Anderson átmenet a kvark-gluon plazmában

Size: px
Start display at page:

Download "Anderson átmenet a kvark-gluon plazmában"

Transcription

1 Anderson átmenet a kvark-gluon plazmában Kovács Tamás György Atomki, Debrecen 25. április 22. Kovács Tamás György Anderson átmenet a kvark-gluon plazmában /9

2 Együttműködők: Falk Bruckmann (Regensburg U.) Gergely Endrődi (Regensburg U.) Matteo Giordano (Atomki, Debrecen) Ferenc Pittler (Eötvös U.) Sándor Katz (Eötvös U.) László Újfalusi (Budapest U. of Technology) Imre Varga (Budapest U. of Technology) Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

3 Theory of strong interactions: QCD Lagrangian: L = 4 F µνf µν + ψ[d(a)+m]ψ F µν : field strength corresponding to A gluons ψ: quarks D(A)=γ µ ( µ ia µ ) Dirac operator Quantization path integral O physical quantity O Dψ D ψ DA O exp ( d 4 x L ) Integration in -dimensional function space Mathematical definition??? How to calculate it??? Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 3/9

4 QCD on the lattice Continuous space-time 4-dimensional cubic lattice Integration over function spaces finite dim. integrals Mathematically well-defined Continuum limit (how to get rid of the lattice?) lattice spacing a ξ lattice a= M phys ξ lattice tune system to critical point tune a few parameters (gauge coupling, quark masses) to fix physics in a limit Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 4/9

5 Lattice QCD ψ i C 3 (on lattice sites) U 3 U 4 U ψ Different basis at each lattice site U i SU(3) (complex rotation) U 2 U ψ vector potential U e ia ψ 2 2 basis transformation (ψ) dynamical variables on links Discretization Derivative: µ ψ a (ψ 2 ψ ) Covariant derivative: D µ ψ a (ψ 2 U ψ ) Gluon action: 4 F µνf µν g 2 tr(u U 2 U 3 U 4 ) Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 5/9

6 Wick rotation Analytic continuation in time t it Minkowski space-time 4d Euclidean space e ilt e Ht Physical quantities = statistical averages Monte Carlo numerical simulation temporally finite box of size L t finite temperature T = /L t Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 6/9

7 Lattice Dirac operator Partition function (integrating out quarks): Z = Dψ D ψ DU e S g[u] ψ{d[u]+m}ψ = DU det{d[u]+m} e S g [U] Statistical physics system (4-dimensional) Dynamical variables: U i SU(N c ) on lattice links Dirac operator: D[U] Discretized differential operator depending on U-s V V sparse matrix (V volume) (D[U]+M) appears in physical quantities Small eigenvalues (eigenvectors) physically important Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 7/9

8 The structure of the Dirac operator Symmetries of D Imλ Spectrum imaginary, symmetric around Reλ probability distribution of [U] random D[U] with given distribution distribution of D[U] physical quantities eigenvalue ststistics of D[U] bulk termodynamics What do we know about the spectral statistics of D[U]? Is the detailed dynamics important or it is already given by the symmetries? Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 8/9

9 Spectrum of sparse random matrices Anderson model one-electron Hamiltonian in disorderer crystal random on-site energies constant hopping terms to nearest neighbor sites all other matrix elements zero localized states at the band edge delocalized states at the band center mobility edge controlled by disorder localized mobility edge Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 9/9

10 Localization and spectral statistics Level spacing distribution Level spacing: λ n+ λ n Unfolding: s = λ n+ λ n λ n+ λ n Two extremes: λ n statistically independent (Poisson) p(s)=exp( s) Random matrix statistics.8 (a) Poisson Random matrix.6 p(s) s Kovács Tamás György Anderson átmenet a kvark-gluon plazmában /9

11 How about the Dirac operator? λ = special point (symmetry). Transition at T c 2MeV : ρ (spectral density) ρ() T < T c hadronic phase ρ()= T > T c quark-gluon plasma λ statistics of low eigenvalues of D[U] described ρ() by random matrix theory analytically (σ-model) + numerically (lattice QCD) Kovács Tamás György Anderson átmenet a kvark-gluon plazmában /9

12 Eigenvalue statistics T > T c (quark-gluon plasma) in different regions of the spectrum unfolded level spacing distribution s= λ n+ λ n λ n+ λ n Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

13 Eigenvalue statistics T > T c (quark-gluon plasma) in different regions of the spectrum unfolded level spacing distribution s= λ n+ λ n.8.6 (a) exponential Wigner QCD λ n+ λ n p(s) s Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

14 Eigenvalue statistics T > T c (quark-gluon plasma) in different regions of the spectrum unfolded level spacing distribution s= λ n+ λ n.8 (a) exponential Wigner QCD.8 λ n+ λ n (b) exponential Wigner QCD p(s).6.4 p(s) s s Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

15 Eigenvalue statistics T > T c (quark-gluon plasma) in different regions of the spectrum unfolded level spacing distribution s= λ n+ λ n.8 (a) exponential Wigner QCD.8 λ n+ λ n (b) exponential Wigner QCD p(s).6.4 p(s) s.8 (c) exponential Wigner QCD s.6 p(s) s Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

16 Eigenvalue statistics T > T c (quark-gluon plasma) in different regions of the spectrum unfolded level spacing distribution s= λ n+ λ n.8 (a) exponential Wigner QCD.8 λ n+ λ n (b) exponential Wigner QCD p(s).6.4 p(s).6.4 p(s) s (c) exponential Wigner QCD p(s) s (d) exponential Wigner QCD s s Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 2/9

17 Integrated level spacing distribution.5 I= p(s)ds I 5.5 L=3. fm L=4.5 fm L=6. fm λa Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 3/9

18 Finite size scaling verify critical behavior and compute ν Parameters: λ (location in the spectrum) relevant µ leading irrelevant I(λ, µ, L) dimensionless, RG invariant I(λ,µ,L) = I(b /ν λ, b y µ µ, b L) Only one relevant variable Close to the critical point: b yµ µ Block all systems to standard size b L Scaling function: I(λ,µ,L)=f ( ) L /ν (λ λ c ) For finite L I(λ) analytic f analytic Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 4/9

19 Finite size scaling I(λ,µ,L)=f ( ) L /ν (λ λ c ) Is it possible to choose ν and λ c to have data collapse? I 5.5 L=3. fm L=4.5 fm L=6. fm λa Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 5/9

20 Finite size scaling I(λ,µ,L)=f ( ) L /ν (λ λ c ) Yes! fit polynomial to f(x)= a +a x+a 2 x and λ c,ν I.5 L=3. fm L=4.5 fm L=6. fm (λ-λ c ) L /ν Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 6/9

21 Corrections to scaling Use only systems larger than L min for the fit system sizes: L 3 = 24 3,28 3,32 3,36 3,4 3,48 3, dimensional K. Slevin & T. Ohtsuki, PRL 82 (999).6 O K. Slevin & T. Ohtsuki, PRL 78 (997).5 ν U.4 S Y. Asada, K. Slevin & T. Ohtsuki, J.Phys.Soc.Jpn. 74 (25) L min ν compatible with unitary Anderson model Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 7/9

22 The temperature controls the mobility edge a=.25 fm a=.82 fm a=.62 fm λ c /m ud T (MeV) for fixed lattice size the system gets more ordered! Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 8/9

23 Conclusions Phase transition or not? The transition to QGP is only a cross-over Have we found a genuine phase transition? No! In QCD no thermodynamic quantity is singular Genuine transition in QCD-like models? Relevance of localized Dirac modes in QGP Mobility edge effective gap (like large m q ) Screening masses External magnetic field and QCD thermodynamics TGK, PRL 4 (2); TGK, F. Pittler, PRL 5 (2); References: F. Bruckmann, TGK, S. Schierenberg, PRD 84 (2); TGK, F. Pittler, PRD 86 (22); M. Giordano, TGK, F. Pittler, PRL 2 (24) Kovács Tamás György Anderson átmenet a kvark-gluon plazmában 9/9

The chiral and the Anderson transition in QCD

The chiral and the Anderson transition in QCD The chiral and the Anderson transition in QCD Tamás G. Kovács Institute for Nuclear Research, Debrecen March 11, 2015 Tamás G. Kovács The chiral and the Anderson transition in QCD 1/20 Collaboration: Falk

More information

arxiv: v1 [hep-lat] 30 Oct 2014

arxiv: v1 [hep-lat] 30 Oct 2014 arxiv:1410.8308v1 [hep-lat] 30 Oct 2014 Matteo Giordano Institute for Nuclear Research of the Hungarian Academy of Sciences Bem tér 18/c H-4026 Debrecen, Hungary E-mail: kgt@atomki.mta.hu Institute for

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 Localization in SU(3) gauge theory arxiv:1811.1887v1 [hep-lat] 5 Nov 218 University of Debrecen, Hungary E-mail: vig.reka@atomki.mta.hu Tamás G. Kovács Institute for Nuclear Research, Debrecen, Hungary

More information

arxiv: v1 [hep-lat] 12 Nov 2018

arxiv: v1 [hep-lat] 12 Nov 2018 in QCD and related theories arxiv:1811.04792v1 [hep-lat] 12 Nov 28 ELTE Eötvös Loránd University, Institute for Theoretical Physics, Pázmány P. s. 1/A, H-1117, Budapest, Hungary, and MTA-ELTE Lendület

More information

Landau Levels in QCD in an External Magnetic Field

Landau Levels in QCD in an External Magnetic Field Landau Levels in QCD in an External Magnetic Field Matteo Giordano Eötvös Loránd University (ELTE) Budapest ELTE particle physics seminar Budapest, 21/09/2016 Based on work in progress with F. Bruckmann,

More information

Landau Levels in Lattice QCD in an External Magnetic Field

Landau Levels in Lattice QCD in an External Magnetic Field Landau Levels in Lattice QCD in an External Magnetic Field Matteo Giordano Eötvös Loránd University (ELTE) Budapest xqcd 2017 Pisa, 27/06/2017 Based on F. Bruckmann, G. Endrődi, MG, S. D. Katz, T. G. Kovács,

More information

Poisson statistics in the high temperature QCD Dirac spectrum

Poisson statistics in the high temperature QCD Dirac spectrum statistics in the high temperature QCD Dirac spectrum Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6, Hungary E-mail: kgt@fizika.ttk.pte.hu Ferenc Pittler Department of Physics,

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Critical Level Statistics and QCD Phase Transition

Critical Level Statistics and QCD Phase Transition Critical Level Statistics and QCD Phase Transition S.M. Nishigaki Dept. Mat. Sci, Shimane Univ. quark gluon Wilsonʼs Lattice Gauge Theory = random Dirac op quenched Boltzmann weight # " tr U U U U 14 243

More information

QCD in magnetic fields: from the butterfly to the phase diagram. Gergely Endrődi

QCD in magnetic fields: from the butterfly to the phase diagram. Gergely Endrődi QCD in magnetic fields: from the butterfly to the phase diagram Gergely Endrődi University of Regensburg Lattice 2014 New York, 27. June 2014 I would like to thank Gunnar Bali, Falk Bruckmann, Martha Constantinou,

More information

Canonical partition functions in lattice QCD

Canonical partition functions in lattice QCD Canonical partition functions in lattice QCD (an appetizer) christof.gattringer@uni-graz.at Julia Danzer, Christof Gattringer, Ludovit Liptak, Marina Marinkovic Canonical partition functions Grand canonical

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi The phases of hot/dense/magnetized QCD from the lattice Gergely Endrődi Goethe University of Frankfurt EMMI NQM Seminar GSI Darmstadt, 27. June 2018 QCD phase diagram 1 / 45 Outline relevance of background

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Random Matrix Theory for the Wilson-Dirac operator

Random Matrix Theory for the Wilson-Dirac operator Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of Physics and Astronomy SUNY Stony Brook (NY, USA) Bielefeld, December 14th, 2011 Outline Introduction in Lattice QCD and in

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

The Fermion Bag Approach

The Fermion Bag Approach The Fermion Bag Approach Anyi Li Duke University In collaboration with Shailesh Chandrasekharan 1 Motivation Monte Carlo simulation Sign problem Fermion sign problem Solutions to the sign problem Fermion

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Dual quark condensate and dressed Polyakov loops

Dual quark condensate and dressed Polyakov loops Dual quark condensate and dressed Polyakov loops Falk Bruckmann (Univ. of Regensburg) Lattice 28, William and Mary with Erek Bilgici, Christian Hagen and Christof Gattringer Phys. Rev. D77 (28) 947, 81.451

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

Spectrum of the Dirac Operator and Random Matrix Theory

Spectrum of the Dirac Operator and Random Matrix Theory Spectrum of the Dirac Operator and Random Matrix Theory Marco Catillo Karl Franzens - Universität Graz 29 June 2016 Advisor: Dr. Leonid Glozman 1 / 23 Outline 1 Introduction 2 Overlap Dirac Operator 3

More information

How nucleon gets its mass

How nucleon gets its mass Fiz-Tech, Dec 05, 2006 How nucleon gets its mass Dmitri Diakonov Petersburg Nuclear Physics Institute 1. Quantum Chromodynamics: the theory of strong interactions 2. Chiral symmetry of strong interactions

More information

A tömeg eredete a látható világegyetemben

A tömeg eredete a látható világegyetemben A tömeg eredete a látható világegyetemben ELTE Elméleti Fizikai Tanszék MTA-ELTE Lendület rácstérelmélet kutatócsoport (Borsányi Szabolcs, Stephan Dürr,Fodor Zoltán, Christian Hoelbling, Stefan Krieg,

More information

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Stony Brook University Department of Physics and Astronomy The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Savvas Zafeiropoulos July 29-August 3, 2013 Savvas

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

Solutions of the Ginsparg-Wilson equation. Nigel Cundy. arxiv: [hep-lat]

Solutions of the Ginsparg-Wilson equation. Nigel Cundy. arxiv: [hep-lat] Universität Regensburg arxiv:0802.0170[hep-lat] Lattice 2008, Williamsburg, July 14 1/24 Overlap fermions in the continuum Consider the continuum Dirac operator D 0 ψ(x) = P {e i R } x Aµ (w)dw µ γ ν ν

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Quantum electrodynamics (QED) based on S-58 Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Noether current of the lagrangian for a free Dirac

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University)

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Numerical estimates of critical exponents of the Anderson transition Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Anderson Model Standard model of a disordered system H W c c c V c

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

A classification of gapped Hamiltonians in d = 1

A classification of gapped Hamiltonians in d = 1 A classification of gapped Hamiltonians in d = 1 Sven Bachmann Mathematisches Institut Ludwig-Maximilians-Universität München Joint work with Yoshiko Ogata NSF-CBMS school on quantum spin systems Sven

More information

arxiv: v1 [hep-lat] 22 Oct 2013

arxiv: v1 [hep-lat] 22 Oct 2013 Renormalization of the momentum density on the lattice using shifted boundary conditions arxiv:1310.6075v1 [hep-lat] 22 Oct 2013 Daniel Robaina PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Excited states of the QCD flux tube

Excited states of the QCD flux tube Excited states of the QCD flux tube Bastian Brandt Forschungsseminar Quantenfeldtheorie 19.11.2007 Contents 1 Why flux tubes? 2 Flux tubes and Wilson loops 3 Effective stringtheories Nambu-Goto Lüscher-Weisz

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

Center Vortices and Topological Charge

Center Vortices and Topological Charge Center Vortices and Topological Charge Roman Höllwieser, Thomas Schweigler, Manfried Faber, Urs M. Heller 1 Introduction The center vortex model [1, ] seems to be a very promising candidate to explain

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

The Equation of State for QCD with 2+1 Flavors of Quarks

The Equation of State for QCD with 2+1 Flavors of Quarks The Equation of State for QCD with 2+1 Flavors of Quarks arxiv:hep-lat/0509053v1 16 Sep 2005 C. Bernard a, T. Burch b, C. DeTar c, Steven Gottlieb d, U. M. Heller e, J. E. Hetrick f, d, F. Maresca c, D.

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

arxiv: v1 [hep-th] 3 Sep 2010

arxiv: v1 [hep-th] 3 Sep 2010 PT Symmetry and the Sign Problem Peter N. Meisinger, Michael C. Ogilvie and Timothy D. Wiser Dept. of Physics Washington University St. Louis, MO 63130 USA Abstract Generalized PT symmetry provides crucial

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

I would like to thank Colleagues in the World for

I would like to thank Colleagues in the World for I would like to thank Colleagues in the World for Encouraging and Warm Voices, and many countries for the help. In West Japan, Osaka, Hiroshima, Fukuoka etc., as far as I know all Universities have no

More information

Towards the hadron spectrum using spatially-extended operators in lattice QCD

Towards the hadron spectrum using spatially-extended operators in lattice QCD Towards the hadron spectrum using spatially-extended operators in lattice QCD Colin Morningstar Carnegie Mellon University 3rd Topical Workshop on Lattice Hadron Physics Jefferson Lab July 3, 26 July 3,

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer

Multigrid Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD. Andreas Frommer Methods for Linear Systems with Stochastic Entries Arising in Lattice QCD Andreas Frommer Collaborators The Dirac operator James Brannick, Penn State University Björn Leder, Humboldt Universität Berlin

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Renormalization according to Wilson

Renormalization according to Wilson Renormalization according to Wilson Suppose we have integrated out fields with momenta > Λ. We have renormalized fields (at the scale Λ) and g(λ). Now we want to integrate out also fields with momenta

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 6 8.34 Relativistic Quantum Field Theory II Fall 8.34 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall α(μ) Lecture 6 5.3.3: Beta-Functions of Quantum Electrodynamics

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

QCD Thermodynamics on the Lattice from the Gradient Flow

QCD Thermodynamics on the Lattice from the Gradient Flow QCD Thermodynamics on the Lattice from the Gradient Flow Research Center for Nuclear Physics (RCNP), Osaka University E-mail: itou@yukawa.kyoto-u.ac.jp Sinya Aoki Yukawa Institute for Theoretical Physics,

More information

Lattice Quantum Chromo Dynamics and the Art of Smearing

Lattice Quantum Chromo Dynamics and the Art of Smearing Lattice Quantum Chromo Dynamics and the Art of Georg Engel March 25, 2009 KarlFranzensUniversität Graz Advisor: Christian B. Lang Co-workers: M. Limmer and D. Mohler 1 / 29 2 / 29 Continuum Theory Regularization:

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Laplacian modes as a filter

Laplacian modes as a filter Laplacian modes as a filter Falk Bruckmann Universität Regensburg QCD on Teraflop Computers, Bielefeld, October 2006 with E.-M. Ilgenfritz: PRD 72 (2005) 114502 with C. Gattringer, EMI, M. Müller-Preußker,

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

SU(2) Lattice Gauge Theory with a Topological Action

SU(2) Lattice Gauge Theory with a Topological Action SU(2) Lattice Gauge Theory with a Topological Action Lorinc Szikszai in collaboration with Zoltan Varga Supervisor Daniel Nogradi November 08, 2017 Outline Gauge Theory Lattice Gauge Theory Universality

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

t Hooft-Polyakov Monopoles on the Lattice

t Hooft-Polyakov Monopoles on the Lattice t Hooft-Polyakov Monopoles on the Lattice Davis,Kibble,Rajantie&Shanahan, JHEP11(2000) Davis,Hart,Kibble&Rajantie, PRD65(2002) Rajantie, in progress 19 May 2005 University of Wales, Swansea Introduction

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

QCD at T > 0 and B > 0. Kalman Szabo Bergische Universitat, Wuppertal

QCD at T > 0 and B > 0. Kalman Szabo Bergische Universitat, Wuppertal QCD at T > 0 and B > 0 Kalman Szabo Bergische Universitat, Wuppertal Fairly well established (continuum, physical mass, staggered): Crossover T c EoS Crossover [Wuppertal-Budapest,WB, 06] volume dependence

More information