system The Moon orbits the Earth at a moon = 385,000 km with an eccentricity of 0.05, inclination to ecliptic of 5 o The Earth orbits the Sun at a earth = 150,000,000

More information

The Earth-Moon system. Origin of the Moon. Mark Wyatt

The Earth-Moon system. Origin of the Moon. Mark Wyatt Origin of the Moon Mark Wyatt The Earth-Moon system The Moon orbits the Earth at a moon = 385,000 km with an eccentricity of 0.05, inclination to ecliptic of 5 o The Earth orbits the Sun at a earth = 150,000,000

More information

Characteristics and Origin of the Quadruple System at Pluto

Characteristics and Origin of the Quadruple System at Pluto Characteristics and Origin of the Quadruple System at Pluto S.A. Stern 1, H.A. Weaver 2, A.J. Steffl 1, M.J. Mutchler 3, W.J. Merline 1, M.W. Buie 4, E.F. Young 1, L.A. Young 1, & J.R. Spencer 1 Submitted

More information

When satellites have satellites: The story of Iapetus

When satellites have satellites: The story of Iapetus When satellites have satellites: The story of Iapetus Kevin J. Walsh Hal F. Levison Amy C. Barr Luke Dones (SwRI) Steve Schwartz Derek Richardson (UMD) Iapetus oddities It appears that Iapetus has de-spun

More information

arxiv: v1 [astro-ph.ep] 5 Nov 2017

arxiv: v1 [astro-ph.ep] 5 Nov 2017 Draft version November 7, 217 Preprint typeset using L A TEX style AASTeX6 v. 1. TRITON S EVOLUTION WITH A PRIMORDIAL NEPTUNIAN SATELLITE SYSTEM Raluca Rufu Department of Earth and Planetary Sciences,

More information

Dr. Steven Ball LeTourneau University

Dr. Steven Ball LeTourneau University Dr. Steven Ball LeTourneau University 1. The Tides Earth s ocean levels rise and fall, replenishing nutrients Tidal distortion of Earth s shape causes the Moon to spiral away from the Earth, now at 4 cm

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

A hit-and-run Giant Impact scenario

A hit-and-run Giant Impact scenario *Manuscript Click here to view linked References 1 A hit-and-run Giant Impact scenario 2 3 4 5 6 Andreas Reufer 1, Matthias M. M. Meier 2,3, Willy Benz 1 and Rainer Wieler 2 1 Physikalisches Institut &

More information

Forming terrestrial planets & impacts

Forming terrestrial planets & impacts Lecture 11 Forming terrestrial planets & impacts Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini Based partially on script of Prof. W. Benz Mentor Prof. T. Henning Lecture 11 overview 1. Terrestrial

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses 2 Ford, Rasio, & Yu unlikely to have developed such a large eccentricity, since dissipation in the disk tends to circularize orbits. Dynamical instabilities leading to the ejection of one planet while

More information

Minimum Radii of Super-Earths: Constraints from Giant Impacts

Minimum Radii of Super-Earths: Constraints from Giant Impacts Minimum Radii of Super-Earths: Constraints from Giant Impacts Robert A. Marcus 1,a, Dimitar Sasselov 1, Lars Hernquist 1, Sarah T. Stewart 2 1 Astronomy Department, Harvard University, Cambridge, MA 02138

More information

Lecture 25: The Outer Planets

Lecture 25: The Outer Planets Lecture 25: The Outer Planets Neptune Uranus Pluto/Charon Uranus and three moons Neptune and two moons 1 The Outer Planets Uranus Discovered by William Herschel in 1781, who realized that this extended

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm PHYSICS 221 SPRING 2017 EXAM 2: March 30, 2017; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit

More information

Ejecta Exchange, Color Evolution in the Pluto System, and Implications for KBOs and Asteroids with Satellites. S. Alan Stern 22 May 2008

Ejecta Exchange, Color Evolution in the Pluto System, and Implications for KBOs and Asteroids with Satellites. S. Alan Stern 22 May 2008 Ejecta Exchange, Color Evolution in the Pluto System, and Implications for KBOs and Asteroids with Satellites S. Alan Stern 22 May 2008 Visiting Scientist Lunar and Planetary Institute 3600 Bay Area Blvd.

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

New results on the formation of the Moon

New results on the formation of the Moon New results on the formation of the Moon Julien Salmon 1, Robin M. Canup 1 ESLAB Symposium - Formation and Evolution of Moons 26 June 2012 ESTEC, Noordwijk, The Netherlands 1 Southwest Research Institute,

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

On the Origin of the Rocky Planets, Fugue in Venus Megacollision

On the Origin of the Rocky Planets, Fugue in Venus Megacollision On the Origin of the Rocky Planets, Fugue in Venus Megacollision Simon Porter October 30, 2009 And art thou, then, a world like ours, Flung from the orb that whirled our own A molten pebble from its zone?

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Constructing the Moon

Constructing the Moon Constructing the Solar System: A Smashing Success Constructing the Moon Thomas M. Davison Department of the Geophysical Sciences Compton Lecture Series Autumn 2012 T. M. Davison Constructing the Solar

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

Chapter 5. On the Tidal Evolution of Kuiper Belt Binaries

Chapter 5. On the Tidal Evolution of Kuiper Belt Binaries 116 Chapter 5 On the Tidal Evolution of Kuiper Belt Binaries 117 Abstract The formation and evolution of binary Kuiper belt objects (KBOs) is closely intertwined with the history of the outer solar system.

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

arxiv: v3 [astro-ph.ep] 20 Aug 2015

arxiv: v3 [astro-ph.ep] 20 Aug 2015 Astronomy & Astrophysics manuscript no. nix hydra c ESO 8 August 9, 8 Letter to the Editor Spin-orbit coupling and chaotic rotation for circumbinary bodies Application to the small satellites of the Pluto-Charon

More information

7. BINARY STARS (ZG: 12; CO: 7, 17)

7. BINARY STARS (ZG: 12; CO: 7, 17) 7. BINARY STARS (ZG: 12; CO: 7, 17) most stars are members of binary systems or multiple systems (triples, quadruples, quintuplets,...) orbital period distribution: P orb = 11 min to 10 6 yr the majority

More information

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets Satellites of giant planets Satellites and rings of giant planets Regular and irregular satellites Regular satellites: The orbits around the planet have low eccentricity and are approximately coplanar

More information

The Solar Nebula Theory

The Solar Nebula Theory Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

arxiv: v1 [astro-ph.ep] 8 Apr 2010

arxiv: v1 [astro-ph.ep] 8 Apr 2010 Mon. Not. R. Astron. Soc. 000,?? (0000) Printed 5 November 207 (MN LATEX style file v2.2) Planet formation: Statistics of spin rates and obliquities of extrasolar planets arxiv:004.406v [astro-ph.ep] 8

More information

7 - GRAVITATION Page 1 ( Answers at the end of all questions )

7 - GRAVITATION Page 1 ( Answers at the end of all questions ) 7 - GRAVITATION Page 1 1 ) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

More information

Form I. Midterm II. March 30, 1999

Form I. Midterm II. March 30, 1999 Name: Midterm II March 30, 1999 Useful constants: ρ water =1000 kg/m 3, G=6.67x10-11 Nm 2 /kg 2, N A =6.02x10 23, R=8.31 J/(mol K), k = 1.38x10-23 J/K, D isk = 1/2 MR 2, M e =5.98x10 24 kg, g=9.8 m/s 2.

More information

Physics Mechanics Lecture 30 Gravitational Energy

Physics Mechanics Lecture 30 Gravitational Energy Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

[19] Jovian Planet Moons and Rings (11/2/17)

[19] Jovian Planet Moons and Rings (11/2/17) 1 [19] Jovian Planet Moons and Rings (11/2/17) Upcoming Items Which of these is Europa? 1. Read Ch. 8.3 and 12.1 12.3 by next Thursday and do the self-study quizzes 2. Midterm #2 on Tuesday! 2 LEARNING

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013 Probing Galaxy Halos with Tidal Interactions Kyoto University Astronomy Department June 27, 2013 Galaxy Formation Baryons cool & collapse in dark halo potentials. White & Rees 78 Galaxy Formation Baryons

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

arxiv: v1 [astro-ph.ep] 9 Jan 2017

arxiv: v1 [astro-ph.ep] 9 Jan 2017 To appear in Astronomical Review Vol. 00, No. 00, Month 20XX, 1 32 REVIEW Formation of Exomoons: A Solar System Perspective arxiv:1701.02125v1 [astro-ph.ep] 9 Jan 2017 Amy C. Barr Planetary Science Institute,

More information

Formation of the Solar System. What We Know. What We Know

Formation of the Solar System. What We Know. What We Know Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

More information

Tides and Lagrange Points

Tides and Lagrange Points Ast111, Lecture 3a Tides and Lagrange Points Arial view of Tidal surge in Alaska (S. Sharnoff) Tides Tidal disruption Lagrange Points Tadpole Orbits and Trojans Tidal Bulges Tides Tidal Force The force

More information

AS300-U1C2L2 - The Moon: Earth's Fellow Traveler Page 1

AS300-U1C2L2 - The Moon: Earth's Fellow Traveler Page 1 AS300-U1C2L2 - The Moon: Earth's Fellow Traveler Page 1 Name: Flight Date: 1 What was Aristarchus s map of the Earth, Sun, and Moon missing? A Scale B Relative size of the Earth, Moon and Sun C A geocentric

More information

Physics 2210 Fall 2011 David Ailion EXAM 4

Physics 2210 Fall 2011 David Ailion EXAM 4 Dd Physics 2210 Fall 2011 David Ailion EXAM 4 PLEASE FILL IN THE INFORMATION BELOW: Name (printed): Name (signed): Student ID Number (unid): u Discussion Instructor: Marc Lindley Jon Paul Lundquist Peter

More information

Information on internal structure from shape, gravity field and rotation

Information on internal structure from shape, gravity field and rotation Information on internal structure from shape, gravity field and rotation Seismological information is available only for the Earth and in limited amounts for the Moon. Various geodetic data put constraints

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.901: Astrophysics I Spring Term 2006 PROBLEM SET 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.901: Astrophysics I Spring Term 2006 PROBLEM SET 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.901: Astrophysics I Spring Term 2006 PROBLEM SET 1 Due: Thursday, February 16 in class Reading: Hansen, Kawaler, & Trimble, Chapter

More information

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.a: What is the direction of < 0, 0, 3> x < 0, 4, 0>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.b: What is the direction of < 0, 4, 0> x < 0, 0, 3>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7)

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Solved examples of Gravitation

Solved examples of Gravitation Solved examples of Gravitation Example 1 The time period of Moon around the Earth is n times that of Earth around the Sun. If the ratio of the distance of the Earth from the Sun to that of the distance

More information

Two types of co-accretion scenarios for the origin of the Moon

Two types of co-accretion scenarios for the origin of the Moon Earth Planets Space, 53, 213 231, 2001 Two types of co-accretion scenarios for the origin of the Moon Ryuji Morishima and Sei-ichiro Watanabe Department of Earth and Planetary Sciences, Nagoya University,

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

General Introduction. The Earth as an evolving geologic body

General Introduction. The Earth as an evolving geologic body General Introduction The Earth as an evolving geologic body Unique/important attributes of Planet Earth 1. Rocky planet w/ strong magnetic field Mercury has a weak field, Mars has a dead field 1 Unique/important

More information

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today)

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Today more gravity & orbits Tides Events Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Notable Fall equinox (Sept. 22 - tomorrow at 4:02PM) Escape Velocity M r

More information

****The Impulse Approximation****

****The Impulse Approximation**** ****The Impulse Approximation**** Elena D Onghia Harvard University edonghia@cfa.harvard.edu We consider a disk of stars on circular orbits comprising the victim interacting with an object that we will

More information

9/28/2017 A New Theory of How the Moon Formed - Scientific American Blog Network. Observations. A New Theory of How the Moon Formed

9/28/2017 A New Theory of How the Moon Formed - Scientific American Blog Network. Observations. A New Theory of How the Moon Formed Observations A New Theory of How the Moon Formed Contrary to what we now think, it could be that it came from a violent impact that temporarily turned Earth into a "synestia" By Simon Lock on June 9, 2017

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets Importance of Solar System Objects discussed thus far Interiors of Terrestrial Planets Chapter 9 Sun: Major source of heat for the surfaces of planets Asteroids: Provide possible insight to the composition

More information

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Final Exam Saturday, May 5, 9:00 am - noon ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Dwarf Nova Outbursts. III. The Viscosity Parameter. J. S m a k

Dwarf Nova Outbursts. III. The Viscosity Parameter. J. S m a k ACTA ASTRONOMICA Vol. 49 (1999) pp. 391 401 Dwarf Nova Outbursts. III. The Viscosity Parameter by J. S m a k N. Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw,

More information

Lecture 5: Forces Readings: Section 4-7, Table 29-1

Lecture 5: Forces Readings: Section 4-7, Table 29-1 Lecture 5: Forces Readings: Section 4-7, Table 29-1 Key Ideas Four Fundamental Forces Strong Nuclear Force Weak nuclear force Gravitational force Inverse square law Electromagnetic force Comparison of

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM

The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM This lecture will help you understand: Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 28 THE SOLAR SYSTEM Overview of the Solar System The Nebular Theory The Sun Asteroids, Comets, and

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

PHY2053 General Physics I

PHY2053 General Physics I PHY2053 General Physics I Section 584771 Prof. Douglas H. Laurence Final Exam May 3, 2018 Name: 1 Instructions: This final exam is a take home exam. It will be posted online sometime around noon of the

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6 1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 3) +2 4) 6 2. Two bodies with K.E. in the ratio 4 : 1 are moving with same linear momenta. The ratio

More information

Binary star formation

Binary star formation Binary star formation So far we have ignored binary stars. But, most stars are part of binary systems: Solar mass stars: about 2 / 3 are part of binaries Separations from: < 0.1 au > 10 3 au Wide range

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

Department of Physics PRELIMINARY EXAMINATION 2016 Part I. Short Questions

Department of Physics PRELIMINARY EXAMINATION 2016 Part I. Short Questions Department of Physics PRELIMINARY EXAMINATION 2016 Part I. Short Questions Thursday May 19th, 2016, 14-17h Examiners: Prof. J. Cline, Prof. H. Guo, Prof. G. Gervais (Chair), and Prof. D. Hanna INSTRUCTIONS

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Solution to phys101-t112-final Exam

Solution to phys101-t112-final Exam Solution to phys101-t112-final Exam Q1. An 800-N man stands halfway up a 5.0-m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wall-ladder

More information

Regular Features of the Solar System

Regular Features of the Solar System 1 Regular Features of the Solar System All of the planets orbit the Sun in the same plane All planetary orbits are nearly circular All planets orbit the Sun in the same direction Most planets rotate in

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery

More information

5/6/2018. Rolling Without Slipping. Rolling Without Slipping. QuickCheck 12.10

5/6/2018. Rolling Without Slipping. Rolling Without Slipping. QuickCheck 12.10 Rolling Without Slipping Rolling is a combination of rotation and translation. For an object that rolls without slipping, the translation of the center of mass is related to the angular velocity by Slide

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

Galaxy interaction and transformation

Galaxy interaction and transformation Galaxy interaction and transformation Houjun Mo April 13, 2004 A lot of mergers expected in hierarchical models. The main issues: The phenomena of galaxy interaction: tidal tails, mergers, starbursts When

More information

Celestial Mechanics of Asteroid Systems

Celestial Mechanics of Asteroid Systems Celestial Mechanics of Asteroid Systems D.J. Scheeres Department of Aerospace Engineering Sciences The University of Colorado scheeres@colorado.edu 1 Granular Mechanics and Asteroids Asteroid systems are

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

Physics 201, Lecture 23

Physics 201, Lecture 23 Physics 201, Lecture 23 Today s Topics n Universal Gravitation (Chapter 13) n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (13.4) n Gravitational Potential Energy (13.5)

More information