Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1

Size: px
Start display at page:

Download "Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1"

Transcription

1 Modern Physics for Scientists and Engineers Thornton & Rex, 4th ed. Fall 2018 Prof. Sergio B. Mendes 1

2 CHAPTER 1 The Birth of Modern Physics Fall 2018 Prof. Sergio B. Mendes 2

3 Topics 1) Classical Physics of the 1890s 2) Kinetic Theory of Gases 3) Atomistic Theory of Matter 4) Mechanical Waves 5) A Few Dark Clouds Fall 2018 Prof. Sergio B. Mendes 3

4 1) Classical Physics of the 1890s Mechanics Electromagnetism Thermodynamics The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote Our future discoveries must be looked for in the sixth place of decimals. - Albert A. Michelson, 1894 Fall 2018 Prof. Sergio B. Mendes 4

5 Mechanics Fall 2018 Prof. Sergio B. Mendes 5

6 Contributions from: Galileo Galilei Kepler Isaac Newton Euler Lagrange Hamilton Fall 2018 Prof. Sergio B. Mendes 6

7 Newton s Laws Newton s First Law: FF = 0 aa = 0 aa aa Newton s Second Law: FF = mm aa Newton s Third Law: FF AA BB = FF BB AA Summer 2018 Prof. Sergio B. Mendes 7

8 Electricity and Magnetism = Electromagnetism Fall 2018 Prof. Sergio B. Mendes 8

9 Contributions from: Coulomb ( ) Oersted ( ) Young ( ) Ampère ( ) Faraday ( ) Henry ( ) Maxwell ( ) Hertz ( ) Fall 2018 Prof. Sergio B. Mendes 9

10 Maxwell s Equations and Lorentz Law Gauss s law (Φ E ): (electric field) SS EE rr. ddaa = ii = iiiiiiiiiiii qq ii εε 0 = QQ iiiiiiiiiiii εε 0 Gauss s law (Φ B ): (magnetic field) SS BB rr. ddaa = 0 Faraday s law: Ampère s law: (generalized) CC CC EE rr. ddss = ddφ BB dddd BB rr. ddss = μμ oo II + μμ oo εε oo ddφ EE dddd Lorentz law: (force) FF = qq EE + qq vv BB Fall 2018 Prof. Sergio B. Mendes 10

11 Thermodynamics Fall 2018 Prof. Sergio B. Mendes 11

12 Contributions from: Benjamin Thompson ( ) (Count Rumford) Sadi Carnot ( ) James Joule ( ) Rudolf Clausius ( ) William Thompson ( ) (Lord Kelvin) Fall 2018 Prof. Sergio B. Mendes 12

13 Key Concepts Temperature, internal energy, heat, work, and entropy. Introduces the concept of internal energy. Temperature as a measure of internal energy. Establishes heat as energy transferred due to temperature difference. Thermal equilibrium: a state in which the macroscopic properties (p, V, and T) no longer change with time if the system is mechanically and thermally isolated. Summer 2018 Prof. Sergio B. Mendes 13

14 The Laws of Thermodynamics The zeroth law: two systems in thermal equilibrium with a third system are in thermal equilibrium with each other. First law: The change in the internal energy ΔU of a system is equal to the heat Q added to a system plus the work W done by the system ΔUU = QQ + WW Fall 2018 Prof. Sergio B. Mendes 14

15 Second law (a): It is not possible to convert heat completely into work without some other change taking place. Impossible!! Possible!! ee WW QQ h = 1 TT cc TT h Second law (b): It is not possible to fully transfer heat from a cold to a hot reservoir without work. Impossible!! Possible!! Third law: It is not possible to achieve an absolute zero temperature (TT > 0 KK). Fall 2018 Prof. Sergio B. Mendes 15

16 2) Kinetic Theory of Gases Fall 2018 Prof. Sergio B. Mendes 16

17 Contributions made by: Robert Boyle ( ) Jacques Charles ( ) Joseph Louis Gay-Lussac ( ) Culminated in the ideal gas equation for n moles of a simple gas: P V = n R T (where R is the ideal gas constant, 8.31 J/mol K) Fall 2018 Prof. Sergio B. Mendes 17

18 Additional Contributions Amedeo Avogadro ( ) John Dalton ( ) Daniel Bernoulli ( ) Ludwig Boltzmann ( ) James Clerk Maxwell ( ) J. Willard Gibbs ( ) Summer 2018 Prof. Sergio B. Mendes 18

19 Main Results The average molecular kinetic energy is directly related to the absolute temperature: KK = 3 kk TT 2 The internal energy is equally distributed among all degrees of freedom (f ) of the system: UU = NN ff kk TT 2 Summer 2018 Prof. Sergio B. Mendes 19

20 The molar heat capacity at constant volume (c V ) is given by: cc vv = = ff 2 RR The molecular speed distribution f(v) is described: Summer 2018 Prof. Sergio B. Mendes 20

21 3) Atomistic Theory of Matter Fall 2018 Prof. Sergio B. Mendes 21

22 Contributions from: John Dalton advances the atomic theory of matter to explain the law of definite proportions Robert Brown observes microscopic random motion of suspended grains of pollen in water Albert Einstein ( ) uses molecules to explain Brownian motion and determines the approximate value of their size and mass Jean Perrin ( ) experimentally verifies Einstein s predictions J.J. Thomson Summer 2018 Ernst Rutherford Prof. Sergio B. Mendes 22

23 4) Mechanical Waves longitudinal displacement transverse displacement Fall 2018 Prof. Sergio B. Mendes 23

24 Wave Equation ψψ = pppppppppppppppp 2 ψψ xx 2 = 1 2 ψψ vv 2 tt 2 ψψ = heeeeeeeee yy xx 2 yy(xx, tt) xx 2 = 1 vv 2 2 yy(xx, tt) tt 2 yy xx, tt = ff(xx vv tt) Fall 2018 Prof. Sergio B. Mendes 24

25 Wave Speed FF nnnnnn 2 FF θθ FF = mm aa mm 2 θθ RR μμ aa = vv2 RR 2 FF θθ 2 θθ RR μμ vv2 RR vv = FF μμ Summer 2018 Prof. Sergio B. Mendes 25

26 The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote Our future discoveries must be looked for in the sixth place of decimals. - Albert A. Michelson, 1894 Summer 2018 Prof. Sergio B. Mendes 26

27 5) A Few Dark Clouds two clouds on the horizon, Lord Kelvin, 1900 Fall 2018 Prof. Sergio B. Mendes 27

28 From the electromagnetic theory, one can derive a wave equation for the electric and magnetic fields: 2 EE xx 2 = 1 2 EE cc 2 tt 2 cc = 1 εε oo μμ oo Where is the medium that carries the electromagnetic wave? 2 BB xx 2 = 1 2 BB cc 2 tt 2 Are the laws of electromagnetism valid for only one particular inertial frame of reference? Fall 2018 Prof. Sergio B. Mendes 28

29 Electromagnetic Radiation in Thermal Equilibrium: Blackbody Radiation Classical theory predicts an infinite energy for short wavelengths, UV catastrophe Summer 2018 Prof. Sergio B. Mendes 29

30 Consider the simplest atom (H): From Coulomb s law, we know that opposite charges attract each other. Why don t the proton and the electron collapse into each other? Why is the hydrogen atom (and other atoms) stable? Summer 2018 Prof. Sergio B. Mendes 30

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e Prepared by: Anthony Pitucco, Ph.D. Pima Community College Dept of Physics, Chair Tucson, Arizona CHAPTER 1 The Birth of Modern Physics 1.1

More information

Physics 205 Modern Physics for Engineers

Physics 205 Modern Physics for Engineers Physics 205 Modern Physics for Engineers Instructor Professor Duncan Carlsmith Department of Physics duncan@hep.wisc.edu 262-2485 4285 Chamberlin Physics 205 Course Information http:// www.physics.wisc.e

More information

PHYS 3313 Section 001. Lecture #3

PHYS 3313 Section 001. Lecture #3 PHYS 3313 Section 001 Classical Physics Lecture #3 Concept of Waves and Particles Conservation Laws and Fundamental Forces Atomic Theory of Matter Unsolved Questions of 1895 and the New Horizon 1 Reminder:

More information

CHAPTER 1 The Birth of Modern Physics

CHAPTER 1 The Birth of Modern Physics CHAPTER 1 The Birth of Modern Physics 1.1 Classical Physics of the 1890s 1.2 The Kinetic Theory of Gases 1.3 Waves and Particles 1.4 Conservation Laws and Fundamental Forces 1.5 The Atomic Theory of Matter

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

The Birth of Modern Physics

The Birth of Modern Physics Chapter 1. The Birth of Modern Physics Notes: Most of the material in this chapter is taken from Thornton and Rex, Chapter 1, Thermodynamics by E. Fermi (1936, Dover), Chapters 1 to 3, and The Principles

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

PHGN300/310 Modern physics: a revolution of concepts

PHGN300/310 Modern physics: a revolution of concepts PHGN300/310 Modern physics: a revolution of concepts Solvay, 1927 Textbooks NOT required Thornton & Rex, 4 th edition Thornton & Rex, 3 rd edition Modern physics One of the greatest intellectual achievements

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics

Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics Lecture 1: Historical Overview, Statistical Paradigm, Classical Mechanics Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 August 23, 2017 Chapter I. Basic Principles of Stat MechanicsLecture

More information

Matter and Energy: Special Relativity

Matter and Energy: Special Relativity Matter and Energy: Special Relativity Albert Einstein (1879-1955) (Also: Brownian Motion,The Photoelectric Effect, General Theory of Relativity) The Special Theory of Relativity On the Electrodynamics

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Introduction to Quantum Theory

Introduction to Quantum Theory Introduction to Quantum Theory Dr. Russell Herman Physics and Physical Oceanography PHY 444 - Quantum Theory - Fall 2018 1 Syllabus Website: http://people.uncw.edu/hermanr/qm/ Grades Homework 30% Papers

More information

Welcome to PHYS 201 Modern Physics Fall 2017

Welcome to PHYS 201 Modern Physics Fall 2017 Welcome to PHYS 201 Modern Physics Fall 2017 Meeting times: MWF 10:00-10:50am; F 2:00-2:50pm Co-requisite PHYS 251 Experimental Atomic Physics Textbook Required text: Modern Physics by R. A. Serway, C.

More information

Revision : Thermodynamics

Revision : Thermodynamics Revision : Thermodynamics Formula sheet Formula sheet Formula sheet Thermodynamics key facts (1/9) Heat is an energy [measured in JJ] which flows from high to low temperature When two bodies are in thermal

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

Introduzione al conce/o di energia

Introduzione al conce/o di energia Corso di Laurea in FISICA 1 Introduzione al conce/o di energia Luca Gammaitoni Corso di Fisica dell energia Corso di Laurea in FISICA Content Introduc6on to the no6on of energy. Laws of energy transforma6on

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015

NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Final Examination, December 18, 2015 NAME: NITROMETHANE CHEMISTRY 443, Fall, 015(15F) Section Number: 10 Final Examination, December 18, 015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions

More information

The Physics of Energy

The Physics of Energy Corso di Laurea in FISICA The Physics of Energy Luca Gammaitoni Corso di Laurea in Fisica, 2017-2018 Program Lecture 1: Energy intro and Basic thermodynamics Lecture 2: Signal analysis intro Lecture 3:

More information

Ideal gas From Wikipedia, the free encyclopedia

Ideal gas From Wikipedia, the free encyclopedia 頁 1 / 8 Ideal gas From Wikipedia, the free encyclopedia An ideal gas is a theoretical gas composed of a set of randomly-moving, non-interacting point particles. The ideal gas concept is useful because

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

Statistical Mechanics

Statistical Mechanics 42 My God, He Plays Dice! Statistical Mechanics Statistical Mechanics 43 Statistical Mechanics Statistical mechanics and thermodynamics are nineteenthcentury classical physics, but they contain the seeds

More information

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School -

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School - 1 Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43 Made by Montgomery High School - montyscioly@gmail.com 2 Questions are worth between 1 and 3 points. Show calculations for all

More information

FAMOUS SCIENTISTS: LC CHEMISTRY

FAMOUS SCIENTISTS: LC CHEMISTRY FAMOUS SCIENTISTS: LC CHEMISTRY Study online at quizlet.com/_6j280 1. SVANTE AUGUST ARRHENIUS 4. ANTOINE HENRI BECQUEREL He developed a theory of acids and bases on how they form ions in solution. He also

More information

Test Exchange Thermodynamics (C) Test Answer Key

Test Exchange Thermodynamics (C) Test Answer Key 1 Test Exchange Thermodynamics (C) Test Answer Key Made by Montgomery High School montyscioly@gmail.com 2 Questions are worth between 1 to 3 points. Show calculations for all open-ended math questions

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Origins of Modern Physics

Origins of Modern Physics PY1P0/PY1T0 Origins of Modern Physics S. Hutzler notes at: http://www.tcd.ie/physics/foams/lecture_notes/py1p0_origins_of_modern_physics 1. The existence of atoms. Fingerprints of Matter: Spectra 3. The

More information

4. Energy, Power, and Photons

4. Energy, Power, and Photons 4. Energy, Power, and Photons Energy in a light wave Why we can often neglect the magnetic field Poynting vector and irradiance The quantum nature of light Photon energy and photon momentum An electromagnetic

More information

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v) PHYSICS 220 Lecture 22 Temperature and Ideal Gas Moving Observer and Source Combine: f o = f s (1-v o /v) / (1-v s /v) A: You are driving along the highway at 65 mph, and behind you a police car, also

More information

Spring PHYS4202/ E&M II (Dr. Andrei Galiautdinov, UGA) Part 3: Lectures Special Relativity

Spring PHYS4202/ E&M II (Dr. Andrei Galiautdinov, UGA) Part 3: Lectures Special Relativity Spring 2015 - PHYS4202/6202 - E&M II (Dr. Andrei Galiautdinov, UGA) Part 3: Lectures 37 42 Special Relativity 0 Lecture 37 (Wednesday, Apr. 15/2015) A bit of Special Relativity Special Relativity as a

More information

AP Atomic Structure Models

AP Atomic Structure Models AP Atomic Structure Models What is a Model? On a scrap piece of paper, write down your definition of a model with at least two examples. A model is a representation of an object, idea, action, or concept.

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Welcome to PHYS 201 Modern Physics Fall 2018

Welcome to PHYS 201 Modern Physics Fall 2018 Welcome to PHYS 201 Modern Physics Fall 2018 Lectures: MWF 10:00-10:50 am Fridays 2:00-2:50 pm Co-requisite PHYS 251 Experimental Atomic Physics Textbook Required text: Modern Physics by R. A. Serway,

More information

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001.

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001. Chapter 1 Introduction 1.1 Literature 1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001. 2) E. M. Lifschitz and L. P. Pitajewski, Statistical Physics, London, Landau Lifschitz Band 5. 3)

More information

PHY103A: Lecture # 1

PHY103A: Lecture # 1 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 1 (Text Book: Introduction to Electrodynamics by David J Griffiths) Anand Kumar Jha 05-Jan-2018 Course Information: Course Webpage:

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Thermal Physics. Energy and Entropy

Thermal Physics. Energy and Entropy Thermal Physics Energy and Entropy Written by distinguished physics educator, this fresh introduction to thermodynamics, statistical mechanics and the study of matter is ideal for undergraduate courses.

More information

Charles's law From Wikipedia, the free encyclopedia (Redirected from Charles' law)

Charles's law From Wikipedia, the free encyclopedia (Redirected from Charles' law) 頁 1 / 5 Charles's law From Wikipedia, the free encyclopedia (Redirected from Charles' law) Charles' law (also known as the law of volumes) is an experimental gas law which describes how gases tend to expand

More information

CY1001 BASIC CONCEPTS

CY1001 BASIC CONCEPTS CY1001 BASIC CONCES Lecture 1. radeep 22574208 pradeep@iitm.ac.in Atomists and ionists 9/6/2010 1 1. Chemical thermodynamics 2. Statistical thermodynamics 3. Kinetics 4. Surface science Books: 1. G. W.

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

THERMODYNAMICS WRITTEN TEST PORTION GOPHER INVITATIONAL JANUARY 6TH 2018 NAMES TEAM NAME AND NUMBER SCHOOL

THERMODYNAMICS WRITTEN TEST PORTION GOPHER INVITATIONAL JANUARY 6TH 2018 NAMES TEAM NAME AND NUMBER SCHOOL THERMODYNAMICS WRITTEN TEST PORTION GOPHER INVITATIONAL JANUARY 6TH 2018 NAMES TEAM NAME AND NUMBER SCHOOL TIME ALLOWED: 30 MINUTES DO NOT TURN THE PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. Multiple Choice:

More information

Energy management at micro scales

Energy management at micro scales Corso di Laurea in FISICA Energy management at micro scales Luca Gammaitoni ICT- Energy Training Day, Bristol 14 Sept. 2015 Corso di Laurea in FISICA Content IntroducCon to the nocon of energy. Laws of

More information

CY1001 BASIC CONCEPTS

CY1001 BASIC CONCEPTS CY1001 BASIC CONCES Lecture 1. radeep 22574208 pradeep@iitm.ac.in Atomists and ionists 9/19/2013 1 1. Chemical thermodynamics 2. Statistical thermodynamics 3. Kinetics 4. Surface science Books: 1. Kuhn

More information

Matter and Energy Einstein (1905) E = mc2

Matter and Energy Einstein (1905) E = mc2 Resumé What is Science? Domain: Science and the physical world Assumptions: A rational, causal, and understandable universe Methodology: The Scientific Method Observation, Hypothesis, Prediction, Testing

More information

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year. CONTENTS 1 0.1 Introduction 0.1.1 Prerequisites Knowledge of di erential equations is required. Some knowledge of probabilities, linear algebra, classical and quantum mechanics is a plus. 0.1.2 Units We

More information

Basic on the physics of energy transforma2ons at micro and nanoscales

Basic on the physics of energy transforma2ons at micro and nanoscales Corso di Laurea in FISICA Basic on the physics of energy transforma2ons at micro and nanoscales Luca Gammaitoni ICT-Energy Summer school 2016, Aalborg Prof. Luca Gammaitoni University of Perugia (IT) AD

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE Table of Contents Pg. Domain I. Mechanics Vectors (properties; addition and subtraction)... 129H1 Vector multiplication (dot and cross product)... 130H3 Motion along a straight line (displacement, velocity,

More information

The Nature of Light. Prof. Stephen Sekula 4/12/2010 Supplementary Material for PHY1308 (General Physics Electricity and Magnetism)

The Nature of Light. Prof. Stephen Sekula 4/12/2010 Supplementary Material for PHY1308 (General Physics Electricity and Magnetism) The Nature of Light Prof. Stephen Sekula 4/12/2010 Supplementary Material for PHY1308 (General Physics Electricity and Magnetism) WHAT IS LIGHT? Galileo Galilei 1564-1642 Considered the first modern scientist,

More information

Sinfonia. Professor Hong Guo 1

Sinfonia. Professor Hong Guo  1 Sinfonia Professor Hong Guo (hongguo@pku.edu.cn) IQE@EE.EECS.PKU CREAM@IQE.EE.EECS.PKU 1 CREAM@IQE.EE.EECS.PKU 2 CREAM@IQE.EE.EECS.PKU 3 CREAM@IQE.EE.EECS.PKU 4 CREAM@IQE.EE.EECS.PKU 5 CREAM@IQE.EE.EECS.PKU

More information

Thermodynamics. Fill in the blank (1pt)

Thermodynamics. Fill in the blank (1pt) Fill in the blank (1pt) Thermodynamics 1. The Newton temperature scale is made up of 20 different points 2. When Antonine Lavoisier began his study of combustion, he noticed that metals would increase

More information

Chapter 17. Temperature. Dr. Armen Kocharian

Chapter 17. Temperature. Dr. Armen Kocharian Chapter 17 Temperature Dr. Armen Kocharian Temperature We associate the concept of temperature with how hot or cold an objects feels Our senses provide us with a qualitative indication of temperature Our

More information

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points)

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) 1. IB Assessment Statements for Topic 8.5.

More information

Basic thermodynamics

Basic thermodynamics Corso di Laurea in FISICA 1 Basic thermodynamics Luca Gammaitoni ICT- Energy Summer school 2015, Fiuggi (IT) Corso di Laurea in FISICA Content IntroducBon to the nobon of energy. Laws of energy transformabon

More information

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields Quantized Radiation (Particle Theory of Light) Dr. Bill Pezzaglia Part I 1 Quantum Mechanics A. Classical vs Quantum Theory B. Black Body Radiation C. Photoelectric Effect 2 Updated: 2010Apr19 D. Atomic

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18 Theoretical Biophysics Quantum Theory and Molecular Dynamics Pawel Romanczuk WS 2017/18 http://lab.romanczuk.de/teaching/ 1 Introduction Two pillars of classical theoretical physics at the begin of 20th

More information

QUIZ 1 September 4, NAME: ACETONE Score: /10

QUIZ 1 September 4, NAME: ACETONE Score: /10 QUIZ 1 September 4, 2015 NAME: AETONE Score: /10 Be sure to show proper units in every case.] 1. (5 points) Draw structures for the following molecules to the right of each name. 2 N O O 2S p-aminobenzoic

More information

Definition of Temperature

Definition of Temperature Definition of Temperature Ron Reifenberger Birck Nanotechnology Center Purdue University January 9, 2013 1 Lecture 1 A Brief History Prior to 18 th Century, society supports advances in medicine (health)

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

נושא 6 גזים. 1 Prof. Zvi C. Koren

נושא 6 גזים. 1 Prof. Zvi C. Koren נושא 6 גזים 1 Prof. Zvi C. Koren Torricelli Charles Avogadro Graham Dalton Boyle Gay-Lussac Kelvin Maxwell Boltzmann 2 Prof. Zvi C. Koren Gas Laws: A Practical Application - Air Bags Example: An automobile

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

3. Particle-like properties of E&M radiation

3. Particle-like properties of E&M radiation 3. Particle-like properties of E&M radiation 3.1. Maxwell s equations... Maxwell (1831 1879) studied the following equations a : Gauss s Law of Electricity: E ρ = ε 0 Gauss s Law of Magnetism: B = 0 Faraday

More information

Exam 2 Fall 2015

Exam 2 Fall 2015 1 95.144 Exam 2 Fall 2015 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

History of Atomic Theory

History of Atomic Theory Unit 2 The Atom History of Atomic Theory A. Democritus and Aristotle Democritus named the "atom" - means indivisible Dalton (with work of Lavoisier, Proust, and Gay-Lussac) 1. atomic theory - first based

More information

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation Big Bang Planck Era Source: http://www.crystalinks.com/bigbang.html Source: http://www.odec.ca/index.htm This theory: cosmological model of the universe that is best supported by several aspects of scientific

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Definition of Temperature

Definition of Temperature Definition of Temperature Ron Reifenberger Birck Nanotechnology Center Purdue University January 11, 2012 1 Lecture 1 A Brief History Prior to 18 th Century, society supports advances in medicine (health)

More information

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1 PHYSICS 220 Lecture 22 Temperature and Ideal Gas Textbook Sections 14.1 14.3 Lecture 22 Purdue University, Physics 220 1 Overview Last Lecture Speed of sound v = sqrt(b/ρ) Intensity level β = (10 db) log

More information

THE PHYSICS OF STUFF: WHY MATTER IS MORE THAN THE SUM OF ITS PARTS

THE PHYSICS OF STUFF: WHY MATTER IS MORE THAN THE SUM OF ITS PARTS THE UNIVERSITY OF CHICAGO, ENRICO FERMI INSTITUTE ARTHUR H. COMPTON LECTURES 71 st SERIES THE PHYSICS OF STUFF: WHY MATTER IS MORE THAN THE SUM OF ITS PARTS JUSTIN C. BURTON -- APRIL 3 RD JUNE 12 TH 2009

More information

Halesworth U3A Science Group

Halesworth U3A Science Group Halesworth U3A Science Group Thermodynamics Or Why Things are How They Are Or Why You Can t Get Something For Nothing Ken Derham Includes quotations from publicly available internet sources Halesworth

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Units (Different systems of units, SI units, fundamental and derived units)

Units (Different systems of units, SI units, fundamental and derived units) Physics: Units & Measurement: Units (Different systems of units, SI units, fundamental and derived units) Dimensional Analysis Precision and significant figures Fundamental measurements in Physics (Vernier

More information

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas Chapter 9 - GASES 9. Quantitative analysis of gas 9.4 emperature 9.5 esting the ideal gas Quantitative analysis of an ideal gas We need more simplifying assumptions. Assume that the particles do not collide

More information

Entropy and the Second and Third Laws of Thermodynamics

Entropy and the Second and Third Laws of Thermodynamics CHAPTER 5 Entropy and the Second and Third Laws of Thermodynamics Key Points Entropy, S, is a state function that predicts the direction of natural, or spontaneous, change. Entropy increases for a spontaneous

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

Brownian Motion and The Atomic Theory

Brownian Motion and The Atomic Theory Brownian Motion and The Atomic Theory Albert Einstein Annus Mirabilis Centenary Lecture Simeon Hellerman Institute for Advanced Study, 5/20/2005 Founders Day 1 1. What phenomenon did Einstein explain?

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Effusion The Maxwell-Boltzmann Distribution A Digression on

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Light (Particle or Wave)?

Light (Particle or Wave)? Sir Isaac Newton (1642-1727) Corpuscular Theory of Light Classical Laws of Mechanics (3 Laws of Motion) Greatest and most influential scientist to ever live Einstein kept a framed picture of him Light

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

Lect. 1: Introduction

Lect. 1: Introduction Lecturer: Prof. Woo-Young Choi ( 최우영 ) Room: B625, Tel: 02-2123-2874 Email: wchoi@yonsei.ac.kr, Web: tera.yonsei.ac.kr Why study Quantum Mechanics?... Dass ich erkenne, was die Welt Im Innersten zusammenhält...

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Boyle's Law. Solution: P 1 (0.6L)=(4atm)(2.4L) P 1 = 16atm

Boyle's Law. Solution: P 1 (0.6L)=(4atm)(2.4L) P 1 = 16atm Page1 Boyle's Law Boyle's Law, a principle that describes the relationship between the pressure and volume of a gas. According to this law, the pressure exerted by a gas held at a constant temperature

More information

Beyond the Second Law of Thermodynamics

Beyond the Second Law of Thermodynamics Beyond the Second Law of Thermodynamics C. Van den Broeck R. Kawai J. M. R. Parrondo Colloquium at University of Alabama, September 9, 2007 The Second Law of Thermodynamics There exists no thermodynamic

More information

Glencoe: Chapter 4. The Structure of the Atom

Glencoe: Chapter 4. The Structure of the Atom Glencoe: Chapter 4 The Structure of the Atom Section One: Early Ideas about Matter Atomists and Democritus : 400 B.C. From Thrace in Greece. Atoms- Uncut-Table Indivisible parts which cannot be broken

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Radiation Zone Approximation We had seen that the expression for the vector potential for a localized cuent distribution is given by AA (xx, tt) = μμ 4ππ ee iiiiii dd xx eeiiii xx xx xx xx JJ (xx ) In

More information

PHY103A: Lecture # 9

PHY103A: Lecture # 9 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 9 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 20-Jan-2018 Summary of Lecture # 8: Force per unit

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information