Scattering amplitudes from lattice QCD

Size: px
Start display at page:

Download "Scattering amplitudes from lattice QCD"

Transcription

1 Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

2 Two talks Today: Introductory stuff The methods we are using Elastic scattering Next Week: Jo Dudek Resonances in coupled channel scattering from lattice QCD David Wilson Resonances in πk Scattering 2

3 Introduction Lagrangian of QCD Spectrum of hadrons L QCD = X q q i /D - m q q F µ F µ mêgev /D = µ (@ µ - iga µ ) F µ µ A A µ + g [A µ, A ] J P Coloured quark and gluon degrees of freedom. Only colourless states, no asymptotic quarks and gluons. Excited state spectrum contains many interesting open questions. Interesting effects near thresholds: tetraquarks? meson-meson bound states? f0(980) in ππ scattering and new charmonium states, eg: Z(4430). Hybrid states, containing explicit gluonic degrees of freedom. Could be seen in new experiments, like Glue-X. David Wilson Resonances in πk Scattering 3

4 Strong coupling Lagrangian of QCD g 2 4 PDG 2013 L QCD = X q q i /D - m q q F µ F µ /D = µ (@ µ - iga µ ) F µ µ A A µ + g [A µ, A ] Many interesting consequences: Confinement - no asymptotic quarks or gluons. Dynamical chiral symmetry breaking. Light physical pion ~ goldstone boson of the symmetry breaking. Cannot use perturbation theory: Non-perturbative methods needed. Several options including: Models Schwinger-Dyson+Bethe-Salpeter Effective Field Theories Lattice QCD David Wilson Resonances in πk Scattering 4

5 Path integrals The starting point is the path integral: hx b e -iht x a i = Z Dx(t)e is[x(t)] t x b x a x David Wilson Resonances in πk Scattering 5

6 Path integrals To solve numerically, consider the discretised version t hx b e -iht x a i = xti Z dx ti e is (x ti ) x b t N... t 1 x a t 0 x David Wilson Resonances in πk Scattering 6

7 Path integrals Evaluate correlation functions from the path integral: h0 O i (t)o j (0) 0i = 1 Z 0 Z D D DA O i (t)o j (0) eis [,,A] In order to deal with strong coupling: Solve the QCD path integral numerically. Integrate over gauge field configurations: Infinitely many possibilities. Store field values on a discrete set of points David Wilson Resonances in πk Scattering 7

8 Lattice QCD y a L x Use a finite spacetime volume, L 3 t. (L Roughly 2-3fm in these studies). Use a finite number of points, with separation a ~ 0.1fm. (L/a = 16, 20, 24) Quarks live on discrete points and the gluons live on the links between them. Use periodic boundary conditions: Volume becomes a torus. David Wilson Resonances in πk Scattering 8

9 Lattice QCD x t Use a finite spacetime volume, L 3 t. (L Roughly 2-3fm in these studies). Use a finite number of points, with separation a ~ 0.1fm (L/a = 16, 20, 24). Change variables to Euclidean spacetime to simplify integration. Quarks live on discrete points and the gluons live on the links between them. Use periodic boundary conditions: Volume becomes a torus. David Wilson Resonances in πk Scattering 9

10 Correlation functions Evaluate correlation functions from the path integral: C ij (t) =h0 O i (t)o j (0) 0i = 1 Z D Z D DA O i (t)o j (0) e-s [,,A] 0 Leads to the ground state energy for large t: C ij (t) = X n 1 2E n h0 O i nihn O j 0i e-e nt = Z? i Z j 2E n e -E nt The symmetries of the operators dictate which states can be extracted 5 J P = 0 - i J P = 1 - David Wilson Resonances in πk Scattering 10

11 Symmetry on the lattice The lattice has a cubic symmetry. It does not have the O(3) symmetry of continuous space. Eg: 2D QM vs Continuous rotational spatial symmetry e i! e i +i e i! e i +in /2 Only symmetric at discrete angles David Wilson Resonances in πk Scattering 11

12 Symmetry on the lattice vs Continuous rotational spatial symmetry e i! e i +i e i! e i +in /2 Only symmetric at discrete angles Cubic symmetry groups mix the continuum angular momentum: Irrep J P A , 4 +,... T1-1 -, 3 -,... David Wilson Resonances in πk Scattering 12

13 Operators with overall momentum Because momentum is quantised, different energies can be accessed by considering operators with an overall momentum ~p = 2 L ~n E 2 lat = E 2 cm L ~n Overall zero momentum: (0, 0, 0) (0, 0, 0), (1, 0, 0) (-1, 0, 0),... One unit: (1, 0, 0) (0, 0, 0), (1, 1, 0) (-1, 0, 0),... Useful to consider systems with ~n =(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0),,... Less symmetry: More mixing of angular momentum! David Wilson Resonances in πk Scattering 13

14 Extracting a spectrum Getting the ground state is useful, but we want to extract the whole spectrum in a finite volume. Fitting subleading exponentials doesn t get very far: With very precise data, sometimes a second state can be found. A solution: The variational method. C ij (t)v n j = n (t)c ij (t 0 )v n j If more than one operator overlaps onto the same state represented by some eigenvector the generalised eigenvalue problem can be solved and then as many states as operators may be extracted. n(t) e -E n(t-t 0 ) v n i... a large basis of operators are needed David Wilson Resonances in πk Scattering 14

15 Operators and the variational method Use a large basis of operators C(t)v n = n (t)c(t 0 )v n n(t) e -E n(t-t 0 ) O i = O i =! D...! D i = {1, 0, 5, 0 5, i, 0 i, 5 i, [ i, j]} Use the variational method with a large correlation matrix to obtain an optimal spectrum. David Wilson Resonances in πk Scattering 15

16 Operators and the variational method t ê a t t ê a t t ê a t 1.15 e E 1t 1 (t) e E 2t 2 (t) e E 3t 3 (t) e E 4t 4 (t) 1.4 t ê a t T - 1 irrep ( JP = 1 - ) using cc operators C(t)v n = n(t) e -E n(t-t 0 ) L. Liu et al David Wilson Resonances in πk Scattering 16 n (t)c(t 0 )v n

17 Meson-meson energy levels T1 - irrep: contains states with J P =1 -, 3 -,4 -,... a t E cm q q 0.30 [111] [-1-1-1] The spectrum should also contain multiparticle states: (~p 1 ) (~p 2 ) 0.25 [110] [-1-10] No continuum of energies: allowed momentum is quantised 0.20 [100] [-100] Two meson states do not appear to overlap well onto the singleparticle operators we have used David Wilson Coupled-channel scattering from lattice QCD 17

18 Meson-meson energy levels We could construct something simple to overlap on to two-pion states q 5 q q 5 q But it s better to make use of variational method solutions: v n represents the variationally-optimal pion, so to create such a state we use: C(t)v n = n (t)c(t 0 )v n n(t) e -E n(t-t 0 ) n = X i v n i O i 0.2 q q q Dq 0.15 q DDq 0.1 q DDDq David Wilson Coupled-channel scattering from lattice QCD 18

19 Meson-meson energy levels T1 - irrep: contains states with J P =1 -, 3 -,4 -,... a t E cm q q 0.30 [111] [-1-1-1] 0.25 [110] [-1-10] 0.20 [100] [-100] 0.15 David Wilson Coupled-channel scattering from lattice QCD 19

20 Meson-meson energy levels T1 - irrep a t E cm q q q q David Wilson Coupled-channel scattering from lattice QCD 20

21 Two particles in a finite volume Simple 1-d problem Periodic B.C. s x 1 x 1 2 L 2 No interactions total energy is just the sum For a single particle: E =(~p m 2 1) 1 2 +(~p m 2 2) 1 2 ~p i 2 = 2 n L 2 Non-interacting energies in a finite volume are known from the single-particle analysis If we measure the energies on the lattice and find a difference, this shift must be due to interactions. Lüscher et al David Wilson Coupled-channel scattering from lattice QCD 21

22 Two particles in a finite volume 1 x In simple QM: Interactions lead to phase shift δ on the wavefunction (x) e ±ipx Periodic boundary conditions for interacting particles. 2 (0) = x=l pl 2 + (p) = 0 p = 2 n L - 2 L (p) Discrete spectrum of allowed energies directly connected to the phase shift. If we measure the energies on the lattice and find a difference, this shift must be due to interactions. David Wilson Coupled-channel scattering from lattice QCD 22

23 Two particles in a finite volume 1 x 2 In 3+1 dimensions, this leads to a simple relation between the finite volume energy and the S-wave scattering length: k cot = 1 a rk2 + O(k 4 ) = 1 L X 1 2 ~n2z 3 ~n 2 - ~k L/(2 ) David Wilson Coupled-channel scattering from lattice QCD 23

24 Finite volume spectra a E 0.30 Weak interactions Lêa Small, +ve scattering length (weakly attractive) David Wilson Coupled-channel scattering from lattice QCD 24

25 Weakly repulsive scattering from QCD !, I = 2 Dudek, Edwards and Thomas David Wilson Coupled-channel scattering from lattice QCD 25

26 Weakly repulsive scattering from QCD !, I = 2 David Wilson Coupled-channel scattering from lattice QCD 26

27 Resonances t = 1 (E 2 ) E (E 2 ) m 2 R - E2 - ie (E 2 ) k 3 cm cot 1 = 6 g 2 E m2 - E 2 (s) = g2 R 6 k 3 cm s D a E cm David Wilson Coupled-channel scattering from lattice QCD 27

28 Finite volume spectra with a resonance a E 0.30 Weak interactions Lêa David Wilson Coupled-channel scattering from lattice QCD 28

29 Finite volume spectra with a resonance a E 0.30 Narrow resonance Lêa David Wilson Coupled-channel scattering from lattice QCD 29

30 Finite volume spectra with a resonance a E 0.30 Narrow resonance Lêa David Wilson Coupled-channel scattering from lattice QCD 30

31 Extracting the ρ resonance Several volumes: L=16, 20, 24. Operators in several moving frames, upto n=(2,0,0). Anisotropic lattices: temporal spacing 3.5 times finer for better energy resolution. Combination of single particle and meson-meson operators. mπ=391 MeV David Wilson Coupled-channel scattering from lattice QCD 31

32 Finite volume spectra in I=1 J= David Wilson Coupled-channel scattering from lattice QCD 32

33 A resonance from QCD π π π 1 (s) π s 1 2 (s) m 2 R - s - is 1 2 (s) (s) = g2 R 6 k 3 cm E 2 cm J. J. Dudek, R. G. Edwards and C. E. Thomas Phys. Rev. D 87, David Wilson Coupled-channel scattering from lattice QCD 33

34 Extensions Coupled-channel scattering, eg: see Jo s talk next week. K! K, K! K Also! KK,! KK Nucleons, eg: N! N Form factors, matrix elements, eg:! N! N David Wilson Coupled-channel scattering from lattice QCD 34

35 Summary Using finite volume formalism of Lüscher and others, it is possible to translate finite volume energy levels into scattering amplitudes. Scattering information, including resonances, can be obtained using lattice QCD. A large basis of operators makes it possible, through the variational method, to obtain excited states with the same quantum numbers. In order to extract energy levels that can mostly be attributed to meson-meson states we found it necessary to construct operators. Many exciting opportunities for future extensions David Wilson Coupled-channel scattering from lattice QCD 35

36 Backup slides David Wilson Coupled-channel scattering from lattice QCD 36

37 Principal correlators e E nt n(t) David Wilson Coupled-channel scattering from lattice QCD 37

38 Relative operator overlaps Z i = hn O i 0i David Wilson Coupled-channel scattering from lattice QCD 38

39 local & local only only David Wilson Coupled-channel scattering from lattice QCD 39

hybrids (mesons and baryons) JLab Advanced Study Institute

hybrids (mesons and baryons) JLab Advanced Study Institute hybrids (mesons and baryons) 2000 2000 1500 1500 1000 1000 500 500 0 0 71 the resonance spectrum of QCD or, where are you hiding the scattering amplitudes? real QCD real QCD has very few stable particles

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

Isoscalar!! scattering and the σ/f0(500) resonance

Isoscalar!! scattering and the σ/f0(500) resonance Isoscalar!! scattering and the σ/f(5) resonance Raúl Briceño rbriceno@jlab.org [ with Jozef Dudek, Robert Edwards & David Wilson] HadSpec Collaboration Lattice 216 Southampton, UK July, 216 Motivation

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Lattice Studies of Baryon Resonances

Lattice Studies of Baryon Resonances Lattice Studies of Baryon Resonances HADRON SPECTRUM COLLABORATION J. Bulava, J. Dudek, R. Edwards, E. Engelson, Justin Foley, Bálint Joó, J. Juge, A. Lichtl,H.- W Lin, N. Mathur, C. Morningstar, D. Richards,

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

J/ψ-Φ interaction and Y(4140) on the lattice QCD

J/ψ-Φ interaction and Y(4140) on the lattice QCD J/ψ-Φ interaction and Y(4140) on the lattice QCD Sho Ozaki (Univ. of Tokyo) in collaboration with Shoichi Sasaki (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo & Riken) Contents Introduction Charmonium(J/ψ)-Φ

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Lattice QCD study of Radiative Transitions in Charmonium

Lattice QCD study of Radiative Transitions in Charmonium Lattice QCD study of Radiative Transitions in Charmonium (with a little help from the quark model) Jo Dudek, Jefferson Lab with Robert Edwards & David Richards Charmonium spectrum & radiative transitions

More information

Resonance properties from finite volume energy spectrum

Resonance properties from finite volume energy spectrum Resonance properties from finite volume energy spectrum Akaki Rusetsky Helmholtz-Institut für Strahlen- und Kernphysik Abteilung Theorie, Universität Bonn, Germany NPB 788 (2008) 1 JHEP 0808 (2008) 024

More information

Hadronic physics from the lattice

Hadronic physics from the lattice Hadronic physics from the lattice Chris Michael c.michael@liv.ac.uk University of Liverpool Hadronic physics from the lattice p.1/24 Hadronic Structure - Introduction What are hadrons made of? Is a meson

More information

Review of lattice EFT methods and connections to lattice QCD

Review of lattice EFT methods and connections to lattice QCD Review of lattice EFT methods and connections to lattice QCD Dean Lee Michigan State University uclear Lattice EFT Collaboration Multi-Hadron Systems from Lattice QCD Institute for uclear Theory Feburary

More information

Resonances and Lattice QCD

Resonances and Lattice QCD Resonances and Lattice QCD David Richards (Jefferson Laboratory/LHPC) Motivation Review Recipe Variational Method Group-theoretical methods Numerical implementation Exploratory Tests Conclusions and Future

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1 JLab, GlueX and photocouplings GlueX plans to photoproduce mesons

More information

arxiv: v1 [hep-lat] 6 Nov 2015

arxiv: v1 [hep-lat] 6 Nov 2015 Department of Physics, University of California, Berkeley E-mail: anicholson@berkeley.edu arxiv:1511.02262v1 [hep-lat] 6 Nov 2015 Evan Berkowitz, Enrico Rinaldi, Pavlos Vranas Physics Division, Lawrence

More information

1 Nucleon-Nucleon Scattering

1 Nucleon-Nucleon Scattering Lecture Notes: NN Scattering Keegan Sherman 1 Nucleon-Nucleon Scattering In the previous lecture, we were talking about nucleon-nucleon (NN) scattering events and describing them through phase shifts.

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Multi-Channel Systems in a Finite Volume

Multi-Channel Systems in a Finite Volume INT-12-2b Multi-Channel Systems in a Finite olume RaúL Briceño In collaboration with: Zohreh Davoudi (arxiv:1204.1110 Motivation: Scalar Sector The light scalar spectrum Its nature remains puzzling Pertinent

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

"Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD

Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD "Lattice QCD calculations of the excitedstate spectrum, and the low-energy degrees of freedom of QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Kyoto, 26 Feb, 205 Outline Spectroscopy:

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

arxiv: v2 [hep-ph] 27 Jul 2012

arxiv: v2 [hep-ph] 27 Jul 2012 Prepared for submission to JHEP TCDMATH 12-04 JLAB-THY-12-1510 Excited and exotic charmonium spectroscopy from lattice QCD arxiv:1204.5425v2 [hep-ph] 27 Jul 2012 Liuming Liu a,1 Graham Moir a Michael Peardon

More information

Heavy mesons and tetraquarks from lattice QCD

Heavy mesons and tetraquarks from lattice QCD Heavy mesons and tetraquarks from lattice QCD seminar, Technische Universität Darmstadt Marc Wagner Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Excited and exotic charmonium spectroscopy from lattice QCD

Excited and exotic charmonium spectroscopy from lattice QCD Excited and exotic charmonium spectroscopy from lattice QCD Liuming Liu, a Graham Moir, a Michael Peardon, a Sinéad M. Ryan, a Christopher E. Thomas, a Pol Vilaseca, a Jozef J. Dudek, b c Robert G. Edwards,

More information

Light-Meson Spectroscopy at Jefferson Lab

Light-Meson Spectroscopy at Jefferson Lab Light-Meson Spectroscopy at Jefferson Lab Volker Credé Florida State University, Tallahassee, Florida PANDA Collaboration Meeting Uppsala, Sweden 06/10/2015 Outline Introduction 1 Introduction 2 Detector

More information

arxiv:hep-lat/ v2 18 Jul 2006

arxiv:hep-lat/ v2 18 Jul 2006 The Effect of Reduced Spatial Symmetries on Lattice States: Results for Non-zero Linear Momentum David C. Moore, George T. Fleming arxiv:hep-lat/0607005v 8 Jul 006 Sloane Physics Laboratory, Yale University,

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Plans for meson spectroscopy

Plans for meson spectroscopy Plans for meson spectroscopy Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik Theorie der Elementarteilchen Phänomenologie/Gittereichtheorie mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/

More information

Puzzles in the Charmonium Sector of QCD

Puzzles in the Charmonium Sector of QCD Puzzles in the Charmonium Sector of QCD Eric Braaten Ohio State University support DOE Division of High Energy Physics 1 Lots of pieces Y(4140) X(3940) Y(3940) Y(4660) Y(4360) Y(4260) Y(4008) X(4160) X(3872)

More information

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring Institute for Nuclear Studies The George Washington University.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring Institute for Nuclear Studies The George Washington University. PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 III. Descriptions 3. Lattice

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof.

2nd Hadron Spanish Network Days. Universidad Complutense de Madrid (Spain) September 8-9, Rubén Oncala. In collaboration with Prof. 2nd Hadron Spanish Network Days Universidad Complutense de Madrid (Spain) September 8-9, 20016 Rubén Oncala In collaboration with Prof. Joan Soto Heavy Quarkonium is a heavy quark-antiquark pair in a colour

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

On the structure of Zc(3900) from lattice QCD

On the structure of Zc(3900) from lattice QCD On the structure of Zc(3900) from lattice QCD Yoichi Ikeda (RIKEN, Nishina Center) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Sinya Aoki, Shinya Gongyo, Takumi Iritani (YITP, Kyoto Univ.) Takumi

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

Wave functions of the Nucleon

Wave functions of the Nucleon Wave functions of the Nucleon Samuel D. Thomas (1) Collaborators: Waseem Kamleh (1), Derek B. Leinweber (1), Dale S. Roberts (1,2) (1) CSSM, University of Adelaide, (2) Australian National University LHPV,

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Overview of N* Physics

Overview of N* Physics N* analysis white paper mtg. 11/4/06-1 Overview of N* Physics Why study excited states of the nucleon? What do we know about N* states? What are the goals of the N* program? What developments are required

More information

Structure of the Roper in Lattice QCD

Structure of the Roper in Lattice QCD Structure of the Roper in Lattice QCD Waseem Kamleh Collaborators Dale Roberts, Derek Leinweber, Adrian Kiratidis Selim Mahbub, Peter Moran and Tony Williams CSSM, University of Adelaide APFB 2014 Roper

More information

Rho Resonance Parameters from Lattice QCD

Rho Resonance Parameters from Lattice QCD Rho Resonance Parameters from Lattice QCD Dehua Guo, Andrei Alexandru, Raquel Molina and Michael Döring Jefferson Lab Seminar Oct 03, 2016 Dehua Guo, Andrei Alexandru, Raquel Molina and MichaelRho Döring

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

B K decays in a finite volume

B K decays in a finite volume B K decays in a finite volume Akaki Rusetsky, University of Bonn In collaboration with A. Agadjanov, V. Bernard and U.-G. Meißner arxiv:1605.03386, Nucl. Phys. B (in print) 34th International Symposium

More information

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Lattice Methods for Hadron Spectroscopy: new problems and challenges Lattice Methods for Hadron Spectroscopy: new problems and challenges Sinéad Ryan School of Mathematics, Trinity College Dublin, Ireland INT, Seattle, 10 th August, 2012 Sinéad Ryan (TCD) 1 / 28 Plan A

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Forefront Issues in Meson Spectroscopy

Forefront Issues in Meson Spectroscopy Forefront Issues in Meson Spectroscopy Curtis A. Meyer Carnegie Mellon University 1 Outline of Talk Introduction Meson Spectroscopy Glueballs Expectations Experimental Data Interpretation Hybrid Mesons

More information

Three-particle scattering amplitudes from a finite volume formalism*

Three-particle scattering amplitudes from a finite volume formalism* INT-13-53W March 2013 Three-particle scattering amplitudes from a finite volume formalism* Zohreh Davoudi University of Washington *Raul Briceno, ZD, arxiv: 1212.3398 Why a finite volume formalism? Lattice

More information

Nucleon excited states on the lattice

Nucleon excited states on the lattice Nucleon excited states on the lattice C.B. Lang, Valentina Verduci Graz, 12.12.12 Overview Motivation: Investigate the nucleon spectrum studying the π N scattering. The approach: How do we extract excited

More information

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration VI International Workshop on Heavy Quarkonia, 2008 Hadronic (ns) decays at BABAR Nara, 2 th 5 th December 2008 Elisabetta Prencipe On behalf of the BaBar collaboration Introduction Studying Quarkonia studying

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2014, Nov. 11th 1 Announcement Announcement Dates: Feb - Mar 2015 (5 weeks)! Theme:

More information

Heavy Hidden-Flavour Molecules in a Finite Volume

Heavy Hidden-Flavour Molecules in a Finite Volume Heavy Hidden-Flavour Molecules in a Finite Volume Carlos Hidalgo-Duque (IFIC, CSIC Universitat de València) M. Albaladejo, J. Nieves, E. Oset XVI International Conference on Hadron Spectroscopy Marriott

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

Description of Heavy Exotic Resonances

Description of Heavy Exotic Resonances Description of Heavy Exotic Resonances Yubing Dong Institute of High Energy physics, Chinese Academy of Sciences Collaborators: Amand Faessler, Thomas Gutsche, V. E. Lyubovitskij (Tuebingen, Germany) Jujun

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

e e with ISR and the Rb Scan at BaBar

e e with ISR and the Rb Scan at BaBar e e with ISR and the Rb Scan at BaBar + + Francesco Renga Università di Roma La Sapienza & INFN Roma on behalf of the BaBar Collaboration 1 Introduction B Factories showed an exciting capability for improving

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

arxiv: v1 [hep-lat] 1 Feb 2017

arxiv: v1 [hep-lat] 1 Feb 2017 Towards Radiative Transitions in Charmonium arxiv:1702.00352v1 [hep-lat] 1 Feb 2017, Sinéad M. Ryan School of Mathematics, Trinity College Dublin 2, Ireland E-mail: oharaci@tcd.ie, ryan@maths.tcd.ie Graham

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada

Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada Derek Harnett University of the Fraser Valley Abbotsford, British Columbia, Canada hadrons with explicit quark and gluon constituents predicted/allowed by QCD outside the constituent quark model probe

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

condensates and topology fixing action

condensates and topology fixing action condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. hep-lat/0403024 Collaboration with T.Onogi (YITP) 1. Introduction Why topology fixing action? An action proposed by Luscher provide

More information

Nucleon Spectroscopy with Multi-Particle Operators

Nucleon Spectroscopy with Multi-Particle Operators Nucleon Spectroscopy with Multi-Particle Operators Adrian L. Kiratidis Waseem Kamleh, Derek B. Leinweber CSSM, The University of Adelaide 21st of July - LHP V 2015 - Cairns, Australia 1/41 Table of content

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

The Beam-Helicity Asymmetry for γp pk + K and

The Beam-Helicity Asymmetry for γp pk + K and The Beam-Helicity Asymmetry for γp pk + K and γp pπ + π Rafael A. Badui Jason Bono Lei Guo Brian Raue Florida nternational University Thomas Jefferson National Accelerator Facility CLAS Collaboration September

More information

Meson Baryon Scattering

Meson Baryon Scattering Meson Baryon Scattering Aaron Torok Department of Physics, Indiana University May 31, 2010 Meson Baryon Scattering in Lattice QCD Calculation of the π + Σ +, and π + Ξ 0 scattering lengths Aaron Torok

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information