Reflections on mathematical models and simulation of gas particle flows

Size: px
Start display at page:

Download "Reflections on mathematical models and simulation of gas particle flows"

Transcription

1 Reflections on mathematical models and simulation of gas particle flows Sankaran Sundaresan Princeton University Circulating Fluidized Beds 10 May 2, 2011

2 Outline Examples of flow characteristics Modeling issues Modeling approaches Outlook

3 With so many fine books and software products around, what is there to say? Why model? What to model?

4 Why model? What to model? To bag house fluidized bed Side-by-Side FCC unit Reaction Products Cyclone Regenerator : aeration ports Stripping Steam ir grid Riser-Reactor standpipe riser ir Regenerated Catalyst Standpipe Feed 4 Slide valve Lift-line air What phenomena would we like to understand?

5 To bag house Loop stability fluidized bed Low aeration rate (Stable flow) 0.55 : aeration ports standpipe Slide valve riser Solids volume fraction Time (seconds) Lift-line air Srivastava et al. Powder Tech., 100, 173 (1998)

6 Loop stability To bag house fluidized bed Higher aeration rate (Unstable flow) : aeration ports standpipe riser Slide valve Lift-line air What is the true mechanism for the instability? How does the stability transition change with scale up? Srivastava et al. Powder Tech., 100, 173 (1998)

7 Flow characteristics in the riser To bag house fluidized bed : aeration ports standpipe riser Slide valve Lift-line air How does the flow pattern change with scale up? How fast is the radial dispersion? How effective is the contacting between gas and particles?

8 Competing options Choice depends on: backmixing contacting efficiency attrition, erosion, etc. How do these issues change with scale up? How well can we control them?

9 Jet streaming How well can we predict them? How does such flow behavior change with scale up? Knowlton, et al., Powder Tech., 150, 72 (2005) ttributed to gas compression in deep beds operating at low pressures

10 Cyclone performance Strongly swirling flow aids separation Gas turbulence adversely affects separation Competition between swirl and turbulence? How do particle loading, design choices and throughputs affect this competition?

11 Mechanism and effect of liquid injection on flow Flow characteristics are affected by: gglomeration Gas evolution dapted from Bruhns & Werther, 2005.

12 Mechanism and effect of liquid injection on flow How well do we understand Flow characteristics are affected the local by: and global flows? gglomeration Gas evolution How will these flow structures change upon scale up? dapted from Bruhns & Werther, 2005.

13 Why is it difficult to model and simulate? To bag house fluidized bed Widely varying particle loading levels. s a result, different regimes of flow : aeration ports Need to quantify the physical processes reasonably well in all these regimes standpipe Slide valve riser Flow is invariably unsteady with a wide range of length and time scales. Cannot resolve all of them. Particle size distribution Changing particle characteristics Lift-line air Wet systems: agglomeration and breakup

14 Why model? What models? To bag house fluidized bed Understand physical processes Develop simpler models : eration ports Explore design alternatives Scale up and process retrofits Standpipe Riser Simulations: at the level of a few thousand particles at the device scale Slide valve Lift-line air Euler (fluid) Euler (particles) models Euler (fluid) Lagrange (particles)

15 Solids Fluid Solids Fluid t t ( ρφ ) s t s ( ρφ f f ) t Two fluid model equations ( ρφu ) 0 + = s s s ( ρφ f fu f ) 0 + = ( ) ( ) ( ) ( ) particle Phase stress effective buoyancy ρ φ u + ρ φ u u = σ φ σ + f + ρ φ g s s s s s s s s s f s s inertia interphase interaction gravity ρ φ u + ρ φ u u = φ σ f + ρ φ g f f f f f f f f f f f φ + φ = 1 s f Gas fluidized beds, risers and standpipes: fluid phase stress ~ pressure only

16 Solids Fluid Solids Fluid t t ( ρφ ) s t s ( ρφ f f ) t Two fluid model equations ( ρφu ) 0 + = s s s ( ρφ f fu f ) 0 + = ( ) ( ) ( ) ( ) effective buoyancy ρ φ u + ρ φ u u = σ φ P + f + ρ φ g s s s s s s s s s f s s inertia particle Phase stress interphase interaction gravity ρ φ u + ρ φ u u = φ P f + ρ φ g f f f f f f f f f f f φ + φ = 1 s f Gas fluidized beds, risers and standpipes: interphase interaction ~ drag force only

17 Solids Fluid Solids Fluid t t ( ρφ ) s t s ( ρφ f f ) t Two fluid model equations ( ρφu ) 0 + = s s s ( ρφ f fu f ) 0 + = ( ) ( ) ( ) ( ) effective buoyancy ρ φ u + ρ φ u u = σ φ P + f + ρ φ g s s s s s s s s s f d s s inertia particle Phase stress interphase interaction gravity ρ φ u + ρ φ u u = φ P f + ρ φ g f f f f f f f f f d f f φ + φ = 1 s f Good text book drag force models are available in the literature for nearly homogeneous systems: e.g., Wen and Yu (1966) Wen & Yu, Chem. Eng. Prog. Symp. Ser., 62, 100 (1966)

18 Solids Fluid Solids Fluid t t ( ρφ ) s t s ( ρφ f f ) t Two fluid model equations ( ρφu ) 0 + = s s s ( ρφ f fu f ) 0 + = ( ) ( ) ( ) ( ) effective buoyancy ρ φ u + ρ φ u u = σ φ P + f + ρ φ g s s s s s s s s s f d s s inertia particle Phase stress interphase interaction gravity ρ φ u + ρ φ u u = φ P f + ρ φ g f f f f f f f f f d f f φ + φ = 1 s f force chains at high particle loading binary collisions between particles particle streaming Important in hoppers, bins, standpipes Less so in fluidized beds and risers Even less in freeboard region & cyclones

19 2D Domain size : 64 cm x 64 cm 256 x 256 Fine structure Instability driven by: inertia, dependence of drag force on particle loading level, inelastic collisions 3D Domain size : 8 cm x 8 cm x 8 cm 64x64x64 Stabilized by: weak particle phase stress Weak stabilization small length scale 75 μm particles in air verage particle volume fraction: 0.05 Resolve or not resolve? Simulations performed with MFIX

20 Simple example: turbulent fluidized bed V g = 0; V p = V t Sedimentation of a single particle V g = V t ; V p = 0 Levitation of a single particle V g > V t ; V p =? Vertical conveying of a single particle V g > V t Presence of other particles typically hinder! Bed emptying time for turbulent fluidized beds are much longer than predicted by this model

21 Simple example: turbulent fluidized bed Standard form f homo ( u u ) = β d f s Modified form Bed expansion decreases as one improves resolution * When one does not resolve all the flow structures, one must correct the drag force model O Brien & Syamlal, CFB 4 (1993) Li & Kwauk (1994) EMMS model McKeen & Pugsley (2003) tune cluster size homo ( u u )( 1 ( ) ( φ )) f = β c Δ h d f s Function of resolution Extent of correction depends on chosen resolution *,# * Parmentier et al., ICHE J. (2011); Igci et al., ICHE J. (2010)

22 Newly emerging drag force models ( u u )( 1 ( ) ( φ )) f = β c Δ h d f s homo h ( φ ) 0 as 0 c Δ 1 as Δ Further refinements Parmentier et al. (2011) dynamically adjust c. h 2D Particle volume fraction Igci et al. add wall correction We typically use different grid resolutions when simulating pilot scale and commercial scale units The effective drag law is now different for the two cases! * Parmentier et al., ICHE J. (2011); Igci et al., ICHE J. (2010, 2011)

23 Newly emerging drag force models ( u u )( 1 ( ) ( φ )) f = β c Δ h d f s homo h ( φ ) 0 as 0 c Δ 1 as Δ EMMS model * h 2D Particle volume fraction f homo ( u u )( 1 h ( φ )) = β d f s EMMS * Li & Kwauk (1994)

24 Solids t ( ) ( ) Particle phase stress particle phase stress effective buoyancy ρ φ u + ρ φ u u = σ φ P + f + ρ φ g s s s s s s s s s f d s s inertia interphase interaction gravity Campbell, JFM, 465, 261 (2002); Tardos et al., Powder Technol., 131, 23 (2003): Lois & Carlson, Euro. Phys. Lett., 80, (2007).

25 Discrete Element Method Newton s equations Spring dashpot contact model Open domain (LMMPS * ) + commercial Can include cohesion, liquid bridge, nonspherical shape, size distribution * LMMPS code. Plimpton, J. Comp. Phys., 117, 1 (1995) Cundall & Strack, Geotechnique, 29, 47 (1979); Zhu et al., CES, 63, 5728 (2008).

26 DEM simulations of simple shear flow Scaled Pressure Scaled Shear Stress Quasi static intermediate Quasi static intermediate inertial inertial Scaled shear rate Chialvo et al. (2011).

27 DEM simulations of simple shear flow Quasi static Rescaled Pressure Quasi static Rescaled Shear Stress interme diate intermediate inertial inertial Rescaled shear rate Chialvo et al. (2011).

28 Standpipe flow of FCC particles 0.60 verage solids volume fraction External aeration rate (m 3 /hr) Increasing external aeration unstable Friction s s s u Srivastava et al. Powder Tech., 100, 173 (1998) 0% 12% 24% 36% 48% 60%

29 DEM simulations of simple shear flow Scaled Pressure Do such small Scaled levels Shear of stress Stress matter in fluidized beds and CFBs? They influence the size of the small clusters and streamers When not resolving all the flow structures, one must correct : the drag force model + effective stresses due to fluctuating meso scale structures Chialvo et al. (2011).

30 Coker model simulation Instantaneous Time veraged How to go from scaled down unit to full commercial scale? Traditional keep the same grid size; not practical Remedy: Use larger grids with appropriately scaled constitutive laws Chen et al., pplication of Coarse Grained Drag Law in Computational Fluid Dynamics Simulations of Fluidized 325,000 grids; 32 processors 1 computational day per second of real time Beds, IChE nnual Meeting (2008) Fully cylindrical cold flow model of Syncrude coker 1/19 th scale. Song et al., Powder Tech, 147, 126 (2004).

31 Handling particle size distribution Inherent size distribution Changing particle properties Euler Euler approach Multiple particle phases Method of moments Generalize kinetic theory Generalize drag law Cast the particle phase balance equations in a Lagrangian framework Follow the motion of a few million test particles, referred to as parcels, while treating the remaining (ghost) particles through mean field Multi Phase Particle In Cell method * Much easier to handle particle size distribution and changing particle properties; faster computations * Originally derived directly from a probabilistic approach: D.M. Snider, J. Comp. Phys., 170, 523 (2001)

32 ρ v Discrete Particle Model pproach du v = σ v σ p p p p s p f dt φ s Effective buoyancy particle phase stress + ρ v g weight vp f φ { s p p d all other fluid-particle interactions What are the right drag law and effective stresses to use when all flow structures are not resolved? Particle phase stress term captures the effects of all collisions No need to track collisions between parcels Different parcels can have different underlying particle size, property, etc. Parcels can be allowed to interact in the mean: mimic kinetic theory, transfer liquids, etc. Snider, J. Comp. Phys., 170, 523 (2001); O Rourke & Snider, CES, 65, 6014 (2010); O Rourke et al., CES, 64, 1784 (2009).

33 CPFD Simulation of a Settler Courtesy: Dale Snider & Ken Williams, CPFD Software, LLC.

34 ρ v Discrete Particle Model pproach d u v = σ v σ p p p p p s p f dt φ s Effective buoyancy particle phase stress + ρ v g weight vp f φ { s p p d all other fluid-particle interactions If parcel size = particle size: Track all collisions CFD DEM * MP PIC: Particle phase stress term captures the effects of all collisions No need to track collisions between parcels What if we track collisions between parcels? # Pretty well in quasi static regime Much less accurately in the inertial regime # Patankar & Joseph, IJMF, 27, 1659 (2001); # Benyahia & Galvin, IECR, 49, (2010); * Chu et al., CES, 66, 834 (2011)

35 U r p,0 Discrete Particle Model with Collision Tracking y x particle reservoir (d p, φ p ) R sample y jet D tar Pros and cons for tracking collisions between parcels? Still evolving Compare scattering angles predicted with experimental data Cheng et al., PRL, 99, (2007); Radl et al. (2011)

36 Verification vs. Validation Can the simulator correctly reproduce analytically obtainable results for some test problems? Can the independence of the predictions to simulator parameters be ascertained? Grid size, parcel size, etc. Model vs. model: CFD DEM, Euler Euler, MP PIC, etc. Begin with a kinetic theory based Euler Euler model and filter to obtain a coarse grained Euler Euler model Show that both model yield the same solution Comparison against experimental data Many early validation studies were based on 2D simulations Quantitative differences between 2D and 3D Often validation are with data in pilot scale units with some tuning How do we know that the same tuning will work for larger scale where we will have coarser grid resolution?

37 Things to consider in validation Comparison against experimental data at a minimum of two different scales Flow regime maps covering turbulent to fast fluidization Good data base for riser flows: Vary gas flux while holding solids flux constant Vary solids flux while holding gas flux constant Good database for standpipes are needed as well

38 Outlook More and more 3D simulations of the full CFB loop GPU based computing Standpipe flows: detailed experimental characterization and validation of simulations more needed Both Euler Euler and Euler Lagrange will continue to develop; but, Euler Lagrange approach (Parcel based: with or without collision tracking) is very likely to gain more traction: Ease of handling PSD and changing particle properties How to adapt the ideas on microscale modeling (such as kinetic theory) and coarse simulations developed for Euler Euler approach to the discrete methods fertile topic Carbon capture, chemical looping, methanol to olefin More and more effort on wet systems + More case studies on reacting flows Old, but still very relevant problems

Filtered Two-Fluid Model for Gas-Particle Suspensions. S. Sundaresan and Yesim Igci Princeton University

Filtered Two-Fluid Model for Gas-Particle Suspensions. S. Sundaresan and Yesim Igci Princeton University Filtered Two-Fluid Model for Gas-Particle Suspensions S. Sundaresan and Yesim Igci Princeton University Festschrift for Professor Dimitri Gidaspow's 75th Birthday II Wednesday, November 11, 2009: 3:15

More information

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors

On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors On the validity of the twofluid model for simulations of bubbly flow in nuclear reactors Henrik Ström 1, Srdjan Sasic 1, Klas Jareteg 2, Christophe Demazière 2 1 Division of Fluid Dynamics, Department

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

Multiphase Flows. Mohammed Azhar Phil Stopford

Multiphase Flows. Mohammed Azhar Phil Stopford Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multi-fluid flow applications Coupled

More information

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds

PRESENTATION SLIDES: Hydrodynamic Scale-Up of Circulating Fluidized Beds Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 PRESENTATION SLIDES: Hydrodynamic Scale-Up

More information

MSc. Thesis Project. Simulation of a Rotary Kiln. MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye. Challenge the future

MSc. Thesis Project. Simulation of a Rotary Kiln. MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye. Challenge the future MSc. Thesis Project Simulation of a Rotary Kiln MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye 1 Problem Description What is a Rotary Kiln? A Rotary Kiln is a pyroprocessing device used to raise

More information

Powder Technology 197 (2010) Contents lists available at ScienceDirect. Powder Technology. journal homepage:

Powder Technology 197 (2010) Contents lists available at ScienceDirect. Powder Technology. journal homepage: Powder Technology 197 (2010) 241 246 Contents lists available at ScienceDirect Powder Technology journal homepage: www.elsevier.com/locate/powtec EMMS-based Eulerian simulation on the hydrodynamics of

More information

Inter-particle force and stress models for wet and dry particulate flow at the intermediate flow regime

Inter-particle force and stress models for wet and dry particulate flow at the intermediate flow regime Inter-particle force and stress models for wet and dry particulate flow at the intermediate flow regime Xi Yu 1, Raffaella Ocone 3, Sotos Generalis 2, Yassir Makkawi 1 1 Chemical Engineering & Applied

More information

Verification of Sub-Grid Drag Modifications for Dense Gas-Particle Flows in Bubbling Fluidized Beds

Verification of Sub-Grid Drag Modifications for Dense Gas-Particle Flows in Bubbling Fluidized Beds Engineering Conferences International ECI Digital Archives The 4th International Conference on Fluidization From Fundamentals to Products Refereed Proceedings 23 Verification of Sub-Grid Drag Modifications

More information

Liquid Feed Injection in a High Density Riser

Liquid Feed Injection in a High Density Riser Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Liquid Feed Injection in a High Density

More information

DIRECT NUMERICAL SIMULATION OF LIQUID- SOLID FLOW

DIRECT NUMERICAL SIMULATION OF LIQUID- SOLID FLOW DIRECT NUMERICAL SIMULATION OF LIQUID- SOLID FLOW http://www.aem.umn.edu/solid-liquid_flows Sponsored by NSF-Grand Challenge Grant Fluid Mechanics & CFD Computer Scientists D.D. Joseph Y. Saad R. Glowinski

More information

Powder Technology 241 (2013) Contents lists available at SciVerse ScienceDirect. Powder Technology

Powder Technology 241 (2013) Contents lists available at SciVerse ScienceDirect. Powder Technology Powder Technology 24 (23) 74 8 Contents lists available at SciVerse ScienceDirect Powder Technology journal homepage: www.elsevier.com/locate/powtec Periodic flow structures in vertical gas-particle flows

More information

Catalyst Attrition in the CFB Riser

Catalyst Attrition in the CFB Riser Engineering Conferences International ECI Digital Archives 1th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-1 Refereed Proceedings Spring 5-4-211 Catalyst Attrition

More information

CFD simulation of gas solid bubbling fluidized bed: an extensive assessment of drag models

CFD simulation of gas solid bubbling fluidized bed: an extensive assessment of drag models Computational Methods in Multiphase Flow IV 51 CFD simulation of gas solid bubbling fluidized bed: an extensive assessment of drag models N. Mahinpey 1, F. Vejahati 1 & N. Ellis 2 1 Environmental Systems

More information

Simulation Of Gas-Solid Turbulent Fluidized Bed Hydrodynamic

Simulation Of Gas-Solid Turbulent Fluidized Bed Hydrodynamic Engineering Conferences International ECI Digital Archives The 14th International Conference on Fluidization From Fundamentals to Products Refereed Proceedings 2013 Simulation Of Gas-Solid Turbulent Fluidized

More information

Implementing Fundamental Pharmaceutical Science and Materials/Engineer Expertise in Scale-up

Implementing Fundamental Pharmaceutical Science and Materials/Engineer Expertise in Scale-up Implementing Fundamental Pharmaceutical Science and Materials/Engineer Expertise in Scale-up 2 nd FDA/PQRI Conference on Advancing Product Quality Session: The Science of Tech Transfer/Scale-up North Bethesda,

More information

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo-

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo- 1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II -Haryo Tomo- 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different

More information

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &

More information

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor

Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Journal of Engineering Science, Vol. 10, 95 105, 2014 Prediction of Minimum Fluidisation Velocity Using a CFD-PBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Vahid Akbari and Mohd.

More information

Numerical Simulation of Elongated Fibres in Horizontal Channel Flow

Numerical Simulation of Elongated Fibres in Horizontal Channel Flow Martin-Luther-Universität Halle-Wittenberg Mechanische Verfahrenstechnik 4th Workshop on Two-Phase Flow Predictions Halle, 7-0 September 05 Numerical Simulation of Elongated Fibres in Horizontal Channel

More information

FINITE ELEMENT METHOD IN

FINITE ELEMENT METHOD IN FINITE ELEMENT METHOD IN FLUID DYNAMICS Part 6: Particles transport model Marcela B. Goldschmit 2 3 Lagrangean Model The particles movement equations are solved. The trajectory of each particles can be

More information

Outline. Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids

Outline. Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids Oleh Baran Outline Overview of DEM in STAR-CCM+ Recent DEM capabilities Parallel Bonds in STAR-CCM+ Constant Rate

More information

Simulation of Particulate Solids Processing Using Discrete Element Method Oleh Baran

Simulation of Particulate Solids Processing Using Discrete Element Method Oleh Baran Simulation of Particulate Solids Processing Using Discrete Element Method Oleh Baran Outline DEM overview DEM capabilities in STAR-CCM+ Particle types and injectors Contact physics Coupling to fluid flow

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Hydrodynamic modeling of the entrainment of Geldart A group particles in gas-solid fluidized bed: The effect of column diameter

Hydrodynamic modeling of the entrainment of Geldart A group particles in gas-solid fluidized bed: The effect of column diameter Korean J. Chem. Eng., 8(7), 1599-1607 (011) DOI: 10.1007/s11814-011-000-y INVITED REVIEW PAPER Hydrodynamic modeling of the entrainment of Geldart A group particles in gas-solid fluidized bed: The effect

More information

Experimental Investigation on Segregation of Binary Mixture of Solids by Continuous Liquid Fluidization

Experimental Investigation on Segregation of Binary Mixture of Solids by Continuous Liquid Fluidization 214 5th International Conference on Chemical Engineering and Applications IPCBEE vol.74 (214) (214) IACSIT Press, Singapore DOI: 1.7763/IPCBEE. 214. V74. 5 Experimental Investigation on Segregation of

More information

We ve all been there, sitting in a conference room,

We ve all been there, sitting in a conference room, As appeared in April 2013 PBE Copyright CSC Publishing www.powderbulk.com Particle technology: CFD modeling made easy Ray Cocco Particulate Solid Research Inc. Using computer modeling as a tool for simulating

More information

Bed Sherwood Number and Chemical Kinetic Coefficient in a Fuel Reactor of Chemical Loopling Combustion by Eulerian CFD Modeling

Bed Sherwood Number and Chemical Kinetic Coefficient in a Fuel Reactor of Chemical Loopling Combustion by Eulerian CFD Modeling Engineering Conferences International ECI Digital Archives The 14th International Conference on Fluidization From Fundamentals to Products Refereed Proceedings 2013 Bed Sherwood Number and Chemical Kinetic

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information

Experiments at the University of Minnesota (draft 2)

Experiments at the University of Minnesota (draft 2) Experiments at the University of Minnesota (draft 2) September 17, 2001 Studies of migration and lift and of the orientation of particles in shear flows Experiments to determine positions of spherical

More information

Simulations of dispersed multiphase flow at the particle level

Simulations of dispersed multiphase flow at the particle level Simulations of dispersed multiphase flow at the particle level Jos Derksen Chemical Engineering Delft University of Technology Netherlands j.j.derksen@tudelft.nl http://homepage.tudelft.nl/s0j2f/ Multiphase

More information

Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH

Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH 2011 ANSYS, Inc., Markus Braun 1 Overview The Euler/Lagrange concept Breaking the barrier

More information

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones I. Abu-Mahfouz 1, J. W. McTernan 2 1 Pennsylvania State University - Harrisburg, Middletown, PA, USA 2 Buell Division of Fisher-Klosterman

More information

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany www-mvt.iw.uni-halle.de

More information

A review of EMMS drag

A review of EMMS drag 12 th Int. Conf. Fluidized Bed Technology May 23-26, 2017, Krakow, Poland A review of drag Bona Lu, Fei Li, Wei Wang, Xinhua Liu, Junwu Wang, Ning Yang, Wei Ge, Jinghai Li Institute of Process Engineering

More information

DEM Study of Fluidized Bed Dynamics During Particle Coating in a Spouted Bed Apparatus

DEM Study of Fluidized Bed Dynamics During Particle Coating in a Spouted Bed Apparatus Engineering Conferences International ECI Digital Archives th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB- Refereed Proceedings Spring 5-5-2 DEM Study of Fluidized

More information

Ozone Decomposition in a Downer Reactor

Ozone Decomposition in a Downer Reactor Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2 Ozone Decomposition in a Downer Reactor W.

More information

DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques

DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques DEM 6 6 th International Conference on Discrete Element Methods and Related Techniques August 5-6, 2013 Graham Mustoe DEM6 Conference Chair Graham Mustoe DEM6 Conference Organizational Team Melody Francisco

More information

A Baseline Drag Force Correlation for CFD Simulations of Gas-Solid Systems

A Baseline Drag Force Correlation for CFD Simulations of Gas-Solid Systems A Baseline Drag Force Correlation for CFD Simulations of Gas-Solid Systems James M. Parker CPFD Software, LLC 2016 NETL Workshop on Multiphase Flow Science August 9 10, 2016 Morgantown, WV 1 Barracuda

More information

Micro-scale modelling of internally

Micro-scale modelling of internally Micro-scale modelling of internally unstable soils Dr Tom Shire School of Engineering, University of Glasgow 1 st September 2017 Outline Internal instability Micro-scale modelling Hydromechanical criteria

More information

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing Presented by: Irla Mantilla N. irlamn@uni.edu.pe National University of Engineering, Lima - Perú Abstract We formulate a new mathematical

More information

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34 POSITION R & D Officer M.Tech Candidates having M.Tech / M.E. Chemical Engg. with 60% marks (aggregate of all semesters/years) and 50% for SC/ST/PWD are being called for Computer Based Test basis the information

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

Modeling of dispersed phase by Lagrangian approach in Fluent

Modeling of dispersed phase by Lagrangian approach in Fluent Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes

Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute

More information

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach TFM Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF)

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal and Vijaya Rani PI: Sarma L. Rani Department of Mechanical and Aerospace

More information

Modified Kinetic Theory Applied to the Shear Flows of Granular Materials

Modified Kinetic Theory Applied to the Shear Flows of Granular Materials Modified Kinetic Theory Applied to the Shear Flows of Granular Materials Yifei Duan, 1) Zhi-Gang Feng, 1,a) Efstathios E. Michaelides, 2) Shaolin Mao 3) 1 Department of Mechanical Engineering, UTSA, San

More information

Measuring Particle Velocity Distribution in Circulating Fluidized Bed

Measuring Particle Velocity Distribution in Circulating Fluidized Bed Measuring Particle Velocity Distribution in Circulating Fluidized Bed Haneen T. Shatub 1, Saad N. Saleh 2, Ahmed A. Mohammed 3 1,2 Department of chemical Engineering, Tikrit University, Tikrit, Iraq 3

More information

Discrete particle analysis of 2D pulsating fluidized bed. T. Kawaguchi, A. Miyoshi, T. Tanaka, Y. Tsuji

Discrete particle analysis of 2D pulsating fluidized bed. T. Kawaguchi, A. Miyoshi, T. Tanaka, Y. Tsuji Discrete particle analysis of 2D pulsating fluidized bed T. Kawaguchi, A. Miyoshi, T. Tanaka, Y. Tsuji Department of Mechanical Engineering, Osaka University, Yamada-Oka 2-, Suita, Osaka, 565-087, Japan

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal PI: Sarma L. Rani Department of Mechanical and Aerospace Engineering The

More information

EFFECT OF A CLUSTER ON GAS-SOLID DRAG FROM LATTICE BOLTZMANN SIMULATIONS

EFFECT OF A CLUSTER ON GAS-SOLID DRAG FROM LATTICE BOLTZMANN SIMULATIONS Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 EFFECT OF A CLUSTER ON GAS-SOLID DRAG FROM LATTICE BOLTZMANN SIMULATIONS Milinkumar

More information

We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit

We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit We create chemistry that makes individual refiners love fueling the world. Troubleshooting Catalyst Losses in the FCC Unit Rebecca Kuo, Technical Service Engineer RefComm Galveston 2016 1 Overview Introduction

More information

CFD Modelling of the Fluid Flow Characteristics in an External-Loop Air-Lift Reactor

CFD Modelling of the Fluid Flow Characteristics in an External-Loop Air-Lift Reactor A publication of 145 CHEMICAL ENGINEERING TRANSACTIONS VOL. 2, 21 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 21, AIDIC Servizi S.r.l., ISBN 978-88-958-2-5; ISSN 1974-9791 The Italian Association

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Numerical Simulation of Downhole Completion Equipment via Computational Fluid Dynamics

Numerical Simulation of Downhole Completion Equipment via Computational Fluid Dynamics , pp.48-52 http://dx.doi.org/10.14257/astl.2014.63.10 Numerical Simulation of Downhole Completion Equipment via Computational Fluid Dynamics Chao Zheng, Yonghong Liu*, Hanxiang Wang, Renjie Ji, Zengkai

More information

Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows. René V.A. Oliemans

Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows. René V.A. Oliemans Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows René V.A. Oliemans ERCOFTAC Seminar, Innventia, Stockholm, June 7-8, 2011 1 Vermelding onderdeel organisatie Department of

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

A Review on Gas Solid Cyclone Separator Parametric Analysis Shah Nikhil 1

A Review on Gas Solid Cyclone Separator Parametric Analysis Shah Nikhil 1 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 A Review on Gas Solid Cyclone Separator Parametric Analysis Shah Nikhil 1 1 M.E. Student

More information

DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION

DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION TMS (The Minerals, Metals & Materials Society), DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION G.F. Yao, C. W. Hirt, and

More information

Observation of Flow Regime Transition in a CFB Riser Using an LDV

Observation of Flow Regime Transition in a CFB Riser Using an LDV Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-4-2011 Observation

More information

MODELLING OF BASIC PHENOMENA OF AEROSOL AND FISSION PRODUCT BEHAVIOR IN LWR CONTAINMENTS WITH ANSYS CFX

MODELLING OF BASIC PHENOMENA OF AEROSOL AND FISSION PRODUCT BEHAVIOR IN LWR CONTAINMENTS WITH ANSYS CFX Jörn Stewering, Berthold Schramm, Martin Sonnenkalb MODELLING OF BASIC PHENOMENA OF AEROSOL AND FISSION PRODUCT BEHAVIOR IN LWR CONTAINMENTS WITH ANSYS CFX Introduction Situation: In the case of an severe

More information

Elutriation from Fluidized Beds: Comparison Between Experimental Measurements and 3D Simulation Results

Elutriation from Fluidized Beds: Comparison Between Experimental Measurements and 3D Simulation Results Engineering Conferences International ECI Digital Archives 1th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-1 Refereed Proceedings Spring 5-3-211 Elutriation

More information

Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones To cite this article: Erikli and A

More information

Chapter 6 Pneumatic Transport

Chapter 6 Pneumatic Transport Chapter 6 Pneumatic Transport 6.1 Pneumatic Transport Use of a gas to transport a particulate solid through pipeline Powder Rotary valve Blower Three major variables for pneumatic conveying - solid mass

More information

Size Segregation in the Brazil Nut Effect

Size Segregation in the Brazil Nut Effect Size Segregation in the Brazil Nut Effect Aline C. Soterroni and Fernando M. Ramos Applied Computing Program, National Institute for Space Research, São José dos Campos, Brazil Laboratory of Computing

More information

Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production and CLC

Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production and CLC The 6 th High temperature Solid Looping Cycles Network Meeting September 1 th -2 th,2015,politecnico Di Milano Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production

More information

Overview of Turbulent Reacting Flows

Overview of Turbulent Reacting Flows Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Ever-Expanding

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

Chapter 7 Mixing and Granulation

Chapter 7 Mixing and Granulation Chapter 7 Mixing and Granulation 7.1 Mixing and Segregation (Chapter 9) Mixing vs. segregation (1) Types of Mixture * Perfect mixing Random mixing Segregating mixing Figure 9.1 (2) Segregation 1) Causes

More information

Analysis of ball movement for research of grinding mechanism of a stirred ball mill with 3D discrete element method

Analysis of ball movement for research of grinding mechanism of a stirred ball mill with 3D discrete element method Korean J. Chem. Eng., 25(3), 585-592 (2008) SHORT COMMUNICATION Analysis of ball movement for research of grinding mechanism of a stirred ball mill with 3D discrete element method Seongsoo Kim and Woo

More information

Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator

Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator RESEARCH ARTICLE OPEN ACCESS Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator Ganga Reddy C* Umesh Kuppuraj** *(Mechanical Centre of Excellence, HCL Technologies, Bangalore-562106) ** (Mechanical

More information

AIRLIFT BIOREACTORS. contents

AIRLIFT BIOREACTORS. contents AIRLIFT BIOREACTORS contents Introduction Fluid Dynamics Mass Transfer Airlift Reactor Selection and Design 1 INTRODUCTION airlift reactor (ALR) covers a wide range of gas liquid or gas liquid solid pneumatic

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR

CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR International Journal of Mechanical and Production Engineering (IJMPERD) Vol.1, Issue 2 Dec 2011 110-123 TJPRC Pvt. Ltd., CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR Mr.

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Enrico Calzavarini Physics of Fluids Group University of Twente The Netherlands with Massimo Cencini CNR-ISC

More information

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation : Dynamics of shear-induced aggregation G. Frungieri, J. Debona, M. Vanni Politecnico di Torino Dept. of Applied Science and Technology Lagrangian transport: from complex flows to complex fluids Lecce,

More information

DISCRETE ELEMENT SIMULATIONS OF WATER FLOW THROUGH GRANULAR SOILS

DISCRETE ELEMENT SIMULATIONS OF WATER FLOW THROUGH GRANULAR SOILS 15th ASCE Engineering Mechanics Conference June 2-5, 2002, Columbia University, New York, NY EM 2002 DISCRETE ELEMENT SIMULATIONS OF WATER FLOW THROUGH GRANULAR SOILS Usama El Shamy 1, Student Member,

More information

Granular Flow in Silo Discharge: Discrete Element Method Simulations and Model Assessment

Granular Flow in Silo Discharge: Discrete Element Method Simulations and Model Assessment Mechanical Engineering Publications Mechanical Engineering 9-11-2013 Granular Flow in Silo Discharge: Discrete Element Method Simulations and Model Assessment Vidyapati Vidyapati Iowa State University,

More information

The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts

The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts Korean J. Chem. Eng., 18(4), 561-566 (2001) The Slug Flow Behavior of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts Hongil Cho, Guiyoung Han and Guiryong Ahn* Department

More information

This is an author-deposited version published in : Eprints ID : 9231

This is an author-deposited version published in :   Eprints ID : 9231 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Measuring the flow properties of powders. FT4 Powder Rheometer. freemantechnology

Measuring the flow properties of powders. FT4 Powder Rheometer. freemantechnology Measuring the flow properties of powders FT4 Powder Rheometer freemantechnology Efficiency, quality and productivity Successful powder processing requires the ability to reliably and repeatably predict

More information

Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale

Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale Simulation of Soot Filtration on the Nano-, Micro- and Meso-scale L. Cheng 1, S. Rief 1, A. Wiegmann 1, J. Adler 2, L. Mammitzsch 2 and U. Petasch 2 1 Fraunhofer-Institut Techno- und Wirtschaftsmathematik,

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Reynolds number scaling of inertial particle statistics in turbulent channel flows

Reynolds number scaling of inertial particle statistics in turbulent channel flows Reynolds number scaling of inertial particle statistics in turbulent channel flows Matteo Bernardini Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Paolo Orlandi s 70th

More information

Evaluating methods for 3D CFD Models in sediment transport computations

Evaluating methods for 3D CFD Models in sediment transport computations American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Combustion, multiphase flows Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské

More information

The Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel

The Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel www.cfdl.issres.net Vol. 6 (3) September 2014 The Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel Nor Azwadi Che Sidik C and Leila Jahanshaloo

More information

Development of an attrition evaluation method using a Jet Cup rig

Development of an attrition evaluation method using a Jet Cup rig Development of an attrition evaluation method using a Jet Cup rig Benjamin Amblard, Stéphane Bertholin, Carole Bobin, Thierry Gauthier To cite this version: Benjamin Amblard, Stéphane Bertholin, Carole

More information

MODELLING OF GAS-SOLID FLOWS IN FCC RISER REACTORS: FULLY DEVELOPED FLOW

MODELLING OF GAS-SOLID FLOWS IN FCC RISER REACTORS: FULLY DEVELOPED FLOW Second International Conference on CFD in Minerals and Process Industries CSIRO, Melbourne, Australia - December, 999 MODELLING OF GAS-SOLID FLOWS IN FCC RISER REACTORS: FULLY DEVELOPED FLOW Vivek V. RANADE

More information

MODELLING OF MULTIPHASE FLOWS

MODELLING OF MULTIPHASE FLOWS MODELLING OF MULTIPHASE FLOWS FROM MICRO-SCALE TO MACRO-SCALE Department of Applied Mechanics, University of Technology, Gothenburg, Sweden. Siamuf Seminar October 2006 OUTLINE 1 GROUP PHILOSOPHY 2 PROJECTS

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Fair Weather over Land

More information