1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

Size: px
Start display at page:

Download "1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude"

Transcription

1 Q11.1.a: What is the direction of < 0, 0, 3> x < 0, 4, 0>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

2 Q11.1.b: What is the direction of < 0, 4, 0> x < 0, 0, 3>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

3 Q11.1.c: What is the direction of < 0, 0, 6> x < 0, 0, -3>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

4 Q11.1.d: A ball falls straight down in the xy plane. Its momentum is shown by the red arrow. What is the direction of the ball's angular momentum about location A? A 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude (z-axis points out of page)

5 Q11.1.e: A ball falls straight down in the xy plane. Its momentum is shown by the red arrow. What is the ball's z component of angular momentum about location A? A 4 m 10 kg m/s 1) +10 ) 10 3) +40 4) 40 5) 0 (z-axis points out of page)

6 Q11.1.f: A planet orbits a star, in a circular orbit in the xy plane. Its momentum is shown by the red arrow. What is the direction of the angular momentum of the planet?

7 Q11.1.g: A planet orbits a star, in a circular orbit in the xy plane. Its momentum is shown by the red arrow. 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude (z-axis points out of page)

8 Q11.1.h: A comet orbits the Sun, in an elliptical orbit in the xy plane. The red arrow indicates its momentum. Which arrow best shows the direction of the vector where A is at the center of the Sun?

9 Q11.1.i: A comet orbits the Sun, in the xy plane. Its momentum is shown by the red arrow. What is the direction of the comet's angular momentum about the Sun?

10 Q11.1.j: A comet orbits the Sun, in the xy plane. Its momentum is shown by the red arrow. What is the direction of the comet's angular momentum about the Sun? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude (z-axis points out of page)

11 Q11.1.k: A comet orbits the Sun, in the xy plane. Its momentum is shown by the red arrow. What is the direction of the comet's angular momentum about the Sun? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude (z-axis points out of page)

12 Q11.1.l: A comet orbits the Sun in the xz plane. Its momentum is shown by the red arrow. What is the direction of the comet's angular momentum about the Sun? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

13 Q11.1.m: If an object is traveling at a constant speed in a vertical circle, how does the object's angular momentum change as the object goes from the top of the circle to the bottom of the circle?

14 Q11..a: A diatomic molecule such as molecular nitrogen (N) consists of two atoms each of mass M, whose nuclei are a distance d apart. What is the moment of inertia of the molecule about its center of mass? 1) Md ) 3) 4) 5) Md 1 Md 1 Md 4 4Md d

15 Q11..b: The spokes of a bicycle wheel have low mass, so almost all of the mass of the wheel is concentrated in the rim. What is the moment of inertia of a bicycle wheel of radius R and mass M? 1) MR ) π MR 3) π RM 4) (1/) MR 5) π MR

16 Q11..c: The Earth rotates on its axis once every 4 hours. What is its angular speed? Radius: 6.4e6 m Mass: 6e4 kg 1) ω = π / (4*60*60) ) ω = π * 6.4e6 / (4*60*60) 3) ω = (6e4) * π * 6.4e6 / (4*60*60) 4) ω = (6e5) * (6.4e6) * π / (4*60*60)

17 Q11..d: The Earth orbits the Sun in a nearly circular orbit. What is its angular speed? Click any button when you have calculated the answer.

18 Q11.4.a: A yo-yo is in the xy plane. You pull up on the string with a force of magnitude 0.6 N. What is the direction of the torque you exert on the yo-yo? r = m, R= m 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude (z-axis points out of page)

19 Q11.4.b: A yo-yo is in the xy plane. You pull up on the string with a force of magnitude 0.6 N. What is the magnitude of the torque you exert? 1) N m r = m, R= m ) N m 3) 0.01 N m 4) N m 5) 0.6 N m 6) cannot be determined without knowing the length of the string

20 Q11.5.a Child runs and jumps on playground merry-goround. For the system of the child + disk (excluding the axle and the Earth), which statement is true from just before to just after impact?

21 Q11.5.b What is the initial angular momentum of the child + disk about the axle? 1) < 0, 0, 0 > ) < 0, Rmv, 0 > 3) < 0, Rmv, 0 > 4) < 0, 0, Rmv > 5) < 0, 0, Rmv >

22 Q11.7.c The disk has moment of inertia I, and after the collision it is rotating with angular speed ω. The rotational angular momentum of the disk alone (not counting the child) is 1) < 0, 0, 0 > ) < 0, Iω, 0 > 3) < 0, Iω, 0 > 4) < 0, 0, Iω > 5) < 0, 0, Iω >

23 Q11.7.d After the collision, what is the speed (in m/s) of the child? 1) ωr ) ω 3) ωr 4) ω/r 5) ω R

24 Q11.7.e After the collision, what is the translational angular momentum of the child about the axle? 1) < 0, 0, 0 > ) < 0, Rmω, 0 > 3) < 0, Rmω, 0 > 4) < 0, Rm(ωR), 0 > 5) < 0, Rm(ωR), 0 >

25 Q11.7.f (11.P.56) What principle should we use to find the final velocity of the space station? 1) The momentum principle ) The energy principle 3) The angular momentum principle

26 Q11.7.g (11.P.56) What principle should we use to find the final angular speed of the space station? 1) The momentum principle ) The energy principle 3) The angular momentum principle

27 Q11.10.a In the original Bohr model of the hydrogen atom, the electron moves in circular orbits around the proton. Apply the Momentum Principle to this model. Which of these equations is the result? )

28 Q11.10.b For the bound states of the hydrogen atom, which statement is true? 1) K+U is positive ) K+U is negative 3) K+U is zero

29 Q11.10.c: Which is the correct expression for K+U for the hydrogen atom? e = +1.6 e -19 C 1) ) 1 mv 1 mv 1 e + 4πε 0 r 1 e 4πε r 0 1 mv 1 mv 1 e + 4πε 0 r 1 e 4πε r 3) 4) 5) 0 0

30 Q11.10.d: Starting from the idea that the angular momentum of the electron is quantized, Bohr found the following for the radius of the circular orbit: r N h m = 1 e 4πε 0 What does this predict for the numerical value of r? (Leave N as a factor.) 1) r = (8.5E-30 meter)n 4) r = (5.3E-11 meter)n ) r = (5.0E+3 meter)n 5) r = (1.E-38 meter)n 3) r = (4.8E-1 meter)n

31 h = 1.05E -34 J s, m = 9E -31kg, e = 1.6E -19 C, 1 = 9E9 N m / C 4πε 0

32 Notes on answers 1) r = (8.5E-30 meter)n Didn t square the electron charge e. ) r = (5.0E+3 meter)n Didn t square h. 3) r = (4.8E-1 meter)n 1 Didn t divide by. 4πε 4) r = (5.3E-11 meter)n Correct. Useful to write as ( 0.53E - 10 meter) N 5) r = (1.E-38 meter)n Didn t divide by. 4πε e r =.

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

AP Physics 1 Multiple Choice Questions - Chapter 7

AP Physics 1 Multiple Choice Questions - Chapter 7 1 A grindstone increases in angular speed from 4.00 rad/sec to 12.00 rad/sec in 4.00 seconds. Through what angle does it turn during that time if the angular acceleration is constant? a 8.00 rad b 12.0

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

PHY1004W 2014 Modern Mechanics Part 4

PHY1004W 2014 Modern Mechanics Part 4 PHY1004W 014 Modern Mechanics Part 4 Prof Andy Buffler Room 503 RW James andy.buffler@uct.ac.za These slides have benefited from significant guidance from the notes of Roger Fearick (UCT Physics) and the

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18 Lesson 8 Physics 168 1 Rolling 2 Intuitive Question Why is it that when a body is rolling on a plane without slipping the point of contact with the plane does not move? A simple answer to this question

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J

1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J Q6.2.a: A ball whose mass is 2 kg travels at a velocity of < 0, 3, 4> m/s. What is the kinetic energy of the ball? 1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J Q6.2.aa: A ball whose mass is

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning? 1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student

More information

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12 Rotational Motion Chapter 8: Rotational Motion In physics we distinguish two types of motion for objects: Translational Motion (change of location): Whole object moves through space. Rotational Motion

More information

Name: Date: 5. A 5.0-kg ball and a 10.0-kg ball approach each other with equal speeds of 20 m/s. If

Name: Date: 5. A 5.0-kg ball and a 10.0-kg ball approach each other with equal speeds of 20 m/s. If Name: Date: 1. For this question, assume that all velocities are horizontal and that there is no friction. Two skaters A and B are on an ice surface. A and B have the same mass M = 90.5 kg. A throws a

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular

More information

Midterm II Solutions

Midterm II Solutions Name: Midterm II Solutions March 30, 1999 Correct Responses are given in bold type Useful constants: ρ water =1000 kg/m 3, G=6.67x10-11 Nm 2 /kg 2, N A =6.02x10 23, R=8.31 J/(mol K), k = 1.38x10-23 J/K,

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s? Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required

More information

Basics of rotational motion

Basics of rotational motion Basics of rotational motion Motion of bodies rotating about a given axis, like wheels, blades of a fan and a chair cannot be analyzed by treating them as a point mass or particle. At a given instant of

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at

More information

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names:

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names: Problem 1 (2.5 points) 1 2 3 4 Match the above shown players of the best baseball team in the world with the following names: A. Derek Jeter B. Mariano Rivera C. Johnny Damon D. Jorge Posada 1234 = a.

More information

1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle?

1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle? Q12.1.a You put an ice cube into a styrofoam cup containing hot coffee. You would probably be surprised if the ice cube got colder and the coffee got hotter. 1) Yes 2) No 3) The energy principle does not

More information

Energy and Angular Momentum

Energy and Angular Momentum Notes 13 Rotation Page 1 Energy and Angular Momentum The kinetic energy associate with a rotating object is simply the sum of the regular kinetic energies. Our goal is to state the rotational kinetic energy

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label free-body diagrams showing the forces

More information

Form I. Midterm II. March 30, 1999

Form I. Midterm II. March 30, 1999 Name: Midterm II March 30, 1999 Useful constants: ρ water =1000 kg/m 3, G=6.67x10-11 Nm 2 /kg 2, N A =6.02x10 23, R=8.31 J/(mol K), k = 1.38x10-23 J/K, D isk = 1/2 MR 2, M e =5.98x10 24 kg, g=9.8 m/s 2.

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C 1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

More information

1 of 7 4/5/2010 10:25 PM Name Date UNIT 3 TEST 1. In the formula F = Gm m /r, the quantity G: depends on the local value of g is used only when Earth is one of the two masses is greatest at the surface

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Ph1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004

Ph1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004 Ph1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004 Problem 1 (10 points) - The Delivery A crate of mass M, which contains an expensive piece of scientific equipment, is being delivered to Caltech.

More information

Chapter 11 Rolling, Torque, and Angular Momentum

Chapter 11 Rolling, Torque, and Angular Momentum Prof. Dr. I. Nasser Chapter11-I November, 017 Chapter 11 Rolling, Torque, and Angular Momentum 11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED Translation vs. Rotation General Rolling Motion General

More information

Winter Midterm Review Questions

Winter Midterm Review Questions Winter Midterm Review Questions PHYS106 February 24, 2008 PHYS106 () Winter Midterm Review Questions February 24, 2008 1 / 12 MassCenter003 Calculate the position of the mass center of the rigid system

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation Section Study Guide Teacher Notes and Answers CIRCULAR MOTION 1. a. yes b. The car has a non-zero acceleration because the direction of motion is changing. c. The direction of centripetal acceleration

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Rolling, Torque, and Angular Momentum

Rolling, Torque, and Angular Momentum AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Physics 7A Lecture 2 Fall 2014 Midterm 2 Solutions. November 9, 2014

Physics 7A Lecture 2 Fall 2014 Midterm 2 Solutions. November 9, 2014 Physics 7A Lecture 2 Fall 204 Midterm 2 Solutions November 9, 204 Lecture 2 Midterm 2 Problem Solution Our general strategy is to use energy conservation, keeping in mind that the force of friction will

More information

Part 1 of 1. (useful for homework)

Part 1 of 1. (useful for homework) Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture 22 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released

More information

Rotation review packet. Name:

Rotation review packet. Name: Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Relating Translational and Rotational Variables

Relating Translational and Rotational Variables Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period

More information

AP Physics 1- Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law- F = Ma cm. Usually the location of the center

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Q: What does angular momentum mean? What is its equation for calculation?

Q: What does angular momentum mean? What is its equation for calculation? Ch 10: Conservation of Angular Momentum Reeeeecap. Q: What does angular velocity mean? What is its symbol? A: The rate of change of angular displacement.. Q: What does angular acceleration mean? What is

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom)

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom) inal Exam During class (1-3:55 pm) on 6/27, Mon Room: 412 MH (classroom) Bring scientific calculators No smart phone calculators l are allowed. Exam covers everything learned in this course. tomorrow s

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Part Two: Earlier Material

Part Two: Earlier Material Part Two: Earlier Material Problem 1: (Momentum and Impulse) A superball of m 1 = 0.08kg, starting at rest, is dropped from a height falls h 0 = 3.0m above the ground and bounces back up to a height of

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

In physics, motion in circles is just as important as motion along lines, but there are all

In physics, motion in circles is just as important as motion along lines, but there are all Chapter 6 Round and Round: Circular Motion In This Chapter Converting angles Handling period and frequency Working with angular frequency Using angular acceleration In physics, motion in circles is just

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body

Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125 cm bead

More information

Physics 11 Fall 2012 Practice Problems 6

Physics 11 Fall 2012 Practice Problems 6 Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

More information

Physics 4A Lab 11: MOMENT OF INERTIA Parts List

Physics 4A Lab 11: MOMENT OF INERTIA Parts List Part Quantity Rotating cross-arm table 1 Physics 4A Lab 11: MOMENT OF INERTIA Parts List Large iron disk 1 Large iron ring 1 50 grams hanger 1 Weights 1 set Table clamp 1 1-meter long rod 1 Pulleys 2 Rght-angle

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

Physics 53 Summer Final Exam. Solutions

Physics 53 Summer Final Exam. Solutions Final Exam Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols given, and standard constants such as g. If numbers are required, use g = 10 m/s

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Name (Print): Signature: PUID:

Name (Print): Signature: PUID: Machine Graded Portion (70 points total) Name (Print): Signature: PUID: You will lose points if your explanations are incomplete, if we can t read your handwriting, or if your work is sloppy. 1. A playground

More information

Ch 8. Rotational Dynamics

Ch 8. Rotational Dynamics Ch 8. Rotational Dynamics Rotational W, P, K, & L (a) Translation (b) Combined translation and rotation ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS = τ Iα Requirement:

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Student Exploration: Uniform Circular Motion

Student Exploration: Uniform Circular Motion Name: Date: Student Exploration: Uniform Circular Motion Vocabulary: acceleration, centripetal acceleration, centripetal force, Newton s first law, Newton s second law, uniform circular motion, vector,

More information