Example 8: CSTR with Multiple Solutions

Size: px
Start display at page:

Download "Example 8: CSTR with Multiple Solutions"

Transcription

1 Example 8: CSTR with Multiple Solutions This model studies the multiple steady-states of exothermic reactions. The example is from Parulekar (27) which in turn was modified from one by Fogler (1999). The species and reactions do not represent a real system. Therefore, the physical properties have been specified to match the conditions given by Parulekar. Some conditions have been changed to give more realistic results, but the basic results regarding the multiple steady states have been retained. For this example, the intermediate compound, B, will be assumed the desired product. A Simple Reaction System Rg cal mol K A --> B B --> C gas law constant R R1 Thermophysical properties species molecular weights heats of formation free energies C, H, O atoms in each species A B C Inert Mw gm mol H f J mol F 1 3 cal mol Atom H f valueswere selected based on given H rxn, Parulekar (27) F will not be used for this problem E8: 1

2 The product of the molecular weight of A and the molar density, c, must equal the liquid density, which is assumed below to be that of water. The initial concentration of A was given as.3 mol/l by Parulekar. That would result in molecular weights of To be more realistic, the above molecular weights have been assumed, which makes the molar concentration 3 mol/l. These changes do not affect the solution because the two parameters, Mw and c, are always multiplied by each other, and the result is thus constant. NC rows (Mw) n NC 1 number of components component index Inlet conditions T 3 K reference temperature for dimensionless temperature (not the inlet temperature) Feed composition mole fractions 1 mfin A B C Inert mfin = 1 check sum M f ω mfin Mw molecular weight of feed mixture M f =.33 kg mol ( mfin Mw) 1 convert mole fractions to weight fractions M f ω = E8: 2

3 Fluid properties ρ 1 gm cm 3 c ρ = 3.33 mol M f L cp 3 3 J 3 mol K 3 Cp ( ω, Θ) cp ω Mw density of fluid molar density of feed heat capacities, molar basis heat capacities on a mass basis Cp is not a function of composition or temperature in this example, but the function is used to be consistent with other models and to make the model easily adaptable to other reaction systems. Stoichiometry 1 1 ν 1 1 rows are reactions, columns are components check stoichiometry and Mw = ν Mw kg mol This vector should be null if Mw and ν are correct. E8: 3

4 Heat of reaction H o ν H f standard state, at 298 K H o = J mol Cp ν cp = J mol K difference in heat capacities of products and reactants DHT (T) T This function provides the dependence of enthalpy on temperature. For cp constant with temperature, the function is simply the absolute temperature, T. H (T) H o + Cp ( DHT (T) DHT ( 298 K)) heat of reaction is constant for this example because Cp= Reaction Rate Expressions E activation energies cal mol pre-exponential rate constants E A 3.3 exp Rg 3 K 1 min A 1 E 4.58 exp 1 Rg 5 K 1 min The above rate constants result in a nominal space time of.1 min [Parulekar (27)]. To make the problem more typical for industry, the rate constants will be divided by 1. This will correspondingly increase the space times to the order of 1 min. These changes do not affect the multiple temperature solutions. E8: 4

5 A A 1 The rate expressions in terms of the state variables act 1 ω E Mw A exp θ T Rg ω Mw rxn ( ω, θ, p, act) c ω 1 E Mw A exp 1 1 θ T Rg 1 ω Mw The concentrations used in the rate expressions are in terms of mol/cu m. The concentrations have been written using the weight fractions, converting to mole fractions, and multiplying by the molar density, c. Pressure is not generally needed for liquid reaction rates, but it has been included in the argument list to be compatible with the other models. The catalyst activity, act, has been assumed to be 1. Net production rates T Rxn ( ω, θ, p, act) ν rxn ( ω, θ, p, act) mass The energy balance will use the difference in enthalpy of feed and effluent streams instead of a heat production term. E8: 5

6 CSTR with reactor temperature and space time as a parameters This is a design model for a non-adiabatic reactor. The adiabatic version will be solved in the next section..33 MwD diag (Mw) = kg mol a matrix version of the Mw vector is needed below MwDI MwD 1 the inverse is computed and assigned to a matrix to avoid repeat computations in the solve block Solve block The equations are written in vector/matrix form. Guess Values Constraints Solver ω ω ω ω + MwD Rxn ω, Tr, 1, act τ = T ρ 1 ω= T Atom MwDI ω ω = CSTR ( τ, Tr) find (ω) Initial guess for outlet weight fractions. Mass balances for each species. The last constraints are C, H atom balances which are not needed for this problem. They have been included so that the file may be easily modified for a realistic problem. The result, CSTR, is the outlet weight fraction vector as a function of τ and Tr. E8: 6

7 Define space time and temperature cases t i 8 time index τ_c t 1 (.1 t +.2) s space times 4 reactor temperature index Tout 2 K Tout Tout + 2 K outlet temperatures i + 1 i solve for each case ωout CSTR τ_c, Tout t, i t i outlet mass fractions for each case examine a case to check for errors tc 4 ic 15 select the space time and outlet temperature indexes of the case τ_c = 1 min Tout = 5K the selected case values for the independent variables tc ic ωout t, i Mw mfout t, i ωout t, i Mw outlet mole fractions, converted from outlet mass fractions E8: 7

8 inlet weight fractions outlet weight fractions inlet mole fractions outlet mole fractions 1 ω = ωout tc, ic = mfin = mfout tc, ic = ω = 1 ωout = 1 mfin = 1 mfout = 1 tc, ic check mass balances of elements tc, ic ω ωout T tc, ic Atom gm = Mw mol This result should be a null vector. Determine desired operating condition from plots conversion for each case ωout t, i conv 1 t, i ω intermediate B outlet mass fraction Bout ωout t, i, t i 1 E8: 8

9 Figure 8.1: Conversion Map Figure 8.2: B Effluent Weight Fraction conv Bout Conversion is sensitive to temperature but not space velocity for the ranges selected. There is a narrow window of reactor temperature that yields a high selectivity to the intermediate product. Select optimum (high conversion and selectivity to desired product) space time index and τopt 4 tout 15 τ opt = 1 min τ_c τopt T opt = 5K Tout tout values selected Tout index using above plots. Now that the desired reactor space time and temperature have been set, include the heat balance to see if operation at those conditions is feasible. E8: 9

10 Energy balance Thus far, the results have not been dependent on the inlet temperature. For an energy balance,the inlet temperature, needed. Tin, is Heat balance for a given (optimal) space time τ opt = 1 min Enthalpy out - Enthalpy in Del_H ( Tin, Tr, ω, ω1) H f ω1 + Cp ω1, Tr ( DHT (Tr) DHT ( 298 K)) H f ω + Cp ω, Tin ( DHT (Tin) DHT ( 298 K)) Mw T Mw T j 25 inlet temperature index Tin 25 K Tin Tin + 5 K inlet temperature vector j + 1 j DH Del_H Tin, Tout, ω, ωout j, i j i τopt, i matrix of enthalpy difference for the given space time, which is given implicitly via ωout τopt E8: 1

11 Figure 8.3: Enthalpy Change for Given Tau vertical axis: Tout index Look up the values that correspond to indexes below ⁶ ⁶ 1.5 1⁶ 3 1 1⁶ ⁵ ¹⁰ 5 1⁵ ¹⁰ ⁵ -1 1⁶ -1 1⁶ ⁶ -5 1⁵ 5 1⁵ 1 1⁶ 1.5 1⁶ 2 1⁶ 2.5 1⁶ 3 1⁶ horizontal axis: Tin index DH J kg Tin = K Tout = to see rest of vectors, click on the 3 dots and drag the view box K E8: 11

12 Figure E8.3 can be used to explore the possibility of operating at the desired outlet temperature in order to achieve the conversion and selectivity of the optimum. The chosen Tout index, tout = 15, may be found on the vertical axis, and then the heat exchange required at different inlet temperatures are examined by moving at constant Tout across the plot. The contours are constantheat exchanged, negative for cooling, positive for heating. Point 1on the plot is on the adiabatic curve for the selected outlet temperature. Point 2is on a curve with heat removal at the same outlet temperature. Thus, for a given τ, the approximate inlet and outlet temperatures and heat exchanged may be determined with the above plot. For the current example, it appears that multiple solutions will exist regardless of the chosen Tin and heat exchange pair. The designer may wish to discontinue this case and try using inerts to avoid the multiple solutions. For this example, the current case will be carried forward. The horizontal Tout line in Fig E8.3 intersects the adiabatic curve (see"1") at Tin index of about 1. This is Tin = 3K as 1 shown to the right of the graph. The slope of the heat exchange curve is positive at this intersection, indicating the operating point is stable. Instead of adiabatic operation, assume the inlet temperature is given as 36 K, or Tin index of 22. This is point "2" on the graph. The Tin and heat exchange chosen will be used for initial guesses for Fig E8.4. select inlet temperature and heat exchanged tin 22 index for Tin chosen from above plot Qm J kg given the outlet and inlet temperature indexes, estimate the heat exchange needed (the DH contours in Fig E8.3 are equal to Qm) Q ( x, y) y heat exchange curve (to plot the vertical line in Figure 8.4 at Qm) E8: 12

13 Example for Tin = 36K, Qm = J, Tout = 5K, τ = tin kg opt 6s tout Figure 8.4: Operating Curve and Heat Exchange 1 1³ Tout i (K) 6 Q Qm, Tout (K) i ⁶ ⁶ ⁶ -7 1⁵ ⁵ 3.5 1⁵ 7 1⁵ 1.5 1⁶ 1.4 1⁶ ⁶ 2.1 1⁶ DH tin, i J kg Qm J kg E8: 13

14 The red curve in Fig E8.4 is the heat produced at Tout, including the sensible heat of the inlet and outlet streams, but excluding any heat exchanged. The blue curve, Qm, is the amount of heat exchanged per kg of feed, a value chosen by the user. The solutions are where the heat exchanged equals the heat produced. Traditionally, as shown by Parulekar, the red curve would exclude the sensible heat and the second curve would be a sloping line representing the heat removedby the sensible heat difference. The intersections of the curves in the traditional plot are difficult to detect dueto the nearly equal slopes of the two curves. Parulekar therefore used an iterative calculation to find the roots. With the above plot, the intersections are readily determined using the Plots>Add Horizontal Marker feature. The horizontal line in the plot has been placed at the third highest Tout solution. In Fig E8.4, the first, third and fifth points are stable, and the second and fourth points are unstable. Stable points are on positive slopes of the red curve and unstable points are on the negative slopes. Even with cooling or heating, multiple solutions exist for the desired Tout. The vertical line in the above graph is moved to the left for cooling...to the right for heating (change Qm prior to the plot). Also, the red line can be moved to left orright by selecting a higher or lower inlet temperature (i.e. value of tin), respectively. The possibility of multiple solutions is a red flag for unstable operation even if the point is "stable". The dynamic CSTR model in Example 9 will be used to simulate the startup to the desired intermediate solution. A better option may be to include an inert in the feed. Operation at desired conditions The desired conditions have been selected from the simulations and plots E8.1-4, but the actual design condition has not yet been fully simulated with accuracy. The heat balance is now included in the model so that the reactor temperature becomes a dependent variable. The inlet temperature and space time are specified. Using this model, the conditions selected with the above procedure can be simulated to find the complete composition and outlet temperature at the given space time and inlet temperature. E8: 14

15 Desired conditions This area may be used to change conditions. previously set conditions If different conditions are desired, make the changes above this line. Change indexes for the temperatures and the space time, not the actual variable. This is required for the proper initial guesses and for specification of T. tout = 15 Tout index to set outlet temperature intial guess = 5K Tout tout tin = 22 Tin index to set inlet temperature T = 36K Tin tin τopt = 4 τ_c index to set space time τ = 6s τ_c τopt Qm = m s 2 heat exchanged E8: 15

16 Solve block Guess Values ω1 ωout Tout tout τopt, tout θ1 T initial guesses obtained from cases studied above Del_H T, θ1 T, ω, ω1 + Qm= The energy balance constraint is added. Note that in Prime, the equations may have units, as in the energy balance. Constraints ω ω1 + MwD Rxn ( ω1, θ1, 1, act) τ = ρ 1 ω1= T Atom MwDI ω ω1 = Solver x design θ design find ( ω1, θ1) E8: 16

17 results x design = mass fractions in reactor and in effluent Tr θ design T = K reactor temperature x design x design1 conv ad 1 =.946 conversion of A ω selectivity =.984 selectivity to B ω x design Summary Both a CSTR model and a design procedure were demonstrated. The procedure shown arrives at a desired design without trial and error. By first mapping the conversion and selectivity without the heat balance, multiple steady states are not an issue. After finding the desirable inlet and outlet temperatures and the heat exchange needed, those conditions and an outlet composition from a nearby mapped case provide the initial guesses needed to obtain the desired steady state solution. When compared to the combined analytical/numerical method used by Parulekar, the fully numerical method used above appears quite complicated. Parulekar's method achieves the goal of demonstrating the multiple steady state problem that can arise in CSTRs in a simple manner. The goal for the model presented above is a generic model that is easily changed for other systems. The system used for this example will be used for the dynamic CSTR model in Example 9. Exercise Explore the addition of inerts to obtain a system with a single stable operating point at high conversion and selectivity. An inert compound has been supplied. E8: 17

18 References Fogler, H.S., "Elements of Chemical Reaction Engineering", 3rd Ed., Prentice-Hall (1999). Parulekar, S.J., Illinois Inst. of Technology, Chemical Engineering Education, Winter (27) E8: 18

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

A First Course on Kinetics and Reaction Engineering Example 30.1

A First Course on Kinetics and Reaction Engineering Example 30.1 Example 30.1 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the general approach to solving the design equations for

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Gas Phase

More information

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR Unit 30.Thermal Back-Mixing in a PFR Overview One advantage offered by a CSTR when running an exothermic reaction is that the cool feed gets heated by mixing with the contents of the reactor. As a consequence

More information

PFR with inter stage cooling: Example 8.6, with some modifications

PFR with inter stage cooling: Example 8.6, with some modifications PFR with inter stage cooling: Example 8.6, with some modifications Consider the following liquid phase elementary reaction: A B. It is an exothermic reaction with H = -2 kcal/mol. The feed is pure A, at

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 21 Class Lecture

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water "Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water" by John P. O'Connell Department of Chemical Engineering University of Virginia Charlottesville, VA 22904-4741 A Set

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

A First Course on Kinetics and Reaction Engineering Example 26.3

A First Course on Kinetics and Reaction Engineering Example 26.3 Example 26.3 unit. Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this Problem Statement A perfectly insulated tubular reactor with a diameter

More information

A First Course on Kinetics and Reaction Engineering Example 29.3

A First Course on Kinetics and Reaction Engineering Example 29.3 Example 29.3 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the analysis of a parallel reactor network and the effect

More information

10.37 Exam 2 25 April, points. = 10 nm. The association rate constant

10.37 Exam 2 25 April, points. = 10 nm. The association rate constant Problem 1: 35 points 10.37 Exam 2 25 April, 2007 100 points A protein and ligand bind reversibly with = 10 nm. The association rate constant k on = 2x10 4 M 1 s -1. The two species are mixed at an initial

More information

Reactors. Reaction Classifications

Reactors. Reaction Classifications Reactors Reactions are usually the heart of the chemical processes in which relatively cheap raw materials are converted to more economically favorable products. In other cases, reactions play essential

More information

CBE 142: Chemical Kinetics & Reaction Engineering

CBE 142: Chemical Kinetics & Reaction Engineering CBE 142: Chemical Kinetics & Reaction Engineering Midterm #2 November 6 th 2014 This exam is worth 100 points and 20% of your course grade. Please read through the questions carefully before giving your

More information

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 11 CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 2.1 INTRODUCTION This chapter deals with the process description and analysis of CSTR. The process inputs, states and outputs are identified

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemical Process Simulator A. Carrero, N. Quirante, J. Javaloyes October 2016 Introduction to Chemical Process Simulators Contents Monday, October 3 rd

More information

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

Steady State Multiplicity and Stability in a Reactive Flash

Steady State Multiplicity and Stability in a Reactive Flash Steady State Multiplicity and Stability in a Reactive Flash Iván E. Rodríguez, Alex Zheng and Michael F. Malone Department of Chemical Engineering University of Massachusetts Amherst, MA 01003 Abstract

More information

To increase the concentration of product formed in a PFR, what should we do?

To increase the concentration of product formed in a PFR, what should we do? To produce more moles of product per time in a flow reactor system, what can we do? a) Use less catalyst b) Make the reactor bigger c) Make the flow rate through the reactor smaller To increase the concentration

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

0 o C. H vap. H evap

0 o C. H vap. H evap Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000,4 600 70 W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x0 0 40 0 40 kj kg - H evap 40,68 J mol - (From Appendix

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing HW Help Perform Gross Profitability Analysis on NaOH + CH4 --> Na+CO+H NaOH+C-->Na+CO+1/H NaOH+1/ H-->Na+HO NaOH + CO Na+CO+1/H How do you want to run the reaction? NaOH - Solid, Liquid or Gas T for ΔGrxn

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction

MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction Differential equations are a convenient way to express mathematically a change of a dependent variable (e.g. concentration

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes Exam 1 Chemical Reaction Engineering 26 February 21 Closed Book and Notes (2%) 1. Derive the unsteady-state mole balance for a chemical species A for a packed bed reactor using the following steps: a)

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa Presentation Overview Kinetics Reactor Design Non- Isothermal Design BASICS OF

More information

A First Course on Kinetics and Reaction Engineering Example 38.2

A First Course on Kinetics and Reaction Engineering Example 38.2 Example 38.2 Problem Purpose This example illustrates some limitations to the use of the effectiveness factor and shows how to model an isothermal packed bed reactor by writing mole balances separately

More information

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water "Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water" by John P. O'Connell Department of Chemical Engineering University of Virginia Charlottesville, VA 22904-4741 A Set

More information

WS Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor)

WS Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor) WS-4-03 Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor) Problem Steam reformer is often used in refineries or chemical plants. Design and

More information

Propylene Hydroformylation

Propylene Hydroformylation www.optience.com Propylene Hydroformylation Objective: Building Fedbatch reactors with Pressure Control In this example, we simulate a multiphase batch reactor for Propylene Hydroformylation and also explain

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

Stoichiometric Reactor Module

Stoichiometric Reactor Module Reactor Analysis Types of Reactors Stoichiometric Reactor Module Stoichiometric Reactors (1) Stoichiometric Reactors (2) Stoichiometric Reactors (3) Equilibrium Reactors Gibbs Reactor RGibbs Module Equilibrium

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (g) H 2 O (l) + energy Endothermic process is any process in which heat has to

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

Appendix 2: Linear Algebra

Appendix 2: Linear Algebra Appendix 2: Linear Algebra This appendix provides a brief overview of operations using linear algebra, and how they are implemented in Mathcad. This overview should provide readers with the ability to

More information

Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy.

Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy. 3.7 GENERALIZED CORRELATIONS FOR LIQUIDS Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy. In addition,

More information

Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09)

Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09) Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09) In this session you will learn how to create a stoichiometric reactor model

More information

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Module - 02 Flowsheet Synthesis (Conceptual Design of a Chemical

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

MATHCAD SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET

MATHCAD SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET MATHCA SOLUTIONS TO THE CHEMICAL ENGINEERING PROBLEM SET Mathematical Software Session John J. Hwalek, epartment of Chemical Engineering University of Maine, Orono, Me 4469-5737 (hwalek@maine.maine.edu)

More information

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects Unit 4. Reaction Rates and Temperature Effects Overview This course is divided into four parts, I through IV. Part II is focused upon modeling the rates of chemical reactions. Unit 4 is the first unit

More information

Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 4 Modelling of Non-Linear Systems Solutions for Tutorial 4 Modelling of Non-Linear Systems 4.1 Isothermal CSTR: The chemical reactor shown in textbook igure 3.1 and repeated in the following is considered in this question. The reaction

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Mordechai Shacham Department of Chemical Engineering Ben Gurion University of the Negev

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Aspen Plus PFR Reactors Tutorial using Styrene with Pressure Drop Considerations By Robert P. Hesketh and Concetta LaMarca Spring 2005

Aspen Plus PFR Reactors Tutorial using Styrene with Pressure Drop Considerations By Robert P. Hesketh and Concetta LaMarca Spring 2005 Aspen Plus PFR Reactors Tutorial using Styrene with Pressure Drop Considerations By Robert P. Hesketh and Concetta LaMarca Spring 2005 In this laboratory we will incorporate pressure-drop calculations

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide Chapter 1 Mole balances: Know the definitions of the rate of reaction, rate of disappearance and rate of appearance Know what a rate law is Be able to write a general mole balance and know what each term

More information

CSTR 1 CSTR 2 X A =?

CSTR 1 CSTR 2 X A =? hemical Engineering HE 33 F Applied Reaction Kinetics Fall 014 Problem Set 3 Due at the dropbox located in the hallway outside of WB 5 by Monday, Nov 3 rd, 014 at 5 pm Problem 1. onsider the following

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide

A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide Abstract 1 A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide The method of continuous variations and a calorimetric determination of enthalpy are used to verify the stoichiometry

More information

ENTHALPY BALANCES WITH CHEMICAL REACTION

ENTHALPY BALANCES WITH CHEMICAL REACTION ENTHALPY BALANCES WITH CHEMICAL REACTION Calculation of the amount and temperature of combustion products Methane is burnt in 50 % excess of air. Considering that the process is adiabatic and all methane

More information

Chapter 4 Copolymerization

Chapter 4 Copolymerization Chapter 4 Copolymerization 4.1 Kinetics of Copolymerization 4.1.1 Involved Chemical Reactions Initiation I 2 + M 2R 1 r = 2 fk d I 2 R I Propagation Chain Transfer Termination m,n + k p m+1,n m,n + B k

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

(1) This reaction mechanism includes several undesired side reactions that produce toluene and benzene:

(1) This reaction mechanism includes several undesired side reactions that produce toluene and benzene: HYSYS Multiple Reactions - Styrene Prepared by Robert P. Hesketh Spring 005 Styrene Reactor System You have been studying how to use HYSYS using the example of a Styrene reactor system. In this session

More information

2. Review on Material Balances

2. Review on Material Balances 2. Review on Material Balances Objectives After completing this chapter, students should be able to recall the principle of the conservation of mass recall the principle of the stoichiometry of chemical

More information

A First Course on Kinetics and Reaction Engineering Unit 2. Reaction Thermochemistry

A First Course on Kinetics and Reaction Engineering Unit 2. Reaction Thermochemistry Unit 2. Reaction Thermochemistry Overview This course is divided into four parts, I through IV. Part I reviews some topics related to chemical reactions that most students will have encountered in previous

More information

A population balance approach for continuous fluidized bed dryers

A population balance approach for continuous fluidized bed dryers A population balance approach for continuous fluidized bed dryers M. Peglow, U. Cunäus, C. Kettner, T. Metzger, E. Tsotsas, Thermal Process Engineering, University Magdeburg, 396 Magdeburg, ermany Abstract

More information

PROPORTIONAL-Integral-Derivative (PID) controllers

PROPORTIONAL-Integral-Derivative (PID) controllers Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process R.Vinodha S. Abraham Lincoln and J. Prakash Abstract Multi-loop (De-centralized) Proportional-Integral- Derivative

More information

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam Open Book, Notes, CD ROM, Disk, and Web Name Honor Code 1) /25 pts 2) /15 pts 3) /10 pts 4) / 3 pts 5) / 6 pts 6) / 8 pts 7) / 8 pts 8) / 5

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

CM 3230 Thermodynamics, Fall 2016 Lecture 16

CM 3230 Thermodynamics, Fall 2016 Lecture 16 CM 3230 Thermodynamics, Fall 2016 Lecture 16 1. Joule-Thomsom Expansion - For a substance flowing adiabatically through a throttle (valve or pourous plug): in > out and negligible change in kinetic and

More information

Combining Numerical Problem Solving with Access to Physical Property Data a New Paradigm in ChE Education

Combining Numerical Problem Solving with Access to Physical Property Data a New Paradigm in ChE Education Combining Numerical Problem Solving with Access to Physical Property Data a New Paradigm in ChE Education Michael B. Cutlip, Mordechai Shacham, and Michael Elly Dept. of Chemical Engineering, University

More information

25. Water Module. HSC 8 - Water November 19, Research Center, Pori / Petri Kobylin, Peter Björklund ORC-J 1 (13)

25. Water Module. HSC 8 - Water November 19, Research Center, Pori / Petri Kobylin, Peter Björklund ORC-J 1 (13) 25. Water Module 14018-ORC-J 1 (13) Fig. 1. Pressure-Temperature calculator for water. The Pressure and Temperature calculator enables a complete thermodynamic description for a species, by allowing the

More information

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems ChE 344 Winter 03 Final Exam + Solution Thursday, May, 03 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space provided

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

Problems Points (Max.) Points Received

Problems Points (Max.) Points Received Chemical Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 8, 2013 8:10 am-9:30 am The exam is 100 points total. Please read through the questions very carefully before

More information

Energetics. Topic

Energetics. Topic Energetics Topic 5.1 5.2 Topic 5.1 Exothermic and Endothermic Reactions?? total energy of the universe is a constant if a system loses energy, it must be gained by the surroundings, and vice versa Enthalpy

More information

Objective: To Evaluate Predictions of Alternative Models

Objective: To Evaluate Predictions of Alternative Models www.optience.com Methanol Synthesis Objective: To Evaluate Predictions of Alternative Models In this example, we propose and evaluate Mass Action and Langmuir Hinshelwood (LHHW) models for methanol synthesis

More information

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models Unit 34. 2-D and 3-D Tubular Reactor Models Overview Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal PFR model is that the temperature and composition

More information

A First Course on Kinetics and Reaction Engineering Example 13.3

A First Course on Kinetics and Reaction Engineering Example 13.3 Example 13.3 Problem Purpose This example illustrates the analysis of CSTR data using linear least squares for a situation where there are two independent variables in the model being fit to the data.

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES When I complete this chapter, I want to be able to do the following. Formulate dynamic models based on fundamental balances Solve simple first-order linear

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

Esterification in CSTRs in Series with Aspen Plus V8.0

Esterification in CSTRs in Series with Aspen Plus V8.0 Esterification in CSTRs in Series with Aspen Plus V8.0 1. Lesson Objectives Use Aspen Plus to determine whether a given reaction is technically feasible using three continuous stirred tank reactors in

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information