In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

Size: px
Start display at page:

Download "In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:"

Transcription

1 In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin prblem Ma margin = Min nrm This Time 1 / 25 The SVM ptimizatin prblem 2 / 25 Last time: the ma margin eights can be cmputed by slving a cnstrained ptimizatin prblem Nn separable data The kernel trick min 2 s.t. y i ( i + 0 ) +1 fr all i Many algrithms have been prpsed t slve this. One f the earliest efficient algrithms is called SMO [Platt, 1998]. This is utside the scpe f the curse, but it des eplain the name f the SVM methd in Weka. 3 / 25 4 / 25

2 Finding the ptimum Why a slutin f this frm? If yu mve the pints nt n the marginal hyperplanes, slutin desn t change - therefre thse pints dn t matter. If yu g thrugh sme advanced maths (Lagrange multipliers, etc.), it turns ut that yu can sh smething remarkable. Optimal parameters lk like = i α i y i i Furthermre, slutin is sparse. Optimal hyperplane is determined by just a fe eamples: call these supprt vectrs ~ margin 5 / 25 6 / 25 Finding the ptimum Nn-separable training sets 5 / 18 If yu g thrugh sme advanced maths (Lagrange multipliers, etc.), it turns ut that yu can sh smething remarkable. Optimal parameters lk like = i α i y i i If data set is nt linearly separable, the ptimizatin prblem that e have given has n slutin. Furthermre, slutin is sparse. Optimal hyperplane is determined by just a fe eamples: call these supprt vectrs α i = 0 fr nn-supprt patterns Optimizatin prblem t find α i has n lcal minima (like lgistic regressin) Predictin n ne data pint Why? min 2 s.t. y i ( i + 0 ) +1 fr all i f () = sign(( ) + 0 ) = sign( n α i y i ( i ) + 0 ) 7 / 25 8 / 25

3 Nn-separable training sets If data set is nt linearly separable, the ptimizatin prblem that e have given has n slutin. min 2 s.t. y i ( i + 0 ) +1 fr all i! Why? Slutin: Dn t require that e classify all pints crrectly. All the algrithm t chse t ignre sme f the pints. This is bviusly dangerus (hy nt ignre all f them?) s e need t give it a penalty fr ding s. ~ margin 9 / 18 9 / / 25 Slack Think abut ridge regressin again Slutin: Add a slack variable ξ i 0 fr each training eample. If the slack variable is high, e get t rela the cnstraint, but e pay a price Ne ptimizatin prblem is t minimize n 2 + C( ξi k ) subject t the cnstraints i ξ i fr y i = +1 i ξ i fr y i = 1 Usually set k = 1. C is a trade-ff parameter. Large C gives a large penalty t errrs. Slutin has same frm, but supprt vectrs als include all here ξ i 0. Why? 11 / 25 Our ma margin + slack ptimizatin prblem is t minimize: n 2 + C( ξ i ) k subject t the cnstraints i ξ i fr y i = +1 i ξ i fr y i = 1 This lks a even mre like ridge regressin than the nn-slack prblem: C( n ξ i) k measures h ell e fit the data 2 penalizes eight vectrs ith a large nrm S C can be vieed as a regularizatin parameters, like λ in ridge regressin r regularized lgistic regressin Yu re alled t make this tradeff even hen the data set is separable! 12 / 25

4 15 / / 25 Why yu might ant slack in a separable data set Nn-linear SVMs SVMs can be made nnlinear just like any ther linear algrithm e ve seen (i.e., using a basis epansin) But in an SVM, the basis epansin is implemented in a very special ay, using smething called a kernel The reasn fr this is that kernels can be faster t cmpute ith if the epanded feature space is very high dimensinal (even infinite)! This is a fairly advanced tpic mathematically, s e ill just g thrugh a high-level versin 13 / / 25 Kernel Nn-linear SVMs A kernel is in sme sense an alternate API fr specifying t the classifier hat yur epanded feature space is. Up t n, e have alays given the classifier a ne set f training vectrs φ( i ) fr all i, e.g., just as a list f numbers. φ : R d R D If D is large, this ill be epensive; if D is infinite, this ill be impssible Transfrm t φ() Linear algrithm depends nly n i. Hence transfrmed algrithm depends nly n φ() φ( i ) Use a kernel functin k( i, j ) such that k( i, j ) = φ( i ) φ( j ) (This is called the kernel trick, and can be used ith a ide variety f learning algrithms, nt just ma margin.)

5 Eample f kernel 19 / 25 Kernels, dt prducts, and distance 2013 / 25/ 18 Eample 1: fr 2-d input space then φ( i ) = 2 i,1 2i,1 i,2 2 i,2 k( i, j ) = ( i j ) 2 The Euclidean distance squared beteen t vectrs can be cmputed using dt prducts d( 1, 2 ) = ( 1 2 ) T ( 1 2 ) = T T T 2 2 Using a linear kernel k( 1, 2 ) = T 1 2 e can rerite this as d( 1, 2 ) = k( 1, 1 ) 2k( 1, 2 ) + k( 2, 2 ) Any kernel gives yu an assciated distance measure this ay. Think f a kernel as an indirect ay f specifying distances. Supprt Vectr Machine 17 / 25 Applicatins Predictin n ne eample 18 / 25 A supprt vectr machine is a kernelized maimum margin classifier. Fr ma margin remember that e had the magic prperty f()= sgn (! + b) classificatin f()= sgn (! $ i.k(, i) + b) α i y i i $ 1 $ 2 $ 3 $ 4 eights = i This means e uld predict the label f a test eample as ŷ = sign[ T + 0 ] = sign[ α i y i T i + 0 ] i k k k k cmparisn: k(, i), e.g. supprt vectrs k(, i)=(. i) d k(, i)=ep(!! i 2 / c) k(, i)=tanh((. i)+#) Kernelizing this e get input vectr ŷ = sign[ i α i y i k( i, ) + b] Figure Credit: Bernhard Schelkpf Figure Credit: Bernhard Schelkpf

6 23 / / 25 input space feature space Chsing φ, C!!!!! Figure Credit: Bernhard Schelkpf Figure Credit: Bernhard Schelkpf Eample 2 Eample 2 k( i, j )=ep i j 2 /α 2 In this case the k( dimensin i, j ) = ep f φ is infinite i j 2 /α 2 InT this test case a ne theinput dimensin f φ is infinite. i.e., It can be shn that n φ that maps n int a finite-dimensinal space ill give yu this f () kernel. =sgn( α i y i k( i, )+ 0 ) We can never calculate φ(), but the algrithm nly needs us t calculate k fr different pairs f pints. 11 / 18 There are theretical results, but e ill nt cver them. (If yu ant t lk them up, there are actually upper bunds n the generalizatin errr: lk fr VC-dimensin and structural risk minimizatin.) Hever, in practice crss-validatin methds are cmmnly used Eample applicatin 21 / 25 Cmparisn ith linear and lgistic regressin 22 / 25 US Pstal Service digit data (7291 eamples, images). Three SVMs using plynmial, RBF and MLP-type kernels ere used (see Schölkpf and Smla, Learning ith Kernels, 2002 fr details) Use almst the same ( 90%) small sets (4% f data base) f SVs All systems perfrm ell ( 4% errr) Many ther applicatins, e.g. Tet categrizatin Face detectin DNA analysis Underlying basic idea f linear predictin is the same, but errr functins differ Lgistic regressin (nn-sparse) vs SVM ( hinge lss, sparse slutin) Linear regressin (squared errr) vs ɛ-insensitive errr Linear regressin and lgistic regressin can be kernelized t

7 SVM summary SVMs are the cmbinatin f ma-margin and the kernel trick Learn linear decisin bundaries (like lgistic regressin, perceptrns) Pick hyperplane that maimizes margin Use slack variables t deal ith nn-separable data Optimal hyperplane can be ritten in terms f supprt patterns Transfrm t higher-dimensinal space using kernel functins Gd empirical results n many prblems Appears t avid verfitting in high dimensinal spaces (cf regularizatin) Srry fr all the maths! 25 / 25

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

COMP9444 Neural Networks and Deep Learning 3. Backpropagation

COMP9444 Neural Networks and Deep Learning 3. Backpropagation COMP9444 Neural Netwrks and Deep Learning 3. Backprpagatin Tetbk, Sectins 4.3, 5.2, 6.5.2 COMP9444 17s2 Backprpagatin 1 Outline Supervised Learning Ockham s Razr (5.2) Multi-Layer Netwrks Gradient Descent

More information

Linear programming III

Linear programming III Linear prgramming III Review 1/33 What have cvered in previus tw classes LP prblem setup: linear bjective functin, linear cnstraints. exist extreme pint ptimal slutin. Simplex methd: g thrugh extreme pint

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

Contents. This is page i Printer: Opaque this

Contents. This is page i Printer: Opaque this Cntents This is page i Printer: Opaque this Supprt Vectr Machines and Flexible Discriminants. Intrductin............. The Supprt Vectr Classifier.... Cmputing the Supprt Vectr Classifier........ Mixture

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants Supprt Vectr Machines and Flexible Discriminants This is page Printer: Opaque this. Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal separating

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification Agenda Artificial Intelligence and its applicatins Lecture 6 Supervised Learning Prfessr Daniel Yeung danyeung@ieee.rg Dr. Patrick Chan patrickchan@ieee.rg Suth China University f Technlgy, China Learning

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

The Solution Path of the Slab Support Vector Machine

The Solution Path of the Slab Support Vector Machine CCCG 2008, Mntréal, Québec, August 3 5, 2008 The Slutin Path f the Slab Supprt Vectr Machine Michael Eigensatz Jachim Giesen Madhusudan Manjunath Abstract Given a set f pints in a Hilbert space that can

More information

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin Mtivatin 2 Applicatins in Medicine estimatin f

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)? THESE ARE SAMPLE QUESTIONS FOR EACH OF THE STUDENT LEARNING OUTCOMES (SLO) SET FOR THIS COURSE. SLO 1: Understand and use the cncept f the limit f a functin i. Use prperties f limits and ther techniques,

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Infrmatik Arbeitsbereich SAV/BV (KOGS) Image Prcessing 1 (IP1) Bildverarbeitung 1 Lecture 15 Pa;ern Recgni=n Winter Semester 2014/15 Dr. Benjamin Seppke Prf. Siegfried S=ehl What

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research).

If (IV) is (increased, decreased, changed), then (DV) will (increase, decrease, change) because (reason based on prior research). Science Fair Prject Set Up Instructins 1) Hypthesis Statement 2) Materials List 3) Prcedures 4) Safety Instructins 5) Data Table 1) Hw t write a HYPOTHESIS STATEMENT Use the fllwing frmat: If (IV) is (increased,

More information

Name AP CHEM / / Chapter 1 Chemical Foundations

Name AP CHEM / / Chapter 1 Chemical Foundations Name AP CHEM / / Chapter 1 Chemical Fundatins Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne value and anther.

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

The standards are taught in the following sequence.

The standards are taught in the following sequence. B L U E V A L L E Y D I S T R I C T C U R R I C U L U M MATHEMATICS Third Grade In grade 3, instructinal time shuld fcus n fur critical areas: (1) develping understanding f multiplicatin and divisin and

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS

SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS 1 SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS Wlfgang HÄRDLE 2 Ruslan MORO 1,2 Drthea SCHÄFER 1 1 Deutsches Institut für Wirtschaftsfrschung (DIW) 2 Center fr Applied Statistics and Ecnmics (CASE),

More information

Artificial Neural Networks MLP, Backpropagation

Artificial Neural Networks MLP, Backpropagation Artificial Neural Netwrks MLP, Backprpagatin 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

Feedforward Neural Networks

Feedforward Neural Networks Feedfrward Neural Netwrks Yagmur Gizem Cinar, Eric Gaussier AMA, LIG, Univ. Grenble Alpes 17 March 2017 Yagmur Gizem Cinar, Eric Gaussier Multilayer Perceptrns (MLP) 17 March 2017 1 / 42 Reference Bk Deep

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

Determining Optimum Path in Synthesis of Organic Compounds using Branch and Bound Algorithm

Determining Optimum Path in Synthesis of Organic Compounds using Branch and Bound Algorithm Determining Optimum Path in Synthesis f Organic Cmpunds using Branch and Bund Algrithm Diastuti Utami 13514071 Prgram Studi Teknik Infrmatika Seklah Teknik Elektr dan Infrmatika Institut Teknlgi Bandung,

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

Review: Support vector machines. Machine learning techniques and image analysis

Review: Support vector machines. Machine learning techniques and image analysis Review: Support vector machines Review: Support vector machines Margin optimization min (w,w 0 ) 1 2 w 2 subject to y i (w 0 + w T x i ) 1 0, i = 1,..., n. Review: Support vector machines Margin optimization

More information

GENESIS Structural Optimization for ANSYS Mechanical

GENESIS Structural Optimization for ANSYS Mechanical P3 STRUCTURAL OPTIMIZATION (Vl. II) GENESIS Structural Optimizatin fr ANSYS Mechanical An Integrated Extensin that adds Structural Optimizatin t ANSYS Envirnment New Features and Enhancements Release 2017.03

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

A.H. Helou Ph.D.~P.E.

A.H. Helou Ph.D.~P.E. 1 EVALUATION OF THE STIFFNESS MATRIX OF AN INDETERMINATE TRUSS USING MINIMIZATION TECHNIQUES A.H. Helu Ph.D.~P.E. :\.!.\STRAC'l' Fr an existing structure the evaluatin f the Sti"ffness matrix may be hampered

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons Slide04 supplemental) Haykin Chapter 4 bth 2nd and 3rd ed): Multi-Layer Perceptrns CPSC 636-600 Instructr: Ynsuck Che Heuristic fr Making Backprp Perfrm Better 1. Sequential vs. batch update: fr large

More information

Lecture 8: Multiclass Classification (I)

Lecture 8: Multiclass Classification (I) Bayes Rule fr Multiclass Prblems Traditinal Methds fr Multiclass Prblems Linear Regressin Mdels Lecture 8: Multiclass Classificatin (I) Ha Helen Zhang Fall 07 Ha Helen Zhang Lecture 8: Multiclass Classificatin

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb Lgistic Regressin and Maximum Likelihd Marek Petrik Feb 09 2017 S Far in ML Regressin vs Classificatin Linear regressin Bias-variance decmpsitin Practical methds fr linear regressin Simple Linear Regressin

More information

16 GACV for Support Vector Machines

16 GACV for Support Vector Machines 16 GACV fr Supprt Vectr Machines Grace Wahba Department f Statistics University f Wiscnsin 121 West Daytn Street Madisn, WI 5376, USA wahba@stat.wisc.edu Yi Lin Department f Statistics University f Wiscnsin

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Neural networks and support vector machines

Neural networks and support vector machines Neural netorks and support vector machines Perceptron Input x 1 Weights 1 x 2 x 3... x D 2 3 D Output: sgn( x + b) Can incorporate bias as component of the eight vector by alays including a feature ith

More information

Tutorial 4: Parameter optimization

Tutorial 4: Parameter optimization SRM Curse 2013 Tutrial 4 Parameters Tutrial 4: Parameter ptimizatin The aim f this tutrial is t prvide yu with a feeling f hw a few f the parameters that can be set n a QQQ instrument affect SRM results.

More information

19 Better Neural Network Training; Convolutional Neural Networks

19 Better Neural Network Training; Convolutional Neural Networks 108 Jnathan Richard Shewchuk 19 Better Neural Netwrk Training; Cnvlutinal Neural Netwrks [I m ging t talk abut a bunch f heuristics that make gradient descent faster, r make it find better lcal minima,

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Exponential Functions, Growth and Decay

Exponential Functions, Growth and Decay Name..Class. Date. Expnential Functins, Grwth and Decay Essential questin: What are the characteristics f an expnential junctin? In an expnential functin, the variable is an expnent. The parent functin

More information

cfl Cpyright by Ji Zhu 2003 All Rights Reserved ii

cfl Cpyright by Ji Zhu 2003 All Rights Reserved ii FLEXIBLE STATISTICAL MODELING a dissertatin submitted t the department f statistics and the cmmittee n graduate studies f stanfrd university in partial fulfillment f the requirements fr the degree f dctr

More information

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD Sangh Kim Stanfrd University Juan J. Alns Stanfrd University Antny Jamesn Stanfrd University 40th AIAA Aerspace Sciences

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 1 y = 2.5 y = 0.5x 3 2 1 1 2 3 1

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

Solutions to the Extra Problems for Chapter 14

Solutions to the Extra Problems for Chapter 14 Slutins t the Extra Prblems r Chapter 1 1. The H -670. T use bnd energies, we have t igure ut what bnds are being brken and what bnds are being made, s we need t make Lewis structures r everything: + +

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1 Administrativia Assignment 1 due thursday 9/23/2004 BEFORE midnight Midterm eam 10/07/2003 in class CS 460, Sessins 8-9 1 Last time: search strategies Uninfrmed: Use nly infrmatin available in the prblem

More information

EASTERN ARIZONA COLLEGE Precalculus Trigonometry

EASTERN ARIZONA COLLEGE Precalculus Trigonometry EASTERN ARIZONA COLLEGE Precalculus Trignmetry Curse Design 2017-2018 Curse Infrmatin Divisin Mathematics Curse Number MAT 181 Title Precalculus Trignmetry Credits 3 Develped by Gary Rth Lecture/Lab Rati

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

Chapter 11: Neural Networks

Chapter 11: Neural Networks Chapter 11: Neural Netwrks DD3364 December 16, 2012 Prjectin Pursuit Regressin Prjectin Pursuit Regressin mdel: Prjectin Pursuit Regressin f(x) = M g m (wmx) t i=1 where X R p and have targets Y R. Additive

More information