FCC PILOT PLANT Research Tool

Size: px
Start display at page:

Download "FCC PILOT PLANT Research Tool"

Transcription

1 1

2 C PILOT PLANT Research Tool BPR-601 GC WTM PC-601 PT-601 PT-501 PT-301 REGENERATOR STABILIZER STRIPPER F-501 PCV-601 RISER H.E.-601 LC- LI LCV- S.V.-301 V-60 LI-1 V-603 LC-1 F(T 1,T,T 3 ) PC-301 LCV-1 FEE VESSEL P-51 V-604 PROUCT VESSEL V-501 T R H.E.-501 S.V.-101 PC PCV-501 GC BPR-501 WTM-1 Accurate simulation of industrial processes Operation at constant feedstock or catalyst Operation within large operating spans Study kinetics Study dynamics Catalyst Benchmarking Feedstock Benchmarking Large experimental database 7 Steady State: ynamic Operation: Catalyst Feedstock Wide ranges Process recording FLUI CATALYTIC CRACKING INUSTRY & LABORATORY is the workhorse of refinery High economic importance High interest in optimization pilot plants serve as research tools Need to improve pilot plant efficiency Final correlation for the prediction of feed conversion ( nd order kinetics): yx k x E x n = C catalyst type F feed quality exp x tc:rs 100 y WHSV RT x RX Final correlation for the prediction of the catalytic coke yield: k c E c nc yc = C ( ) ( ) exp x c catalyst Fc feed tc:rs WHSV RTRX Expressions for the calculation of the Weight Hourly Space Velocity, the catalyst residence time and the riser temperature: WHSV W& F:RS 3600 W& F =, tc:rs = 3600 ρp( V:RS ( 1 ε:rs ) + VC:RS ( 1 εc:rs ) + VF:RS ( 1 εf:rs )) WHSV W& C :RS :RS Assumption of pseudo-plug flow conditions Assumption of pseudo-isothermal riser operation

3 Regenerator Model F F F F MOELING PILOT Homogeneous PLANT Riser Reactor Fluid ynamics MOEL ASSUMPTIONS ilute Phase Plug Flow Homogeneous-HeterogeneousHeterogeneous Reactions The dense bed includes a bubble and an emulsion phase Bubbles Phase Plug Flow Homogeneous Reactions Emulsion Phase Fully Mixed Homogeneous-HeterogeneousHeterogeneous Reactions Two phase flow: 1) dilute phase ) dense phase Two phases in dense bed: a) emulsion b) bubbles Emulsion: CSTR Heterogeneous Bubbles: PFR Homogeneous ilute phase: PFR Heterogeneous H t In high-density CFB a "ense Suspension Upflow" regime is observed: Averaged top voidage: u ρ A p F gf : :RS :RS ε = y :RS W& C + u ρpaf F:RS F g : :RS :RS :RS Main contributors to the overall heat balance in an riser: The enthalpy of cracking ΔH crack The enthalpy of vaporization of the feedstock ΔH vap The enthalpy content of various process streams H c H b ΔP regenerated catalyst nitrogen feedstock The slip factor is a function of the riser diameter, gas volumetric flow and solids terminal velocity: Slip factor correlation: Averaged bottom voidage: y = Fr F:RS tf : :RS FrgF : :RS The voidage of the riser-bottom (mixing) section estimated by the correlation of Richardson & Zaki: 1/ z ug : :RS ε = :RS ut:rs H + H + H + H + H = -oil 0 crack vap gas cat Loss The heat of cracking is a function of: Conversion (y x ) Feed Molecular Weight (MW F ) Riser Temperature (T RX ) H = y atrx yx + atrx + amwf + btrx + btrx + bmwf crack 13 bubble phase TWO PHASE MOEL excess gas gas to freeboard freeboard gas interchange combustion air entrained solids emulsion phase cyclones coked catalyst regenerated catalyst 1 dfif VF:RG dlf 1 dfif VF:RG dlf 1 dq f VF:RG dlf W& ( ) ( ) = = 0 0 dc c c l l 1 homo ( 1 ) ge ie ie ie = εe εe εe f KMidl fe ak i f ak i e Re e Re dt ρge V :RG 0 W& W& ( 1) ( 1) ( ) ( 1) l = = = = 1 ( 1 ) ( ) dc C cie c C cif c l l l ie ε ie :RG ie :CY 1 = + + ε f f ak ρp ρp dt V V :RG :RG ( solids ) gas dv ( ) Te :RG 1 εe + f ccp ie ie f εe ccp ie ie = e e dt i i e e e e i Re ( ( ( ( ) ( ) ( l l l l l l = = = = 1) :RG 0) :RG = 1) :CY 0 :CY 0 = 1) QC QC QC QC Q Q Qloss ge ge 1 homo ( 1 ) K = + ε α ε α f i Rf f ikrf = ( 1 ε ) α f ik Rf homo ( ) ( ) ( ) ε 1 ε = H + H K K f R Rf f R Rf Emulsion phase: homo ( ) ( 1 ) ( ) ε ε + H + H V K dl f V K f V K :RG :RG :RG H e e R Re e e R Re 0 emulsion (t) df V dl dq V dl freeboard (l) bubble (l) Bubbles phase: = + K f ak = + H KH fb K R Rb 15 MOELING PILOT PLANT Stripper Model Mass balance: dv W& C = W& C ( 1) ( ) l l = = 0 :ST :ST :ST dt ρ 1 ε p mf ( ) ( ) l = 1 = 1 ( 1 εmf ) V p :ST dc W& C = ci c ( l ) ( ) :ST i :ST :ST i:st dt ρ Perfectly mixed reactor Minimum fluidization conditions Stripping efficiency 100% Stripper temperature is controlled by heaters T sp ST disengager stripper 17 3

4 ynamic Simulation Open Loop 130% increase in feed preheat temperature: Open-loop operation: Higher sensible heat in the feed stream experiment simulation Higher riser temperature Small changes in the regenerator input variables Constant operation of regenerator MOELING PILOT PLANT 1 Models Integration Satisfactory agreement between simulated and experimental results Error in the prediction of regenerator temperature Assumption of pseudo-steady state operation of riser Assumption of pseudo-steady state operation of liftline and standpipe ynamic behavior driven by the operation of the regenerator ynamic behavior includes dynamic performance of the stripper Closed loop operation Regenerator slide valve controls riser temperature Open loop operation Regenerator slide valve set to constant opening 19 MOELING PILOT PLANT ynamic Simulation Closed Loop 15% reduction in feed rate: Closed-loop operation: Control for constant riser temperature Reduction in catalyst circulation rate Lower coke rate and catalyst rate entering the regenerator Less combustion, higher catalyst residence times, lower regenerator temperature experiment simulation In the closed loop operation changes in riser input variables lead to: Oscillation of the unit Faster responses predicted by the simulator MOELING PILOT PLANT ynamic Simulation Closed Loop 130% increase in feed preheat temperature: Closed-loop operation: Control for constant riser temperature Reduction in catalyst circulation rate Higher catalyst residence time in the regenerator Increase in the regenerator temperature 3 Conventional control robustness shows sluggish behavior More robust control can enhance the steadiness in the operation 4

5 MOEL - BASE PREICTIVE CONTROL THEORY PROS & CONS yˆx ˆ i ˆθ ynamic model improves control actions within specified horizon The estimator manages to improve future predictions of the model MOEL PREICTIVE CONTROL Principles Theory theory pros & cons error, e k+1 esired traectory Model prediction rolling control horizon uk+ 1 subect to: x=f & x,u NP N C N C sp ss = yk+ yk+ + Δu + y k+ 1 u u k+ u u wk+ w k k+ 1 wk+ 1 = 1 = 1 = 1 min J ˆ y=g x,u meas pred ek = + y y 1 k+ 1 t k- Past control actions t k-1 t k t k+1 t k+ t k+3 Future control actions yˆ = y + e pred k+ k+ k+ 1 l u u uk + u 1 NC = TC Tk / tc, NP = TP Tk / tp 7 u k- u k-1 u k u k+1 u k+ u k+3 Past and present control actions affect the future response of the process Minimize the difference between desired traectory and predictions Long prediction horizon compensates for slower dynamics but Short control horizon leads to aggressive control actions controlled variables move suppression factor steady state optimality Piecewise additive disturbance model compensates for model error Integral action guarantees for zero controller offset MOEL - BASE PREICTIVE CONTROL THEORY PROS & CONS improves operability and efficiency Follow desired traectory within specified horizon Move suppression factor for operability-stability Steady state optimality factor for process optimization Need an accurate dynamic model SIMULATION STUY 5

6 Obective Function 1 ( ) ( ( )) ( ) 33 The Problem in Industry The Pilot Plant Control Problem Obectives: Obectives: Maximum Profit Maximum Capacity Maximum Conversion Constant Temperature esired Selectivity Product specifications Environmental restrictions Unit Stability Reduce Redundant Experiments Catalyst Benchmarking Feedstock Benchmarking Constant Conversion Constant Riser Temperature Examine Catalyst Selectivity Environmental restrictions Unit Stability isturbances: Feedstock Catalyst isturbances: Feedstock Catalyst 31 3 The Structure t y n i= 1 k+ yˆi t sp y tk i u n i= 1 ˆ u n i= 1 y u u 1 / k i i i k k i J = w uˆi t k 1 + w u t + w 1 ss ui Controlled Variables: Conversion Riser Temperature Manipulated Variables: Catalyst Circulation Feed Preheat isturbances: Move suppression factor: Steady state optimality: Control horizon: 10 min Prediction horizon: 0 min Kinetic constants Control robustness Problem escription esired steady state Two instances of the model a VP and a SIM Conventional PI Control VP was depicted by a flawless version of the model Significant amount of mismatch in the reaction kinetics used in the SIM Equivalent to the control problem in the real pilot process level Manipulate catalyst circulation rateto to Control riser 34 temperature yˆi Model Predictive Control Manipulate catalyst circulation rate and feed preheat temperature to Control riser temperature and conversion isturbance: unknown catalyst quality different kinetic constants

7 7

8 Infrastructure and Architecture App Real-Time Control Framework : Key concept : Automated real-time and flexible control scheme Multi level framework that handles/transfers data from distributed applications Include technical aspect as well as communication issues Procedure requirements : Main focus : shift from a static user required environment to a dynamic runtime behavior Improve the procedure to minimize the time spent for repeated user actions Independent software interconnection and ata sharing through network Time specific actions synchronization and handling of unpredicted model execution time Proper Procedure steps interpretation in action that could be coded 45 ISTRIBUTE / INTER- APPLICATION COMMUNICATION rives for development Software Specific limitations: User requirements were beyond the initial design/scope of the each software Unable to parameterize the gproms software Human Computer Interface App 47 istributed & Interapplication App Software / System Used in the Framework : gproms : develop dynamic model and system Matlab : lineralised state space model used in the state and parameter estimation 46 Microsoft Office Excel : processing and management of the process data Plant SCAA system (GE ifix/fix3) Process Information Management System (OSISoft PI) used for data archiving specifics : Plant / Framework : NetE (Net ynamic ata Exchange) Interapplication data transfer using Windows OLE standard (Excel Matlab, gproms - Excel) Structure and interoperability requirements: Embed to framework security considerations that were necessary for process control network, due to integration with business network Reduce the amount of time that was required to gather and setup the environment Framework development Control framework development stages : Requirement gathering & Architecture definition Identify existing assets & component development Software system integration & Testing Standalone - Simulation Networked Plant interaction App 48 8

9 ata Flow Framework Area gproms SCAA System ata Files MATLAB Control Scheme Area PI App 51 User ata Flow Procedure steps App 50 Initialization Procedure Matlab : Prepare/Build a COM Obect to communicate with Excel (code restructure) gproms : Initial Process execution (initial simulation and plant model) Excel : Open files and reset values Control scheme Software : Parameter and settings Optimization, Simulation, Linear Time Update elay Number of Iterations Main Procedure gproms : Optimization Stage gproms : Simulation Stage Mathematic model Process Model (with noise/disturbance) Linear Model MATLAB : Kalman Filter Future improvements / potentials A C B Procedure steps : Simulation model execution (A) Results to Excel (A B) Plant simulation model or Plant system execution (A) Results to Excel (A B) Linearisation model (A) ata Files generation (A C) Update flag status Trigger condition (A B) Matlab model run (Kalman Filter) (C, ) Results to Excel ( B) App 5 Further improvements : efine rules for the interface in order to interoperate with CAPE able applications (Computer-Aided Process Engineering standard) Parametric model execution via software interface Provide the ability to change the order of the sequence actions irect interaction with LIMS & PIMS system to retrieve data used in the procedure evelop an OPC server tο communicate with the Plant evelop a software component that utilizes COM/COM to distribute data to Windows Applications CONCLUSIONS future work CONCLUSIONS Mathematical modeling for process optimization Fluid Catalytic Cracking process: Workhorse of refinery - High economic incentives Complex, non-linear, uncertain, constrained process High interest in simulation and optimization Fluid Catalytic Cracking pilot plant: Research tool Catalyst benchmarking Need to improve efficiency ynamic simulator of the pilot plant: Steady state operation of the pilot riser, liftline and standpipe ynamic behavior of the regenerator and stripper The dynamic simulator was verified with pilot experiments 54 9

10 AKNOWLEGMENTS r. S.S. Voutetakis, THANK YOU 10

Temperature Control of Catalytic Cracking Process Using SCADA and PLC

Temperature Control of Catalytic Cracking Process Using SCADA and PLC International Journal of Advanced Research in Education & Technology (IJARET Vol. 4, Issue 2 (April - June 2017 ISSN : 2394-2975 (Online ISSN : 2394-6814 (Print Temperature Control of Catalytic Cracking

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-490 Vol.8, No.6, pp 750-758, 015 Simulation of Fcc Riser Reactor using Five Lump Model Debashri Paul 1, Raghavendra Singh Thakur,

More information

Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator

Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator September 215 Modeling and Simulation of Fluidized Bed Catalytic Reactor Regenerator S. N. Saha, Professor, Chemical Engg.Dept., Guru GhasidasVishwavidyalaya, Bilaspur (C.G.), India. G. P. Dewangan*, Assistant

More information

Equation oriented modelling of UOP FCC units with high-efficiency regenerators

Equation oriented modelling of UOP FCC units with high-efficiency regenerators Equation oriented modelling of UOP FCC units with high-efficiency regenerators Alexandre J.S. Chambel a,b, Jorge F.P. Rocha a, Carla I.C. Pinheiro b and Nuno M.C. Oliveira a a CIEPQPF - Centre for Chemical

More information

A review of EMMS drag

A review of EMMS drag 12 th Int. Conf. Fluidized Bed Technology May 23-26, 2017, Krakow, Poland A review of drag Bona Lu, Fei Li, Wei Wang, Xinhua Liu, Junwu Wang, Ning Yang, Wei Ge, Jinghai Li Institute of Process Engineering

More information

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 PRESENTATION SLIDES: Hydrodynamic Scale-Up

More information

Liquid Feed Injection in a High Density Riser

Liquid Feed Injection in a High Density Riser Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Liquid Feed Injection in a High Density

More information

Riser Reactor Simulation in a Fluid Catalytic Cracking Unit

Riser Reactor Simulation in a Fluid Catalytic Cracking Unit Riser Reactor Simulation in a Fluid Catalytic Cracking Unit Babatope Olufemi 1*, Kayode Latinwo 2, Ayokunle Olukayode 1 1. Chemical Engineering Department, University of Lagos, Lagos, Nigeria 2. Chemical

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

TRACERCO Diagnostics FCCU Study

TRACERCO Diagnostics FCCU Study TRACERCO Diagnostics FCCU Study 2 TRACERCO Diagnostics TRACERCO Diagnostics FCCU Study Introduction The Fluidized Catalytic Cracking Unit (FCCU) is the economic heart of a modern refinery. Even small increases

More information

Integrated Knowledge Based System for Process Synthesis

Integrated Knowledge Based System for Process Synthesis 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Integrated Knowledge Based System for Process Synthesis

More information

Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor

Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor Modeling of a Fluid Catalytic Cracking (FCC) Riser Reactor Dr. Riyad Ageli Mahfud Department of Chemical Engineering- Sabrattah Zawia University Abstract: Fluid catalytic cracking (FCC) is used in petroleum

More information

CONTROL OF MULTIVARIABLE PROCESSES

CONTROL OF MULTIVARIABLE PROCESSES Process plants ( or complex experiments) have many variables that must be controlled. The engineer must. Provide the needed sensors 2. Provide adequate manipulated variables 3. Decide how the CVs and MVs

More information

TRACERCO Diagnostics FCCU Study

TRACERCO Diagnostics FCCU Study TRACERCO Diagnostics FCCU Study Contents TRACERCO Diagnostics FCCU Study General Overview 2 Reactor Riser Diagnostics Scanning Density Profile and Flow Distribution 4 Tracer Flow Rate of Catalyst and

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

Twin-Screw Food Extruder: A Multivariable Case Study for a Process Control Course

Twin-Screw Food Extruder: A Multivariable Case Study for a Process Control Course Twin-Screw Food Extruder: A Multivariable Case Study for a Process Control Course Process Control Course Overview Case Studies Realistic Industrial Problems Motivating to Students Integrate Techniques

More information

= 1 τ (C Af C A ) kc A. τ = V q. k = k(t )=k. T0 e E 1. γ = H ρc p. β = (ρc p) c Vρc p. Ua (ρc p ) c. α =

= 1 τ (C Af C A ) kc A. τ = V q. k = k(t )=k. T0 e E 1. γ = H ρc p. β = (ρc p) c Vρc p. Ua (ρc p ) c. α = TTK485 Robust Control Department of Engineering Cybernetics Spring 27 Solution - Assignment Exercise : Unstable chemical reactor a) A CSTR-reactor with heat exchange is shown in figure. Mass- and energy

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Modeling and Control of a Fluidised Bed Dryer

Modeling and Control of a Fluidised Bed Dryer Modeling and Control of a Fluidised Bed Dryer J.A Villegas S.R. Duncan H.G. Wang W.Q. Yang R.S. Raghavan Department of Engineering Science, University of Oxford, Parks Road, Oxford OX 3PJ, UK, e-mail:

More information

Modeling and Control of Moisture Content in a Batch Fluidized Bed Dryer Using Tomographic Sensor

Modeling and Control of Moisture Content in a Batch Fluidized Bed Dryer Using Tomographic Sensor 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 ThC12.5 Modeling and Control of Moisture Content in a Batch Fluidized Bed Dryer Using Tomographic Sensor J.A

More information

DEVELOPMENT OF A CAPE-OPEN 1.0 SOCKET. Introduction

DEVELOPMENT OF A CAPE-OPEN 1.0 SOCKET. Introduction DEVELOPMENT OF A CAPE-OPEN 1. SOCKET Eric Radermecker, Belsim S.A., Belgium Dr. Ulrika Wising, Belsim S.A., Belgium Dr. Marie-Noëlle Dumont, LASSC, Belgium Introduction VALI is an advanced data validation

More information

Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor

Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-24-2016 Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized

More information

Catalyst Attrition in the CFB Riser

Catalyst Attrition in the CFB Riser Engineering Conferences International ECI Digital Archives 1th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-1 Refereed Proceedings Spring 5-4-211 Catalyst Attrition

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Mordechai Shacham Department of Chemical Engineering Ben Gurion University of the Negev

More information

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control 1 Cascade Control A disadvantage of conventional feedback

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY S. Lakshminarayanan, 1 Rao Raghuraj K 1 and S. Balaji 1 1 Department of Chemical and Biomolecular Engineering, 4 Engineering

More information

ECE Introduction to Artificial Neural Network and Fuzzy Systems

ECE Introduction to Artificial Neural Network and Fuzzy Systems ECE 39 - Introduction to Artificial Neural Network and Fuzzy Systems Wavelet Neural Network control of two Continuous Stirred Tank Reactors in Series using MATLAB Tariq Ahamed Abstract. With the rapid

More information

Continuous Flow Reactions. From idea to production size scale up in 3 steps

Continuous Flow Reactions. From idea to production size scale up in 3 steps Continuous Flow Reactions From idea to production size scale up in 3 steps PIN NL Spring Session 13 04 2017 13 4 2017 PIN NL Spring Session 1 Topics Introduction Flowlink Continuous Flow Reactions What

More information

CONTROLLER PERFORMANCE ASSESSMENT IN SET POINT TRACKING AND REGULATORY CONTROL

CONTROLLER PERFORMANCE ASSESSMENT IN SET POINT TRACKING AND REGULATORY CONTROL ADCHEM 2, Pisa Italy June 14-16 th 2 CONTROLLER PERFORMANCE ASSESSMENT IN SET POINT TRACKING AND REGULATORY CONTROL N.F. Thornhill *, S.L. Shah + and B. Huang + * Department of Electronic and Electrical

More information

WS Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor)

WS Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor) WS-4-03 Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor) Problem Steam reformer is often used in refineries or chemical plants. Design and

More information

Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU)

Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU) ID: B9-4 Radiotracer Investigations in an Industrial-scale Fluid Catalytic Cracking Unit (FCCU) H.J.Pant 1, P.Brisset 2, Ph.Berne 3, G.Gousseau 3, A.Fromentin 3 1: Isotope and Radiation Application Division,

More information

Periodic Control of Gas-phase Polyethylene Reactors

Periodic Control of Gas-phase Polyethylene Reactors Periodic Control of Gas-phase Polyethylene Reactors Al-ha Ali, M., Ali, E. Chemical Engineering Departmenting Saud University P.O.Box: 8, Riyadh, Saudi Arabia, (alhaali@ksu.edu.sa Abstract: Nonlinear model

More information

Mathematical Model and control for Gas Phase Olefin Polymerization in Fluidized-Bed Catalytic Reactors

Mathematical Model and control for Gas Phase Olefin Polymerization in Fluidized-Bed Catalytic Reactors 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Mathematical Model and control for Gas Phase Olefin

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 4, Issue 2 (Mar. Apr. 2013), PP 32-41 Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid

More information

Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace

Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace Motiva Unlocks Value in the FCCU through an Innovative Catalyst Solution from Rive and Grace Karthik Rajasekaran, Project Engineer, Motiva Raul Adarme, Energy, Catalysts, and Chemicals Manager, Motiva

More information

Chapter 4 Copolymerization

Chapter 4 Copolymerization Chapter 4 Copolymerization 4.1 Kinetics of Copolymerization 4.1.1 Involved Chemical Reactions Initiation I 2 + M 2R 1 r = 2 fk d I 2 R I Propagation Chain Transfer Termination m,n + k p m+1,n m,n + B k

More information

Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units

Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units Michoacan University of St Nicholas of Hidalgo From the SelectedWorks of Rafael Maya-Yescas May, 2004 Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units Rafael Maya-Yescas Elizabeth

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Course contents

More information

Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles

Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles Luis M Romeo, Pilar Lisbona, Yolanda Lara, Ana Martínez 1st Meeting of the High Temperature Solid Looping Cycles

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 11 CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 2.1 INTRODUCTION This chapter deals with the process description and analysis of CSTR. The process inputs, states and outputs are identified

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor

Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-25-2016 Modelling of a chemical looping combustion system equipped with a two- stage fuel reactor Roberto Solimene

More information

CAPE-OPEN and Simulis Thermodynamics enable you to use rigorous thermodynamics in MATLAB

CAPE-OPEN and Simulis Thermodynamics enable you to use rigorous thermodynamics in MATLAB Alain VACHER Stratège Bâtiment A BP 2738 F-31312 LABEGE Cedex FRANCE www.prosim.net Dr Michel PONS CAPE-OPEN Laboratories Network 32 rue Raulin F-69007 LYON FRANCE www.colan.org CAPE-OPEN and Simulis Thermodynamics

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

AIRLIFT BIOREACTORS. contents

AIRLIFT BIOREACTORS. contents AIRLIFT BIOREACTORS contents Introduction Fluid Dynamics Mass Transfer Airlift Reactor Selection and Design 1 INTRODUCTION airlift reactor (ALR) covers a wide range of gas liquid or gas liquid solid pneumatic

More information

PROCEEDINGS of the 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology

PROCEEDINGS of the 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology 10. 12. 4. 2017 Mikulov, Czech Republic www.icct.cz PROCEEDINGS of the 5 th International Conference on Chemical Technology www.icct.cz INHERENTLY SAFER

More information

Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery

Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery Fuzzy Logic Modeling of the Fluidized Catalytic Cracking Unit of a Petrochemical Refinery P.B. Osofisan, Ph.D.* and O.J. Obafaiye, M.Sc. Department of Electrical and Electronics Engineering University

More information

Data acquisition system for optimization and control of the processes from an isotopic exchange column

Data acquisition system for optimization and control of the processes from an isotopic exchange column Data acquisition system for optimization and control of the processes from an isotopic exchange column C. M. Retevoi, I. Stefan, A. Bornea & O. Balteanu National Institute of Research-Development for Cryogenic

More information

Dynamic Evolution of the Particle Size Distribution in Multistage Olefin Polymerization Reactors

Dynamic Evolution of the Particle Size Distribution in Multistage Olefin Polymerization Reactors European Symposium on Computer Arded Aided Process Engineering 5 L. Puigjaner and A. Espuña (Editors) 5 Elsevier Science B.V. All rights reserved. Dynamic Evolution of the Particle Size Distribution in

More information

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

More information

Particle Size Distribution in Gas-Phase Polyethylene Reactors

Particle Size Distribution in Gas-Phase Polyethylene Reactors Refereed Proceedings The 2th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Particle Size istribution in Gas-Phase Polyethylene

More information

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D.

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems ChE 344 Winter 03 Final Exam + Solution Thursday, May, 03 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space provided

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

Solutions for Tutorial 10 Stability Analysis

Solutions for Tutorial 10 Stability Analysis Solutions for Tutorial 1 Stability Analysis 1.1 In this question, you will analyze the series of three isothermal CSTR s show in Figure 1.1. The model for each reactor is the same at presented in Textbook

More information

Index. INDEX_p /15/02 3:08 PM Page 765

Index. INDEX_p /15/02 3:08 PM Page 765 INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

More information

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34 POSITION R & D Officer M.Tech Candidates having M.Tech / M.E. Chemical Engg. with 60% marks (aggregate of all semesters/years) and 50% for SC/ST/PWD are being called for Computer Based Test basis the information

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-time Optimal Control Donald J. Chmielewski Chemical Engineering Department University of California Los Angeles February 23, 2000 Stochastic Formulation - Min Max Formulation - UCLA

More information

Feedforward Control Feedforward Compensation

Feedforward Control Feedforward Compensation Feedforward Control Feedforward Compensation Compensation Feedforward Control Feedforward Control of a Heat Exchanger Implementation Issues Comments Nomenclature The inherent limitation of feedback control

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemical Process Simulator A. Carrero, N. Quirante, J. Javaloyes October 2016 Introduction to Chemical Process Simulators Contents Monday, October 3 rd

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION Hongwen Li, Rafiqul Gani, Sten Bay Jørgensen CAPEC, Department of Chemical Engineering Technical University of Denmark, Lyngby, Denmark

More information

A First Course on Kinetics and Reaction Engineering Example 26.3

A First Course on Kinetics and Reaction Engineering Example 26.3 Example 26.3 unit. Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this Problem Statement A perfectly insulated tubular reactor with a diameter

More information

A First Course on Kinetics and Reaction Engineering Example 30.1

A First Course on Kinetics and Reaction Engineering Example 30.1 Example 30.1 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the general approach to solving the design equations for

More information

Methane Oxidation Reactions

Methane Oxidation Reactions Methane Oxidation Reactions CH 4 + 2 O -> CO 2 2 + 2 H 2 O Total Oxidation (Combustion) CH 4 + 0.5 O -> CO 2 + 2 H 2 CO + 0.5 O -> CO 2 2 H 2 + 0.5 O -> H 2 2 O CH 4 + H 2 O->CO + 3 H 2 Partial Oxidation

More information

Real-Time Optimization (RTO)

Real-Time Optimization (RTO) Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be concerned with how the set points are specified. In

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones I. Abu-Mahfouz 1, J. W. McTernan 2 1 Pennsylvania State University - Harrisburg, Middletown, PA, USA 2 Buell Division of Fisher-Klosterman

More information

Full Furnace Simulations and Optimization with COILSIM1D

Full Furnace Simulations and Optimization with COILSIM1D Full Furnace Simulations and Optimization with COILSIM1D Kevin M. Van Geem 1 Alexander J. Vervust 1 Ismaël Amghizar 1 Andrés E. Muñoz G. 2 Guy B. Marin 1 1 Laboratory for Chemical Technology, Ghent University

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 S Removal From Acid Gas Streams

Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 S Removal From Acid Gas Streams Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Select... Page 1 of 13 Experimental Investigation and Mathematical Modeling of An Air-Lift Reactor for Selective H 2 S Removal

More information

Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation

Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation Proceedings of the 17th World Congress The International Federation of Automatic Control Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation Akın Şahin and Manfred Morari Automatic Control

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Example 8: CSTR with Multiple Solutions

Example 8: CSTR with Multiple Solutions Example 8: CSTR with Multiple Solutions This model studies the multiple steady-states of exothermic reactions. The example is from Parulekar (27) which in turn was modified from one by Fogler (1999). The

More information

Principles of Chemical Engineering Processes

Principles of Chemical Engineering Processes Principles of Chemical Engineering Processes MATERIAL AND ENERGY BALANCES SECOND EDITION NAYEF GHASEM REDHOUANE HENDA CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Real-Time Feasibility of Nonlinear Predictive Control

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

Athena Visual Software, Inc. 1

Athena Visual Software, Inc. 1 Athena Visual Studio Visual Kinetics Tutorial VisualKinetics is an integrated tool within the Athena Visual Studio software environment, which allows scientists and engineers to simulate the dynamic behavior

More information

CFD simulation of an industrial FCC regenerator

CFD simulation of an industrial FCC regenerator UNIVERSIDAD NACIONAL DE COLOMBIA-SEDE MEDELLIN MASTER S THESIS CFD simulation of an industrial FCC regenerator Author: Juan David ALZATE-HERNANDEZ Supervisor: Alejandro MOLINA A thesis submitted in fulfillment

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information

We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit

We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit Rebecca Kuo, Technical Service Engineer RefComm Galveston 2016 1 Overview Introduction

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Reflections on mathematical models and simulation of gas particle flows

Reflections on mathematical models and simulation of gas particle flows Reflections on mathematical models and simulation of gas particle flows Sankaran Sundaresan Princeton University Circulating Fluidized Beds 10 May 2, 2011 Outline Examples of flow characteristics Modeling

More information

SCALE-UP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL. A. Marchetti, M. Amrhein, B. Chachuat and D. Bonvin

SCALE-UP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL. A. Marchetti, M. Amrhein, B. Chachuat and D. Bonvin SCALE-UP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL A. Marchetti, M. Amrhein, B. Chachuat and D. Bonvin Laboratoire d Automatique Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland

More information

ANFIS Gain Scheduled Johnson s Algorithm based State Feedback Control of CSTR

ANFIS Gain Scheduled Johnson s Algorithm based State Feedback Control of CSTR International Journal of Computer Applications (975 8887) ANFIS Gain Scheduled Johnsons Algorithm based State Feedback Control of CSTR U. Sabura Banu Professor, EIE Department BS Abdur Rahman University,

More information