ELE 538B: Large-Scale Optimization for Data Science. Quasi-Newton methods. Yuxin Chen Princeton University, Spring 2018

Size: px
Start display at page:

Download "ELE 538B: Large-Scale Optimization for Data Science. Quasi-Newton methods. Yuxin Chen Princeton University, Spring 2018"

Transcription

1 ELE 538B: Large-Scale Opimizaion for Daa Science Quasi-Newon mehods Yuxin Chen Princeon Universiy, Spring 208

2 00 op ff(x (x)(k)) f p 2 L µ f 05 k f (xk ) k f (xk ) =) f op ieraions converges in only 5 seps X k=0 ypically requires quadraic local convergence f (x ) x k22 kx f op L2f 2L2f P µ µ( + ) k=0 k x k22 + µ( + ) + kx k=0 () f op 0 Summing over all ieraions before, we ge X quadraic backracking parameers αconvergence: = 0., β = 0.7 and hence ) µ( + ) kx+ x k22 + µ( + ) + µ( x R ) n f (x) Examplesminimize f (x ) f op kx x k22 kx + 2 x = x ( f (x )) f (x ) Summing over all ieraions before, we ge f bes,k k=0 X k 2 kg k2 µ 2 kg k2 µ x k22 + µ( + ) + kx x k22 µ( ) kx x f op kg k22 µ( + ) and hence xample in R2 (page 0 9) x(0) µ( Newon s mehod f (x ) =) µ( + ) + kx kg k2 µ x k22 + L2f µ f bes,k x k22 + X k 2 kg k2 µ k=0 L2f 2L2f P µ µ( + ) k=0 k k f (x ) 5 f op aains ε accuracy wihin O(log log ε ) soring and invering Hessian 2 f (x) Rn n a single ieraion may las forever; prohibiive sorage requiremen consrained minimizaion Quasi-Newon mehods 0 2-2

3 Quasi-Newon mehods key idea: approximae Hessian marix using only gradien informaion x + = x η H }{{} f(x ) surrogae of ( 2 f(x )) challenges: how o find good approximaion H 0 of ( 2 f(x ) ) using only gradien informaion using limied memory achieving super-linear convergence Quasi-Newon mehods -3

4 Crierion for choosing H Consider following approximae quadraic model of f( ): f (x) := f(x + )+ f(x + ), x x which saisfies f (x) = f(x + ) + H+ ( x x + ) ( x x + ) H ( + x x + ) One reasonable crierion: gradien maching for laes wo ieraes: f (x ) = f(x ) f (x + ) = f(x + ) (.a) (.b) Quasi-Newon mehods -

5 rf (x+ ) + H+ x sar x+ (x ) We wih=a rf monooniciy resul: () Secan equaion rf (x+ ) = rf (x+ ) holds For (), one requires 2.5(x+ ) ()rf H+ x+ Lemma x = rf (xrivially. ) Proof of Lemma 2.5 x = rf (x Le f be convex and L-smooh. rf If (x ) +=H/L, + x hen rf (x) + () H x asú follows x = rf (x+ ) r Consider approximae quadraic model of+ f( ) Îx+ xfú Î ( ) 2 Æ Îx x Î2 + + I follows+ ha ú ú ) rf >(x) is any minimizer wih opimal (x+ f (x) := f (xwhere ) +xhrf (x+ ), x x+ i+ x fx H+ x 2 slope H xú Î22 =.x xú (Òf (x ) Òf (xú )).2 whichîx saisfies + rf (x) = rf (x+ ) + H+ x x =0..2. x+.x xú. 2 Èx xú, Òf (x ) Òf (xú )Í + 2.Òf (x ) Òf (xú 2crierion: One= reasonable gradien maching for laes wo ieraes: (.b) holds auomaically. To saisfy (.a), one requires Gradien mehods 2 2 Ø ÎÒf (x ) Òf (xú )Î2 (smoohness). (x )+. (x+.2. rf rf ) (x ) x= =2(x f.òf +(xx Æ. f x xú.2 ) + 2H ) Òf (xú ) ) = rf (x )..2 rf (x ú. H x+ x = f (x+ ) f (x ) Æ.x x L + {z 2 () holds rivially. For (), one requires secan equaion } + rf (x+ ) + H+ xdisplacemen = rf (x ) secan equaion requires ha maps + x + + x x ino change of gradiens f (x ) f (x ) () H+ x+ x = rf (x+ ) rf (x ) Gradien mehods Quasi-Newon mehods -5

6 Secan equaion H + ( f(x + ) f(x ) ) }{{} :=y = x + x }{{} :=s (.2) only possible when s y > 0, since s y = y H + y > 0 admi infinie soluions, since degrees of freedom O(n 2 ) in choosing H+ far exceeds number of consrains n in (.2) which H+ shall we choose? Quasi-Newon mehods -6

7 Broyden-Flecher-Goldfarb-Shanno (BFGS) mehod Quasi-Newon mehods -7

8 Closedness o H In addiion o secan equaion, choose H + sufficienly close o H : minimize H subjec o H H H = H Hy = s for some norm exploi pas informaion regarding H choosing differen norms resuls in differen quasi-newon mehods Quasi-Newon mehods -8

9 Choice of norm in BFGS Choosing M := W /2 MW /2 F for any weigh marix W obeying W s = y, we ge minimize H subjec o W /2 (H H )W /2 F H = H Hy = s This admis closed-form expression H + = ( I ρ s y ) ( H I ρ y s ) + ρ s s }{{} BFGS updae rule; H + 0 if H 0 (.3) wih ρ = y s Quasi-Newon mehods -9

10 An alernaive inerpreaion H + is also soluion o minimize H H, H log de ( H H ) n }{{} KL divergence beween N (0,H ) and N (0,H ) subjec o Hy = s minimizing KL divergence subjec o secan equaion consrains Quasi-Newon mehods -0

11 BFGS mehods Algorihm. BFGS : for = 0,, do 2: x + = x η H f(x ) (line search o deermine η ) 3: H + = ( I ρ s y ) ( H I ρ y s ) + ρ s s, where s = x + x, y = f(x + ) f(x ), and ρ = y s each ieraion coss O(n 2 ) (in addiion o compuing gradiens) no need o solve linear sysems or inver marices no magic formula for iniializaion; possible choices: approximae inverse Hessian a x 0, or ideniy marix Quasi-Newon mehods -

12 Rank-2 updae on H From Sherman-Morrison-Woodbury formula ( A + UV ) = A A U ( I + V A U ) V A, BFGS rule is equivalen o H+ = H s H H s s H + ρ y y s }{{} rank-2 updae Quasi-Newon mehods -2

13 Local superlinear convergence Theorem. (informal) Suppose f is srongly convex and has Lipschiz-coninuous Hessian. Under mild condiions, BFGS achieves x + x 2 x x = 0 2 lim ieraion complexiy: larger han Newon mehods bu smaller han gradien mehods asympoic resul: holds when Quasi-Newon mehods -3

14 Key observaion BFGS updae rule achieves lim ( H 2 f(x ) )( x + x ) 2 x + x 2 = 0 Implicaions even hough H may no converge o 2 f(x ), i becomes increasingly accurae approximaion of 2 f(x ) along search direcion x + x asympoically, x + x ( 2 f(x ) ) f(x ) } {{ } Newon search direcion Quasi-Newon mehods -

15 rgence analysis 7- Convergence analysis Numerical example definiion of mehods Opimaliy offirs-order Neserov s mehod More precisely, convex and L-smooh funcion f s.. HL = V> V> m HL m V m V Example L L noes > LemmaH5., V> immediae V> m V > EE236C lecure +H arrive V>ma = we m mv V m+ s m s m V m+ Using ae arrive a Theorem 5.3 More precisely, convex and L-smooh funcion f s.. as long as xk œ x0 + span{òf (x0 ),, Òf (xk )} for all Æ k Æ 7- y> s Ineresingly, no firs-order mehods can improve upon Neserov s resul in general as long as xk œ x0 + span{òf (x0 ),, Òf (xk )} for all Æ k Æ wih = wih = BFGS updae rule y > s 3LÎx0 xú Î22 32( + ) ! 2 " 0 9 Quasi-Newon cos permehods Newon ieraion: O(n3) plus compuing r2f (x) Acceleraed GD Acceleraed GD 0 R := supxœc DÏ x, x, hen 2 0A 0 A 0 Ô 50 B 00 B 0 Ô Lf R log k Lf R log k bes, op Ô Ô f f ÆO ÆO Ô Ô fl n = 00, N = 500 fl op definiion of firs-order mehods Ô 9! " 2flR Ô wih 0IfD Ï = supxœc x, xl0 f, hen 2? 6 k 0 (x )) ffop Ø ff(x f (xk ) f? f (x ) f op Ø 3LÎx0 xú Î22 32( + )2 = f > >> m + m V> + VX V m+ Vs> m+ T mm+2 V>s m sv s m+ N m m+ V m+ X minimize c>t x> log(b a x) i > i > > > n + x R x V minimize log b s ai xv m+ V m V c + m+ + m+2 s s i s m+ i= >coninuous i= Suppose f is convex and Lipschiz (i.e. Îg Îú Æ Lf ) on C, + + s s = 00, m = 500 chizn coninuous (i.e. Îg Îú ÆSherman-Morrison-Woodbury L f) on C, From formula, BFGS ru suppoe isnewon fl-srongly convex w.r.. formula, Î Î. Then onvexand w.r.. ÎFrom Î. ÏThen Sherman-Morrison-Woodbury BFGS Newon BFGS rule is equivalen Newon H+ =H! H s s> + y H " > L2f sq 2 > >! 0 0 " Lf q s H H = H H s s H + y y + 2 sup {z 0 0 D x, x + > Ï xœc k=0 k pxœc DÏ x, x + s H s 2fl bes, op k k=0 2fl f {z } rank-2 updae Æ q3 q3 f 0 0 rank-2 updae k k=0 k=0 k 50-5

16 Limied-memory quasi-newon mehods Hessian marices are usually dense. For large-scale problems, even soring (inverse) Hessian marices is prohibiive Insead of soring full Hessian approximaions, one may wan o mainain more parsimonious approximaion of Hessians, using only a few vecors Quasi-Newon mehods -6

17 Limied-memory BFGS (L-BFGS) H + = V H V + ρ s s }{{} BFGS updae rule wih V = I ρ y s key idea: mainain modified version of H implicily by soring m (e.g. 20) mos recen vecor pairs (s, y ) Quasi-Newon mehods -7

18 Limied-memory BFGS (L-BFGS) L-BFGS mainains H L = V V mh L,0V m V + ρ m V V m+s m s mv m+ V + ρ m+ V V m+2s m+ s m+v m+ V + + ρ s s can be compued recursively iniializaion H,0 L may vary from ieraion o ieraion only needs o sore {(s i, y i )} m i< Quasi-Newon mehods -8

19 Reference [] Numerical opimizaion, J. Nocedal, S. Wrigh, [2] Opimizaion mehods for large-scale sysems, EE236C lecure noes, L. Vandenberghe, UCLA. [3] Opimizaion mehods for large-scale machine learning, L. Boou e al., arxiv, 206. [] Convex opimizaion, EE36B lecure noes, S. Boyd, Sanford. Quasi-Newon mehods -9

ELE 538B: Large-Scale Optimization for Data Science. Introduction. Yuxin Chen Princeton University, Spring 2018

ELE 538B: Large-Scale Optimization for Data Science. Introduction. Yuxin Chen Princeton University, Spring 2018 ELE 538B: Large-Scale Opimizaion for Daa Science Inroducion Yuxin Chen Princeon Universiy, Spring 2018 Surge of daa-inensive applicaions Widespread applicaions in large-scale daa science and learning 2.5

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 06 A Primal-Dual Type Algorihm wih he O(/) Convergence Rae for Large Scale Consrained Convex Programs Hao Yu and Michael J. Neely Absrac This paper considers

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Primal-Dual Splitting: Recent Improvements and Variants

Primal-Dual Splitting: Recent Improvements and Variants Primal-Dual Spliing: Recen Improvemens and Varians 1 Thomas Pock and 2 Anonin Chambolle 1 Insiue for Compuer Graphics and Vision, TU Graz, Ausria 2 CMAP & CNRS École Polyechnique, France The proximal poin

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Tracking Adversarial Targets

Tracking Adversarial Targets A. Proofs Proof of Lemma 3. Consider he Bellman equaion λ + V π,l x, a lx, a + V π,l Ax + Ba, πax + Ba. We prove he lemma by showing ha he given quadraic form is he unique soluion of he Bellman equaion.

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

Notes on online convex optimization

Notes on online convex optimization Noes on online convex opimizaion Karl Sraos Online convex opimizaion (OCO) is a principled framework for online learning: OnlineConvexOpimizaion Inpu: convex se S, number of seps T For =, 2,..., T : Selec

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection Appendix o Online l -Dicionary Learning wih Applicaion o Novel Documen Deecion Shiva Prasad Kasiviswanahan Huahua Wang Arindam Banerjee Prem Melville A Background abou ADMM In his secion, we give a brief

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

A Decentralized Second-Order Method with Exact Linear Convergence Rate for Consensus Optimization

A Decentralized Second-Order Method with Exact Linear Convergence Rate for Consensus Optimization 1 A Decenralized Second-Order Mehod wih Exac Linear Convergence Rae for Consensus Opimizaion Aryan Mokhari, Wei Shi, Qing Ling, and Alejandro Ribeiro Absrac This paper considers decenralized consensus

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

ELE 538B: Large-Scale Optimization for Data Science. Mirror descent. Yuxin Chen Princeton University, Spring 2018

ELE 538B: Large-Scale Optimization for Data Science. Mirror descent. Yuxin Chen Princeton University, Spring 2018 ELE 538B: Large-Scale Opimizaion for aa Science Yuin hen Princeon Universiy Spring 08 Ouline Bregman divergence Alernaive forms mirror onvergence analysis 5- {z }.. A proimal view gradien. 7 (X 6 :g(ˆ

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Accelerated gradient methods

Accelerated gradient methods ELE 538B: Large-Scale Optimization for Data Science Accelerated gradient methods Yuxin Chen Princeton University, Spring 018 Outline Heavy-ball methods Nesterov s accelerated gradient methods Accelerated

More information

Optima and Equilibria for Traffic Flow on a Network

Optima and Equilibria for Traffic Flow on a Network Opima and Equilibria for Traffic Flow on a Nework Albero Bressan Deparmen of Mahemaics, Penn Sae Universiy bressan@mah.psu.edu Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 1 / 1 A Traffic

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

CS376 Computer Vision Lecture 6: Optical Flow

CS376 Computer Vision Lecture 6: Optical Flow CS376 Compuer Vision Lecure 6: Opical Flow Qiing Huang Feb. 11 h 2019 Slides Credi: Krisen Grauman and Sebasian Thrun, Michael Black, Marc Pollefeys Opical Flow mage racking 3D compuaion mage sequence

More information

Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. cost function n

Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. cost function n IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 2, NO. 4, DECEMBER 2016 507 A Decenralized Second-Order Mehod wih Exac Linear Convergence Rae for Consensus Opimizaion Aryan Mokhari,

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Ordinary differential equations. Phys 750 Lecture 7

Ordinary differential equations. Phys 750 Lecture 7 Ordinary differenial equaions Phys 750 Lecure 7 Ordinary Differenial Equaions Mos physical laws are expressed as differenial equaions These come in hree flavours: iniial-value problems boundary-value problems

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages,

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages, Opimal Conrol Formulaion Opimal Conrol Lecures 19-2: Direc Soluion Mehods Benoî Chachua Deparmen of Chemical Engineering Spring 29 We are concerned wih numerical soluion procedures for

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

FINM 6900 Finance Theory

FINM 6900 Finance Theory FINM 6900 Finance Theory Universiy of Queensland Lecure Noe 4 The Lucas Model 1. Inroducion In his lecure we consider a simple endowmen economy in which an unspecified number of raional invesors rade asses

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Scheduling of Crude Oil Movements at Refinery Front-end

Scheduling of Crude Oil Movements at Refinery Front-end Scheduling of Crude Oil Movemens a Refinery Fron-end Ramkumar Karuppiah and Ignacio Grossmann Carnegie Mellon Universiy ExxonMobil Case Sudy: Dr. Kevin Furman Enerprise-wide Opimizaion Projec March 15,

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Technical Report Doc ID: TR March-2013 (Last revision: 23-February-2016) On formulating quadratic functions in optimization models.

Technical Report Doc ID: TR March-2013 (Last revision: 23-February-2016) On formulating quadratic functions in optimization models. Technical Repor Doc ID: TR--203 06-March-203 (Las revision: 23-Februar-206) On formulaing quadraic funcions in opimizaion models. Auhor: Erling D. Andersen Convex quadraic consrains quie frequenl appear

More information

A universal ordinary differential equation

A universal ordinary differential equation 1 / 10 A universal ordinary differenial equaion Olivier Bournez 1, Amaury Pouly 2 1 LIX, École Polyechnique, France 2 Max Planck Insiue for Sofware Sysems, Germany 12 july 2017 2 / 10 Universal differenial

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Network Newton Distributed Optimization Methods

Network Newton Distributed Optimization Methods Nework Newon Disribued Opimizaion Mehods Aryan Mokhari, Qing Ling, and Alejandro Ribeiro Absrac We sudy he problem of minimizing a sum of convex objecive funcions where he componens of he objecive are

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

Global Convergence of Online Limited Memory BFGS

Global Convergence of Online Limited Memory BFGS Journal of Machine Learning Research 16 (2015 3151-3181 Submied 9/14; Revised 7/15; Published 12/15 Global Convergence of Online Limied Memory BFGS Aryan Mokhari Alejandro Ribeiro Deparmen of Elecrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Slide03 Historical Overview Haykin Chapter 3 (Chap 1, 3, 3rd Ed): Single-Layer Perceptrons Multiple Faces of a Single Neuron Part I: Adaptive Filter

Slide03 Historical Overview Haykin Chapter 3 (Chap 1, 3, 3rd Ed): Single-Layer Perceptrons Multiple Faces of a Single Neuron Part I: Adaptive Filter Slide3 Haykin Chaper 3 (Chap, 3, 3rd Ed): Single-Layer Perceprons CPSC 636-6 Insrucor: Yoonsuck Choe Hisorical Overview McCulloch and Pis (943): neural neworks as compuing machines. Hebb (949): posulaed

More information

Optimal Path Planning for Flexible Redundant Robot Manipulators

Optimal Path Planning for Flexible Redundant Robot Manipulators 25 WSEAS In. Conf. on DYNAMICAL SYSEMS and CONROL, Venice, Ialy, November 2-4, 25 (pp363-368) Opimal Pah Planning for Flexible Redundan Robo Manipulaors H. HOMAEI, M. KESHMIRI Deparmen of Mechanical Engineering

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Y. Xiang, Learning Bayesian Networks 1

Y. Xiang, Learning Bayesian Networks 1 Learning Bayesian Neworks Objecives Acquisiion of BNs Technical conex of BN learning Crierion of sound srucure learning BN srucure learning in 2 seps BN CPT esimaion Reference R.E. Neapolian: Learning

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information