Optima and Equilibria for Traffic Flow on a Network

Size: px
Start display at page:

Download "Optima and Equilibria for Traffic Flow on a Network"

Transcription

1 Opima and Equilibria for Traffic Flow on a Nework Albero Bressan Deparmen of Mahemaics, Penn Sae Universiy bressan@mah.psu.edu Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 1 / 1

2 A Traffic Flow Problem Car drivers saring from a locaion A (a residenial neighborhood) need o reach a desinaion B (a working place) a a given ime T. There is a cos ϕ(τ d ) for deparing early and a cos ψ(τ a ) for arriving lae. ϕ() ψ() T A B Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 2 / 1

3 Elemenary soluion L = lengh of he road, v = speed of cars τ a = τ d + L v Opimal deparure ime: τ op d = argmin { ( ϕ() + ψ + L ) }. v If everyone depars exacly a he same opimal ime, a raffic jam is creaed and his sraegy is no opimal anymore. Speed of cars depends on raffic densiy! Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 3 / 1

4 An opimizaion problem for raffic flow Given deparure cos ϕ() and arrival cos ψ(), choose a deparure rae ū() so ha he soluion of he conservaion law ρ + [ρ v(ρ)] x = 0 x [0, L] ρ(, 0)v(ρ(, 0)) = ū() minimizes he sum of he coss o all drivers arrival rae u(,l) deparure rae _ u(,0) = u() 0 ρ L flux u = ρv( ) Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 4 / 1

5 Mahemaical formulaion u(, x). = ρ(, x) v(ρ(, x)) = flux of cars Minimize oal cos: J(ū). = ϕ() u(, 0) d + ψ() u(, L) d for a soluion o ρ + [ρ v(ρ)] x = 0 x [0, L] ρ(, 0)v(ρ(, 0)) = ū() Choose he opimal deparure rae ū(), subjec o he consrain ū() 0, ū() d = κ = [oal number of drivers] Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 5 / 1

6 Exisence of a globally opimal soluion (A1) The flux funcion ρ f (ρ) = ρ v(ρ) is sricly concave down. f (0) = f (ρ max) = 0, f < 0. (A2) The cos funcions ϕ, ψ saisfy ϕ < 0, ψ, ψ 0, ( ) lim ϕ() = +, lim ϕ() + ψ() + = + Theorem (A.B. and K. Han, SIAM J. Mah. Anal., 2012). Le (A1)-(A2) hold. Then, for any κ > 0, here exiss a unique admissible iniial daa ū minimizing he oal cos J( ). Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 6 / 1

7 Characerizaion of he globally opimal soluion If ρ = ρ(, x) is he densiy in a globally opimal soluion, hen here exiss a consan C such ha, for any characerisic line = (x) ϕ((0)) + ψ((l)) = C if (0) Supp(ū) ϕ((0)) + ψ((l)) C if (0) / Supp(ū) =(x) arrival rae u(,l) deparure rae _ u(,0) = u() 0 flux u = ρv( ρ) L x Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 7 / 1

8 An Example Cos funcions: ϕ() =, ψ() = { 0, if 0 2, if > 0 L = 1, u = ρ(2 ρ), M = 1, κ = Bang-bang soluion Pareo opimal soluion L=1 x L=1 x τ 0 0 τ 1 τ 0 0 τ 1 τ 0 = , τ 1 = oal cos = τ 0 = , τ 1 = oal cos = Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 8 / 1

9 Does everyone pay he same cos? Cos Deparure ime Cos vs. deparure ime in a globally opimal soluion Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 9 / 1

10 The Nash equilibrium soluion A soluion u = u(, x) is a Nash equilibrium if no driver can reduce his/her own cos by choosing a differen deparure ime. This implies ha all drivers pay he same cos. To find a Nash equilibrium, inroduce he inegraed variable U(, x). = ρ(s, x) v(ρ(s, x)) ds = [number of drivers ha have crossed he poin x along he road wihin ime ] This solves a Hamilon-Jacobi equaion U x + F (U ) = 0 U(, 0) = Q() Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 10 / 1

11 Noe: a queue can form a he enrance of he highway κ Q() β U(,L) q τ ( β) a τ ( ) β Q() = number of drivers who have sared heir journey before ime (possibly joining he queue) L = lengh of he road U(, L) = number of drivers who have reached desinaion before ime Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 11 / 1

12 Characerizaion of a Nash equilibrium κ Q() β U(,L) q τ ( β) a τ ( ) β β [0, κ] = Lagrangian variable labeling one paricular driver τ q (β) = ime when driver β joins he queue τ a (β) = ime when driver β arrives a desinaion Nash equilibrium = ϕ(τ q (β)) + ψ(τ a (β)) = c Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 12 / 1

13 Exisence and Uniqueness of Nash equilibrium Theorem (A.B. - K. Han). Le he flux f and cos funcions ϕ, ψ saisfy he assumpions (A1)-(A2). Then, for every κ > 0, he Hamilon-Jacobi equaion U x + F (U ) = 0 admis a unique Nash equilibrium soluion wih oal mass κ Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 13 / 1

14 Skech of he proof 1. For a given cos c, le Q c be he se of all deparure disribuions Q( ) for which every driver has a cos c: ϕ(τ q (β)) + ψ(τ a (β)) c for a.e. β [0, Q(+ )]. { } 2. Claim: Q. () = sup Q() ; Q Q c is he iniial daa for a Nash equilibrium wih common cos c. Q () Q() Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 14 / 1

15 3. There exiss a minimum cos c 0 such ha κ(c) = 0 for c c 0. The map c κ(c) is sricly increasing and coninuous from [c 0, + [ o [0, + [. κ κ(c) c 0 c Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 15 / 1

16 An example of Nash equilibrium x S τ 0 S τ τ q () 0 τ τ Q() τ 1 A queue of size δ 0 forms insanly a ime τ 0 The las driver of his queue depars a τ 2, and arrives a exacly 0. The queue is depleed a ime τ 3. A shock is formed. The las driver depars a τ 1. δ 0 τ 0 τ 4 τ 1 Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 16 / 1

17 Characerizaion of he Nash equilibrium soluion If ρ = ρ(, x) is he densiy in a Nash equilibrium soluion, hen here exiss a consan C such ha, for any paricle line = τ(x) (describing a car rajecory) ϕ(τ(0)) + ψ(τ(l)) = C if τ(0) Supp(ū) ϕ(τ(0)) + ψ(τ(l)) C if τ(0) / Supp(ū) arrival rae u(,l) deparure _ rae u(,0) = u() (joining he queue) = τ(x) τ(0) 0 flux u = ρv( ρ) L x Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 17 / 1

18 A comparison Toal cos of he Pareo opimal soluion: J op = Toal cos of he Nash equilibrium soluion: J Nash = Price of anarchy: J Nash J op Can one eliminae his inefficiency, ye allowing freedom of choice o each driver? (goal of non-cooperaive game heory: devise incenives) Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 18 / 1

19 Opimal pricing Suppose a fee b() is colleced a a oll booh a he enrance of he highway, depending on he deparure ime. New deparure cos: ϕ() = ϕ() + b() Is here an opimal choice of b()? Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 19 / 1

20 Cos cos = p (τ d ) Deparure ime p() = cos o a driver saring a ime, in a globally opimal soluion Choose addiional fee: b() = p max p()+ consan = Nash equilibrium coincides wih he globally opimal soluion ϕ ϕ ~ = ϕ + b ψ 0 Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 20 / 1

21 Traffic Flow on a Nework Nodes: A 1,..., A m arcs: γ ij n groups of drivers wih differen origins and desinaions, and differen coss A i γ ji γ ij A j Γ Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 21 / 1

22 Traffic Flow on a Nework Drivers in he k-h group depar from A d(k) and arrive o A a(k) Deparure cos: ϕ k () arrival cos: ψ k () ( ) (A2) ϕ < 0, ψ k > 0, lim ϕ() + ψ() = A d(k) Aa(k) Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 22 / 1

23 Traffic Flow on a Nework A a(2) A d(2) drivers can use differen pahs Γ 1, Γ 2,... o reach desinaion Does here exis a globally opimal soluion, and a Nash equilibrium soluion for raffic flow on a nework? Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 23 / 1

24 Admissible deparure raes G k = oal number of drivers in he k-h group, k = 1,..., n Γ p = viable pah (concaenaion of viable arcs γ ij ), p = 1,..., N ū k,p () = deparure rae of k-drivers raveling along he pah Γ p The se of deparure raes {ū k,p } is admissible if ū k,p () 0, p ū k,p () d = G k k = 1,..., n τ p (). = arrival ime for a driver saring a ime, raveling along Γ p (depends on he overall raffic condiions) Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 24 / 1

25 Global opima and Nash equilibria on neworks An admissible family {ū k,p } of deparure raes is globally opimal if i minimizes he sum of he oal coss of all drivers. J(ū) = ( ϕ k () + ψ k (τ p ())) ū k,p () d k,p An admissible family {ū k,p } of deparure raes is a Nash equilibrium soluion if no driver of any group can lower his own oal cos by changing deparure ime or swiching o a differen pah o reach desinaion. Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 25 / 1

26 Exisence resuls Theorem (A.B. - Ke Han, Neworks & Heerogeneous Media, 2013). On a general nework of roads, here exiss a leas one globally opimal soluion, and a leas one Nash equilibrium soluion. Proof: By finie dimensional approximaions + opological mehods No uniqueness, in general Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 26 / 1

27 Finie dimensional approximaions Fix a ime sep > 0 Consider piecewise consan deparure raes u = (u k,p ), wih bounded suppor Solving a variaional inequaliy on a compac finie dimensional se K, we obain a Galerkin approximaion o a Nash equilibrium u k,p Φ () = ϕ () + ψ (τ ) k,p k k p () u k,p Φ () = ϕ k,p () + k ψ (τ p() ) k m l Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 27 / 1

28 Exisence of a Nash equilibrium on a nework Leing he discreizaion sep 0, aking subsequences: deparure raes: ū ν k,p ( ) ū k,p( ) weakly, in L (R) arrival imes: τ ν p ( ) τ p ( ) uniformly The deparure raes ū k,p ( ) provide a Nash equilibrium Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 28 / 1

29 Sabiliy of Nash equilibrium? To jusify he pracical relevance of a Nash equilibrium, we need o analyze a suiable dynamic model check wheher he rae of deparures asympoically converges o he Nash equilibrium Assume: drivers can change heir deparure ime on a day-o-day basis, in order o decrease heir own cos (one group of drivers, one single road) Inroduce an addiional variable θ couning he number of days on he calendar.. ū(, θ) = rae of deparures a ime, on day θ]. Φ(, θ) = [cos o a driver saring a ime, on day θ] Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 29 / 1

30 A conservaion law wih non-local flux Model 1: drivers gradually change heir deparure ime, drifing oward imes where he cos is smaller. If he rae of change is proporional o he gradien of he cos, his leads o he conservaion law ū θ + [Φ ū] = 0 Φ() u _ Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 30 / 1

31 An inegral evoluion equaion Model 2: drivers jump o differen deparure imes having a lower cos. If he rae of change is proporional o he difference beween he coss, his yields d [ ] [ ] dθ ū() = ū(s) Φ(s) Φ() ds ū() Φ() Φ(τ) dτ + + Φ _ u τ s Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 31 / 1

32 Numerical experimens (Wen Shen, 2011) Quesion: as θ, does he deparure rae u(, θ) approach he unique Nash equilibrium? Flux funcion: f (ρ) = ρ (2 ρ) v(ρ) = 2 ρ Road lengh: L = 2 Deparure and arrival coss: ϕ() =, ψ() = e Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 32 / 1

33 x L y() 0 z() main difficuly: non-local dependence linearized equaion: d [ ( )] dθ Y () = α() β()y () Y (z()) Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 33 / 1

Variational Formulation of the LWR PDE. Anthony D. Patire

Variational Formulation of the LWR PDE. Anthony D. Patire Variaional Formulaion of he LWR PDE Anhony D. Paire Wha swrong wih hese people? Wha I did: x ISolved ρ + Q ( ρ ) = 0 for hree cases 1. Traffic signal 2. Sinusoidal iniial condiion 3. Acual daa using Daganzo

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Conservation laws and some applications to traffic flows

Conservation laws and some applications to traffic flows Conservation laws and some applications to traffic flows Khai T. Nguyen Department of Mathematics, Penn State University ktn2@psu.edu 46th Annual John H. Barrett Memorial Lectures May 16 18, 2016 Khai

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Lecure 9: Advanced DFT conceps: The Exchange-correlaion funcional and ime-dependen DFT Marie Curie Tuorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dep. of Chemisry and Couran Insiue

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP Coninuous Linear Programming. Separaed Coninuous Linear Programming Bellman (1953) max c () u() d H () u () + Gsusds (,) () a () u (), < < CLP (Danzig, yndall, Grinold, Perold, Ansreicher 6's-8's) Anderson

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Intersection Models and Nash Equilibria for Traffic Flow on Networks

Intersection Models and Nash Equilibria for Traffic Flow on Networks Intersection Models and Nash Equilibria for Traffic Flow on Networks Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu (Los Angeles, November 2015) Alberto Bressan (Penn

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Appendix to Creating Work Breaks From Available Idleness

Appendix to Creating Work Breaks From Available Idleness Appendix o Creaing Work Breaks From Available Idleness Xu Sun and Ward Whi Deparmen of Indusrial Engineering and Operaions Research, Columbia Universiy, New York, NY, 127; {xs2235,ww24}@columbia.edu Sepember

More information

Optimizing heat exchangers

Optimizing heat exchangers Opimizing hea echangers Jean-Luc Thiffeaul Deparmen of Mahemaics, Universiy of Wisconsin Madison, 48 Lincoln Dr., Madison, WI 5376, USA wih: Florence Marcoe, Charles R. Doering, William R. Young (Daed:

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

HOTELLING LOCATION MODEL

HOTELLING LOCATION MODEL HOTELLING LOCATION MODEL THE LINEAR CITY MODEL The Example of Choosing only Locaion wihou Price Compeiion Le a be he locaion of rm and b is he locaion of rm. Assume he linear ransporaion cos equal o d,

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Lack of BV Bounds for Approximate Solutions to the p-system with Large Data

Lack of BV Bounds for Approximate Solutions to the p-system with Large Data Lack of BV Bounds for Approimae Soluions o he p-sysem wih Large Daa Albero Bressan (, Geng Chen (, and Qingian Zhang ( (* Deparmen of Mahemaics, Penn Sae Universiy Universiy Park, Pa. 680, U.S.A. (** School

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Lars Nesheim. 17 January Last lecture solved the consumer choice problem.

Lars Nesheim. 17 January Last lecture solved the consumer choice problem. Lecure 4 Locaional Equilibrium Coninued Lars Nesheim 17 January 28 1 Inroducory remarks Las lecure solved he consumer choice problem. Compued condiional demand funcions: C (I x; p; r (x)) and x; p; r (x))

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Problem Set #3: AK models

Problem Set #3: AK models Universiy of Warwick EC9A2 Advanced Macroeconomic Analysis Problem Se #3: AK models Jorge F. Chavez December 3, 2012 Problem 1 Consider a compeiive economy, in which he level of echnology, which is exernal

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

Key words: EOQ, Deterioration, Stock dependent demand pattern

Key words: EOQ, Deterioration, Stock dependent demand pattern An Invenory Model Wih Sock Dependen Demand, Weibull Disribuion Deerioraion R. Babu Krishnaraj Research Scholar, Kongunadu Ars & Science ollege, oimbaore 64 9. amilnadu, INDIA. & K. Ramasamy Deparmen of

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c John Riley December 00 S O EVEN NUMBERED EXERCISES IN CHAPER 6 SECION 6: LIFE CYCLE CONSUMPION AND WEALH Eercise 6-: Opimal saving wih more han one commodiy A consumer has a period uiliy funcion δ u (

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

Intermediate Differential Equations Review and Basic Ideas

Intermediate Differential Equations Review and Basic Ideas Inermediae Differenial Equaions Review and Basic Ideas John A. Burns Cener for Opimal Design And Conrol Inerdisciplinary Cener forappliedmahemaics Virginia Polyechnic Insiue and Sae Universiy Blacksburg,

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Energy Storage Benchmark Problems

Energy Storage Benchmark Problems Energy Sorage Benchmark Problems Daniel F. Salas 1,3, Warren B. Powell 2,3 1 Deparmen of Chemical & Biological Engineering 2 Deparmen of Operaions Research & Financial Engineering 3 Princeon Laboraory

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Competitive and Cooperative Inventory Policies in a Two-Stage Supply-Chain

Competitive and Cooperative Inventory Policies in a Two-Stage Supply-Chain Compeiive and Cooperaive Invenory Policies in a Two-Sage Supply-Chain (G. P. Cachon and P. H. Zipkin) Presened by Shruivandana Sharma IOE 64, Supply Chain Managemen, Winer 2009 Universiy of Michigan, Ann

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Basic definitions and relations

Basic definitions and relations Basic definiions and relaions Lecurer: Dmiri A. Molchanov E-mail: molchan@cs.u.fi hp://www.cs.u.fi/kurssi/tlt-2716/ Kendall s noaion for queuing sysems: Arrival processes; Service ime disribuions; Examples.

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Fall 200 Dep. of Chemical and Biological Engineering Korea Universiy CHE302 Process Dynamics and Conrol Korea Universiy

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Optimal Consumption and Investment Portfolio in Jump markets. Optimal Consumption and Portfolio of Investment in a Financial Market with Jumps

Optimal Consumption and Investment Portfolio in Jump markets. Optimal Consumption and Portfolio of Investment in a Financial Market with Jumps Opimal Consumpion and Invesmen Porfolio in Jump markes Opimal Consumpion and Porfolio of Invesmen in a Financial Marke wih Jumps Gan Jin Lingnan (Universiy) College, China Insiue of Economic ransformaion

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Solutions for Assignment 2

Solutions for Assignment 2 Faculy of rs and Science Universiy of Torono CSC 358 - Inroducion o Compuer Neworks, Winer 218 Soluions for ssignmen 2 Quesion 1 (2 Poins): Go-ack n RQ In his quesion, we review how Go-ack n RQ can be

More information

Optimal Path Planning for Flexible Redundant Robot Manipulators

Optimal Path Planning for Flexible Redundant Robot Manipulators 25 WSEAS In. Conf. on DYNAMICAL SYSEMS and CONROL, Venice, Ialy, November 2-4, 25 (pp363-368) Opimal Pah Planning for Flexible Redundan Robo Manipulaors H. HOMAEI, M. KESHMIRI Deparmen of Mechanical Engineering

More information

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball A Noe on Superlinear Ambrosei-Prodi Type Problem in a Ball by P. N. Srikanh 1, Sanjiban Sanra 2 Absrac Using a careful analysis of he Morse Indices of he soluions obained by using he Mounain Pass Theorem

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

Stable approximations of optimal filters

Stable approximations of optimal filters Sable approximaions of opimal filers Joaquin Miguez Deparmen of Signal Theory & Communicaions, Universidad Carlos III de Madrid. E-mail: joaquin.miguez@uc3m.es Join work wih Dan Crisan (Imperial College

More information

Logistic growth rate. Fencing a pen. Notes. Notes. Notes. Optimization: finding the biggest/smallest/highest/lowest, etc.

Logistic growth rate. Fencing a pen. Notes. Notes. Notes. Optimization: finding the biggest/smallest/highest/lowest, etc. Opimizaion: finding he bigges/smalles/highes/lowes, ec. Los of non-sandard problems! Logisic growh rae 7.1 Simple biological opimizaion problems Small populaions AND large populaions grow slowly N: densiy

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Math 4600: Homework 11 Solutions

Math 4600: Homework 11 Solutions Mah 46: Homework Soluions Gregory Handy [.] One of he well-known phenomenological (capuring he phenomena, bu no necessarily he mechanisms) models of cancer is represened by Gomperz equaion dn d = bn ln(n/k)

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages,

1 Subdivide the optimization horizon [t 0,t f ] into n s 1 control stages, Opimal Conrol Formulaion Opimal Conrol Lecures 19-2: Direc Soluion Mehods Benoî Chachua Deparmen of Chemical Engineering Spring 29 We are concerned wih numerical soluion procedures for

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Homogenization of random Hamilton Jacobi Bellman Equations

Homogenization of random Hamilton Jacobi Bellman Equations Probabiliy, Geomery and Inegrable Sysems MSRI Publicaions Volume 55, 28 Homogenizaion of random Hamilon Jacobi Bellman Equaions S. R. SRINIVASA VARADHAN ABSTRACT. We consider nonlinear parabolic equaions

More information

Average Number of Lattice Points in a Disk

Average Number of Lattice Points in a Disk Average Number of Laice Poins in a Disk Sujay Jayakar Rober S. Sricharz Absrac The difference beween he number of laice poins in a disk of radius /π and he area of he disk /4π is equal o he error in he

More information

A Hop Constrained Min-Sum Arborescence with Outage Costs

A Hop Constrained Min-Sum Arborescence with Outage Costs A Hop Consrained Min-Sum Arborescence wih Ouage Coss Rakesh Kawara Minnesoa Sae Universiy, Mankao, MN 56001 Email: Kawara@mnsu.edu Absrac The hop consrained min-sum arborescence wih ouage coss problem

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Feedback design using nonsmooth control Lyapunov functions: A numerical case study for the nonholonomic integrator

Feedback design using nonsmooth control Lyapunov functions: A numerical case study for the nonholonomic integrator Feedback design using nonsmooh conrol Lyapunov funcions: A numerical case sudy for he nonholonomic inegraor Philipp Braun,2, Lars Grüne, Chrisopher M. Kelle 2 Absrac Theoreical resuls for he exisence of

More information

A remark on the H -calculus

A remark on the H -calculus A remark on he H -calculus Nigel J. Kalon Absrac If A, B are secorial operaors on a Hilber space wih he same domain range, if Ax Bx A 1 x B 1 x, hen i is a resul of Auscher, McInosh Nahmod ha if A has

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation:

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation: ACTA UNIVERSITATIS APULENSIS No 11/2006 Proceedings of he Inernaional Conference on Theory and Applicaion of Mahemaics and Informaics ICTAMI 2005 - Alba Iulia, Romania THE ASYMPTOTIC EQUIVALENCE OF THE

More information

Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues

Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues Alberto Bressan and Khai T Nguyen Department of Mathematics, Penn State University University Park, PA 16802, USA e-mails:

More information

Problem set 3: Endogenous Innovation - Solutions

Problem set 3: Endogenous Innovation - Solutions Problem se 3: Endogenous Innovaion - Soluions Loïc Baé Ocober 25, 22 Opimaliy in he R & D based endogenous growh model Imporan feaure of his model: he monopoly markup is exogenous, so ha here is no need

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information