Relationship Between Pollination Behavior of Invasive Honeybees and Native Bumblebees

Size: px
Start display at page:

Download "Relationship Between Pollination Behavior of Invasive Honeybees and Native Bumblebees"

Transcription

1 Relatinship Between Pllinatin Behavir f Invasive Hneybees and Native Bumblebees Carlyn Silverman Barnard Cllege, Clumbia University 7 Ec-Infrmatics Summer Institute HJ Andrews Experimental Frest Oregn State University

2 Mtivatin Plant-pllinatr netwrks: traditinally bipartite Ignres pssible relatinships within each grup Why d we care? Invasive hneybees may impact native bees Chice f Pllinatrs: Apis mellifera 0 species f Bmbus Ttal recrded interactins: 22.8% Apis and 9.6% Bmbus Generalist pllinatrs 2

3 Definitins/Ntatin mwy := meadw-watch-year (78 ttal) f := a single flwer species invlved in >9 scial bee interactins in a mwy A f := # f Apis interactins with f B f := # f Bmbus interactins with f Pssible classes fr each f interactin: Class E (Equal) := apprximately : A f t B f Class A (Apis) := at least 2: A f t B f Class B (Bmbus) := at least 2: B f t A f Observed Class and Andy Class 3

4 Questin : Hw are bserved classes related t Andy s expected classes? 4

5 Andy Class (based n flwer traits) is Related t Observed Class Observed Class Andy Class E A B Ttal E A B Ttal Pearsn s chi-squared test: X-squared = 40.4, df = 4, p-value < 2.2e-6 Prprtins by rw: Observed Class Andy Class E A B E A B

6 Questin 2: Hw d flwer traits and envirnmental factrs relate t Apis/Bmbus partitining f interactins? 6

7 Mdeling Apprach: Decisin Trees Class E Class 2 A Class 3 B % yes ExclusinVisibility = bright n % ExclusinTubePlantCde =,0,2,3,6, % ExclusinTubePlantCde =,0,3,6, % ExclusinTubePlantCde = 0,3,6, % % Bim.flwr >= 7 Bim.flwr < % Bim.flwr < % % % % % % % % Decisin tree fr Andy Class based n flwer traits 7

8 Methd AdaBst: An ensemble methd fr classificatin Linear Cmbinatin f weighted trees Outputs relative imprtance f each variable Fit 3 mdels using AdaBst t predict the bserved and Andy class 5 decisin trees per mdel Estimate misclassificatin rate thrugh crss-validatin Plt imprtance value f each predictr (nrmalized t sum t 00) 8

9 Observed Class Related t Envirnmental Cvariates Mdel Predictrs: Abund := #stalks * #flws/stalk ApisPrp := Prprtin f Apis t all scial bees in the mwy Day = day f year Andy Class Predictin Errr: 47.2% Observed Class Predictin Errr: 22.4% 9

10 Observed Class and Andy Class bth Related t Flwer Traits Mdel 2 Predictrs: Bim.flwr = bimass per flwer Tube = cde indicating tube length and extent f exclusivity (0 levels) Visibility = bright r red/dark Bim.flwr Funct Exclusin Flwer Frm Funct Exclusin Bim.flwr Flwer Frm Andy Class Predictin Errr:.3% Observed Class Predictin Errr: 20.8% 0

11 Observed Class Best Explained by Bth Envirnmental Cvariates and Traits Mdel 3 Predictrs: Day, Abund, ApisPrp, Bim.flwr, Tube, Visibility Funct Exclusin Bim.flwr Abund Day ApisPrp Flwer Frm Andy Class Predictin Errr: 3.3% Observed Class Predictin Errr: 4.9%

12 Findings & Interpretatin Apis and Bmbus (generalist pllinatrs) rarely interact equally with a flwer species in a given mwy Avidance? Cmpetitin? Flwer Preference? Andy Class predicted very well by 3 flwer traits Implies crrelatin between traits Envirnmental cvariates and flwer traits bth play a rle in the partitining f interactins Significant relatinship between pllinatr presence and the pllinatin activity f ther species 2

13 Thank Yu: Julia Jnes Rebecca Hutchinsn Andy Mldenke Kate Jnes EISI Participants 3

14 AdaBst: An Ensemble Methd fr Classificatin AdaBst = Adaptive Bsting Linear cmbinatin f weighted weak learners create a strng classifier Mdel utputs relative imprtance f each variable based n weight and Gini Index Gini Index = degree f inequality f predictrs fr each weak classifier Figure: Paul Vila 4

Plant Science Course Outcome Summary Chippewa Valley Technical College

Plant Science Course Outcome Summary Chippewa Valley Technical College Curse Number 006-160 Credits 3 Cntact Hurs 64 Develpers Flint Thmpsn Plant Science Curse Outcme Summary Chippewa Valley Technical Cllege Infrmatin Types f Instructin Type f Instructin Cntact Hurs Outside

More information

Bee Safety of Neonicotinoids - Evidence from Studies Conducted Under Realistic Field Conditions

Bee Safety of Neonicotinoids - Evidence from Studies Conducted Under Realistic Field Conditions Bee Safety f Nenictinids - Evidence frm Studies Cnducted Under Realistic Field Cnditins Dr. Christian Maus Glbal Pllinatr Safety Manager Bayer AG Intrductin Nenictinid insecticides are used as seed treatment

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Explore Pollination. Cups Scissors Computers or tablets with internet access Poster board & markers

Explore Pollination. Cups Scissors Computers or tablets with internet access Poster board & markers Lessn Plan fr Grades: Middle Schl Length f Lessn: 90 minutes Authred by: UT Envirnmental Science Institute Date created: 05/10/2017 Subject area/curse: Science Materials: Pipe cleaners Tissue Paper Tape

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Chapter 15 & 16: Random Forests & Ensemble Learning

Chapter 15 & 16: Random Forests & Ensemble Learning Chapter 15 & 16: Randm Frests & Ensemble Learning DD3364 Nvember 27, 2012 Ty Prblem fr Bsted Tree Bsted Tree Example Estimate this functin with a sum f trees with 9-terminal ndes by minimizing the sum

More information

Eric Klein and Ning Sa

Eric Klein and Ning Sa Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Coalition Formation and Data Envelopment Analysis

Coalition Formation and Data Envelopment Analysis Jurnal f CENTRU Cathedra Vlume 4, Issue 2, 20 26-223 JCC Jurnal f CENTRU Cathedra Calitin Frmatin and Data Envelpment Analysis Rlf Färe Oregn State University, Crvallis, OR, USA Shawna Grsspf Oregn State

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

IB Sports, Exercise and Health Science Summer Assignment. Mrs. Christina Doyle Seneca Valley High School

IB Sports, Exercise and Health Science Summer Assignment. Mrs. Christina Doyle Seneca Valley High School IB Sprts, Exercise and Health Science Summer Assignment Mrs. Christina Dyle Seneca Valley High Schl Welcme t IB Sprts, Exercise and Health Science! This curse incrprates the traditinal disciplines f anatmy

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

Systems and Modeling Introduction

Systems and Modeling Introduction Systems and Mdeling Intrductin What is a system? System: A cllectin f intercnnected parts that functin as a cmplex whle, thrugh which matter cycles and energy flws. System Characteristics Systems are made

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through

Getting Involved O. Responsibilities of a Member. People Are Depending On You. Participation Is Important. Think It Through f Getting Invlved O Literature Circles can be fun. It is exciting t be part f a grup that shares smething. S get invlved, read, think, and talk abut bks! Respnsibilities f a Member Remember a Literature

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Sample questions to support inquiry with students:

Sample questions to support inquiry with students: Area f Learning: Mathematics Calculus 12 Big Ideas Elabratins The cncept f a limit is fundatinal t calculus. cncept f a limit: Differentiatin and integratin are defined using limits. Sample questins t

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Principles of Carbonate Reservoirs

Principles of Carbonate Reservoirs Online In-Service Training and Supprt Prgram Hands-n technical presentatins and exercises, tls, techniques, wrkflws, vide recrdings, and case studies Principles f Carbnate Reservirs Understand the micr

More information

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION Instructins: If asked t label the axes please use real wrld (cntextual) labels Multiple Chice Answers: 0 questins x 1.5 = 30 Pints ttal Questin Answer Number 1

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB.

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB. Intelligent Pharma- Chemical and Oil & Gas Divisin Page 1 f 7 Intelligent Pharma Chemical and Oil & Gas Divisin Glbal Business Centre. 120 8 Ave SE, Calgary, AB T2G 0K6, AB. Canada Dr. Edelsys Cdrniu-Business

More information

Population dynamics of Apis mellifera -

Population dynamics of Apis mellifera - Population dynamics of Apis mellifera - an application of N-Mixture Models Adam Schneider State University of New York at Geneseo Eco-Informatics Summer Institute 2016 Apis mellifera 2015 Lookout Outcrop

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

Unit 8 ~ Learning Guide

Unit 8 ~ Learning Guide Unit 8 ~ Learning Guide Name: INSTRUCTIONS Cmplete the fllwing ntes and questins as yu wrk thrugh the related lessns. Yu are required t have this package cmpleted BEFORE yu write yur unit test. D yur best

More information

Area of Learning: Mathematics Pre-calculus 12

Area of Learning: Mathematics Pre-calculus 12 Area f Learning: Mathematics Pre-calculus 12 Big Ideas Elabratins Using inverses is the fundatin f slving equatins and can be extended t relatinships between functins. Understanding the characteristics

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Churn Prediction using Dynamic RFM-Augmented node2vec

Churn Prediction using Dynamic RFM-Augmented node2vec Churn Predictin using Dynamic RFM-Augmented nde2vec Sandra Mitrvić, Jchen de Weerdt, Bart Baesens & Wilfried Lemahieu Department f Decisin Sciences and Infrmatin Management, KU Leuven 18 September 2017,

More information

5 th Grade Goal Sheet

5 th Grade Goal Sheet 5 th Grade Gal Sheet Week f Nvember 19 th, 2018 Upcming dates: 11/19 Franklin Institute Field Trip: Pack a Lunch 11/22 and 11/23 Schl Clsed fr the Thanksgiving Break. Frm Ms. Simmns: Dear 5 th Grade Students,

More information

Statistical Learning. 2.1 What Is Statistical Learning?

Statistical Learning. 2.1 What Is Statistical Learning? 2 Statistical Learning 2.1 What Is Statistical Learning? In rder t mtivate ur study f statistical learning, we begin with a simple example. Suppse that we are statistical cnsultants hired by a client t

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Science 9 Unit 2: Atoms, Elements and Compounds

Science 9 Unit 2: Atoms, Elements and Compounds Science 9 Unit 2: Atms, Elements and Cmpunds demnstrate a knwledge f WHMIS standards by using prper techniques fr handling and dispsing f lab materials (209-7) cmpare earlier cnceptins f the structure

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

Paul A. Murtaugh NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No July 25, 2001

Paul A. Murtaugh NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No July 25, 2001 Jurnal Quality, Effect Size and Publicatin Bias in Meta-analysis Paul A. Murtaugh NRCSE T e c h n i c a l R e p r t S e r i e s NRCSE-TRS N. 068 July 25, 2001 The NRCSE was established in 1997 thrugh a

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Ch. 8: Multicategory Logit Models

Ch. 8: Multicategory Logit Models _ 8 # 4 Chapter 8: Mlticategry Lgit Mdels 1 Ch. 8: Mlticategry Lgit Mdels Sppse respnse is nminal, bt has categries (cntrast with lgistic regressin, where has categries). This chapter examines extensins

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Snow avalanche runout from two Canadian mountain ranges

Snow avalanche runout from two Canadian mountain ranges Annals f Glacilgy 18 1993 Internati n al Glaciigicai Sciety Snw avalanche runut frm tw Canadian muntain ranges D.J. NIXON AND D. M. MCCLUNG Department f Civil Engineering, University f British Clumbia,

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

AEC 874 (2007) Field Data Collection & Analysis in Developing Countries. VII. Data Analysis & Project Documentation

AEC 874 (2007) Field Data Collection & Analysis in Developing Countries. VII. Data Analysis & Project Documentation AEC 874 (2007) Field Data Cllectin & Analysis in Develping Cuntries VII. Data Analysis & Prject Dcumentatin Richard H. Bernsten Agricultural Ecnmics Michigan State University 1 A. Things t Cnsider in Planning

More information

Area of Learning: Mathematics Pre-calculus 11. Algebra allows us to generalize relationships through abstract thinking.

Area of Learning: Mathematics Pre-calculus 11. Algebra allows us to generalize relationships through abstract thinking. Area f Learning: Mathematics Pre-calculus 11 Big Ideas Elabratins Algebra allws us t generalize relatinships thrugh abstract thinking. generalize: The meanings f, and cnnectins between, peratins extend

More information

MAE 298, Lecture 12 May 11, More network measures and modeling

MAE 298, Lecture 12 May 11, More network measures and modeling MAE 298, Lecture 12 May 11, 2006 Mre netwrk measures and mdeling Basic netwrk metrics Number f vertices and edges Average degree Degree distributin Clustering cefficient Spectral gap Mre basic measures

More information

Bayesian nonparametric modeling approaches for quantile regression

Bayesian nonparametric modeling approaches for quantile regression Bayesian nnparametric mdeling appraches fr quantile regressin Athanasis Kttas Department f Applied Mathematics and Statistics University f Califrnia, Santa Cruz Department f Statistics Athens University

More information

OKCPS- Biology I Oklahoma Academic Standards and PASS (2011) Correlation!"#$-!"

OKCPS- Biology I Oklahoma Academic Standards and PASS (2011) Correlation!#$-! This tl serves t help us analyze the gaps in ur curriculum as we mve t the new standards. The Bilgy I ideal percentage f items aids in the vertical alignment t infrm pacing that allws ur students t gain

More information

Prediction of Monsoon Rainfall Using Large Scale Climate Signals: A Case Study

Prediction of Monsoon Rainfall Using Large Scale Climate Signals: A Case Study Wrld Envirnmental and Water Resurces Cngress 2007: Restring Our Natural Habitat Predictin f Mnsn Rainfall Using Large Scale Climate Signals: A Case Study 1 Mhammad Karamuz, Prfessr, Schl f Civil Engineering,

More information

Group Analysis: Hands-On

Group Analysis: Hands-On Grup Analysis: Hands-On Gang Chen SSCC/NIMH/NIH/HHS 3/19/16 1 Make sure yu have the files!! Under directry grup_analysis_hands_n/! Slides: GrupAna_HO.pdf! Data: AFNI_data6/GrupAna_cases/! In case yu dn

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Data Mining with Linear Discriminants Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Tday s Lecture Objectives 1 Recgnizing the ideas f artificial neural netwrks and their

More information

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance Verificatin f Quality Parameters f a Slar Panel and Mdificatin in Frmulae f its Series Resistance Sanika Gawhane Pune-411037-India Onkar Hule Pune-411037- India Chinmy Kulkarni Pune-411037-India Ojas Pandav

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2017 Learning frm Examples Cesare Tinelli The University f Iwa Cpyright 2004 17, Cesare Tinelli and Stuart Russell a a These ntes were riginally develped by Stuart

More information

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms RU, Rand GOLOSINSKI, T.S. Early detectin f mining truck failure by mdelling its peratin with neural netwrks classificatin algrithms. Applicatin f Cmputers and Operatins Research ill the Minerals Industries,

More information

How T o Start A n Objective Evaluation O f Your Training Program

How T o Start A n Objective Evaluation O f Your Training Program J O U R N A L Hw T Start A n Objective Evaluatin O f Yur Training Prgram DONALD L. KIRKPATRICK, Ph.D. Assistant Prfessr, Industrial Management Institute University f Wiscnsin Mst training m e n agree that

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

2. Precipitation Chemistry Data

2. Precipitation Chemistry Data STIMATING TH ATMSPHRIC INT A WATRSH INPUT F PLLUTANTS PRRY J. SAMSN epartment f Atmspheric and ceanic Science, University f Michigan, Ann Arbr, All 4819-2143, U.S.A. (Received June 2, 1986; revised March

More information

Area of Learning: Mathematics Foundations of Mathematics and Pre-calculus 10

Area of Learning: Mathematics Foundations of Mathematics and Pre-calculus 10 Area f Learning: Mathematics Fundatins f Mathematics and Pre-calculus 10 Big Ideas Elabratins Algebra allws us t generalize relatinships thrugh abstract thinking. generalize: The meanings f, and cnnectins

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

English 10 Pacing Guide : Quarter 2

English 10 Pacing Guide : Quarter 2 Implementatin Ntes Embedded Standards: Standards nted as embedded n this page are t be cntinuusly spiraled thrughut the quarter. This des nt mean that nging explicit instructin n these standards is t take

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Online Model Racing based on Extreme Performance

Online Model Racing based on Extreme Performance Online Mdel Racing based n Extreme Perfrmance Tiantian Zhang, Michael Gergipuls, Gergis Anagnstpuls Electrical & Cmputer Engineering University f Central Flrida Overview Racing Algrithm Offline vs Online

More information

download instant at

download instant at dwnlad instant at wwweasysemestercm Part A: Overview and Suggestins Statistics in the Cntext f Scientific Research This chapter pens with an verview f scientific research The gal is t cnvey the pint that

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

The standards are taught in the following sequence.

The standards are taught in the following sequence. B L U E V A L L E Y D I S T R I C T C U R R I C U L U M MATHEMATICS Third Grade In grade 3, instructinal time shuld fcus n fur critical areas: (1) develping understanding f multiplicatin and divisin and

More information

EASTERN ARIZONA COLLEGE Introduction to Statistics

EASTERN ARIZONA COLLEGE Introduction to Statistics EASTERN ARIZONA COLLEGE Intrductin t Statistics Curse Design 2014-2015 Curse Infrmatin Divisin Scial Sciences Curse Number PSY 220 Title Intrductin t Statistics Credits 3 Develped by Adam Stinchcmbe Lecture/Lab

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus A Crrelatin f Suth Carlina Academic Standards fr Mathematics Precalculus INTRODUCTION This dcument demnstrates hw Precalculus (Blitzer), 4 th Editin 010, meets the indicatrs f the. Crrelatin page references

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

COMPARISON OF STATISTICAL LEARNING METHODS FOR PREDICTION IN GENOME-WIDE ASSOCIATION STUDIES

COMPARISON OF STATISTICAL LEARNING METHODS FOR PREDICTION IN GENOME-WIDE ASSOCIATION STUDIES COMPARISON OF STATISTICAL LEARNING METHODS FOR PREDICTION IN GENOME-WIDE ASSOCIATION STUDIES A f j 3 & A thesis presented t the faculty f San Francisc State University In partial fulfilment f The Requirements

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Introduction to Quantitative Genetics II: Resemblance Between Relatives

Introduction to Quantitative Genetics II: Resemblance Between Relatives Intrductin t Quantitative Genetics II: Resemblance Between Relatives Bruce Walsh 8 Nvember 006 EEB 600A The heritability f a trait, a central cncept in quantitative genetics, is the prprtin f variatin

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 1 y = 2.5 y = 0.5x 3 2 1 1 2 3 1

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Vibratins Matti Htkka Department f Physical Chemistry Åb Akademi University Harmnic scillatr V(r) Schrödinger s equatin Define q = r - r e V ( q) = 1 2 fq 2 α = f hν r e r 2 2 h d + V ( q) Ψ( q) = EΨ(

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Validation of the Life Essentials Assessment Framework questionnaire

Validation of the Life Essentials Assessment Framework questionnaire Validatin f the Life Essentials Assessment Framewrk questinnaire Findings Gianfranc Giuntli Gary Raine Anne-Marie Bagnall April 2013 Centre fr Health Prmtin Research Institute fr Health and Wellbeing Queen

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

End of Course Algebra I ~ Practice Test #2

End of Course Algebra I ~ Practice Test #2 End f Curse Algebra I ~ Practice Test #2 Name: Perid: Date: 1: Order the fllwing frm greatest t least., 3, 8.9, 8,, 9.3 A. 8, 8.9,, 9.3, 3 B., 3, 8, 8.9,, 9.3 C. 9.3, 3,,, 8.9, 8 D. 3, 9.3,,, 8.9, 8 2:

More information

The Road Closure Decision in Little Cottonwood Canyon

The Road Closure Decision in Little Cottonwood Canyon The Rad Clsure Decisin in Little Cttnwd Canyn Gail Blattenberger and llichard Fwles - University f Utah * Nvember 1, 1994 Abstract Statistical mdels f different types have been used in avalanche frecasting.

More information

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions Guide t Using the Rubric t Scre the Klf4 PREBUILD Mdel fr Science Olympiad 2010-2011 Natinal Cmpetitins These instructins are t help the event supervisr and scring judges use the rubric develped by the

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

Road map. Machine learning and its antecedents in microarray statistics. Metadata administration. QC/Preprocessing. VJ Carey

Road map. Machine learning and its antecedents in microarray statistics. Metadata administration. QC/Preprocessing. VJ Carey Rad map and its antecedents in micrarray statistics 1 1 Channing Labratry Brigham and Wmen s Hspital Bstn, MA, USA 1 Preprcessing Differential epressin 2 3 June 21 2005 / CSHL C-DATA05 Preprcessing Differential

More information

15-381/781 Bayesian Nets & Probabilistic Inference

15-381/781 Bayesian Nets & Probabilistic Inference 15-381/781 Bayesian Nets & Prbabilistic Inference Emma Brunskill (this time) Ariel Prcaccia With thanks t Dan Klein (Berkeley), Percy Liang (Stanfrd) and Past 15-381 Instructrs fr sme slide cntent, and

More information

Lecture 3: Principal Components Analysis (PCA)

Lecture 3: Principal Components Analysis (PCA) Lecture 3: Principal Cmpnents Analysis (PCA) Reading: Sectins 6.3.1, 10.1, 10.2, 10.4 STATS 202: Data mining and analysis Jnathan Taylr, 9/28 Slide credits: Sergi Bacallad 1 / 24 The bias variance decmpsitin

More information