Organization of a Modern Compiler. Front-end. Middle1. Back-end DO I = 1, N DO J = 1,M S 1 1 N. Source Program

Size: px
Start display at page:

Download "Organization of a Modern Compiler. Front-end. Middle1. Back-end DO I = 1, N DO J = 1,M S 1 1 N. Source Program"

Transcription

1 Organization of a Modern Compiler ource Program Front-end snta analsis + tpe-checking + smbol table High-level ntermediate Representation (loops,arra references are preserved) Middle loop-level transformations Low-level ntermediate Representation (arra references converted into low level operations, loops converted to control flow) Low-level intermediate Representation Middle2 conventional optimizations Back-end register allocation instruction selection Assembl Code DO, DO,M M

2 DO, DO,M M 0 0 L K DO K, M DO L, L M K DO 2, DO, M A[,] A[-,+] + 2 Assume that arra has s stored everwhere before loop begins. After loop permutation: DO, M DO 2, A[,] A[-,+] + Transformed loop will produce different values (A[3,] for eample) > permutation is illegal for this loop. Question: How do we determine when loop permutation is legal? DO, DO, 0 0 L K DO K, DO L, L K Question: How do we generate loop bounds for transformed loop nest?

3 Two problems: Given a sstem of linear inequalities where A is a m X n matri of integers, b is an m vector of integers, is an n vector of unknowns, A < b (i) Are there integer solutions? (ii) Enumerate all integer solutions. Most problems regarding correctness of transformations and code generation can be reduced to these problems. ntuition about sstems of linear inequalities: Equalit: line (2D), plane (3D), hperplane (> 3D) nequalit: half-plane (2D), half-space(>2d) ntuition about sstems of linear inequalities: Conjunction of inequalties intersection of half-spaces > some conve region < > < < < 2 Region described b inequalit is conve (if two points are in region, all points in between them are in region) Region described b inequalities is a conve polhedron (if two points are in region, all points in between them are in region)

4 Dependences: data control flow anti output Flow dependence: -> 2 (i) eecutes before 2 in program order (ii) writes into a location that is read b 2 Anti-dependence: -> 2 (i) eecutes before 2 (ii) reads from a location that is overwritten later b 2 Output dependence: -> 2 (i) eecutes before 2 (ii) and 2 write to the same location nput dependence: -> 2 (i) eecutes before 2 (ii) and 2 both read from the same location output : 2 flow : + anti : 3 output : 7 Conservative Approimation: Loop level Analsis: granularit is a loop iteration - Real programs: imprecise information > need for safe approimation Eample: When ou are not sure whether a dependence eists, ou must assume it does. procedure f (X,i,j) begin X(i) 0; X(j) ; end Question: s there an output dependence from the first assignment to the second? Answer: f (i j), there is a dependence; otherwise, not. > Unless we know from interprocedural analsis that the parameters i and j are alwas distinct, we must pla it safe and insert the dependence. Ke notion: Aliasing : two program names ma refer to the same location (like X(i) and X(j)) Ma-dependence vs must-dependence: More precise analsis ma eliminate ma-dependences DO, 00 DO, 00 each (,) value of loop indices corresponds to one point in picture Dnamic instance of a statement: Eecution of a statement for given loop inde values Dependence between iterations: teration (,) is said to be dependent on iteration (2,2) if a dnamic instance (,) of a statement in loop bod is dependent on a dnamic instance (2,2) of a statement in the loop bod. How do we compute dependences between iterations of a loop nest?

5

6 Min s and ma s in loop bounds maseem weird, but actuall the describe general polhedral iteration spaces! U L L2 U2 For a given, the co-ordinate of a point in the iteration space of the loop nest satisfies ma(l(),l2()) < < min(u(),u2())

7 Presentation sequence: - one equation, several variables several equations, several variables z equations & inequalities < < -9 Diophatine equations: use integer Gaussian elimination olve equalities first then use Fourier-Motzkin elimination One equation, man variables: Thm: The linear Diophatine equation a + a an n c has integer solutions iff gcd(a,a2,...,an) divides c. Eamples: () 2 3 o solutions (2) 2 6 One solution: 3 (3) GCD(2,) which divides 3. olutions: t, (3-2t) (4) GCD(2,3) which divides 3. Let z + floor(3/2) + Rewrite equation as 2z + 3 olutions: z t > (3t - 3) (3-2t) (3-2t) ntuition: Think of underdetermined sstems of eqns over reals. Caution: nteger constraint > Diophantine sstem ma have no solns Thm: The linear Diophatine equation a + a an n c has integer solutions iff gcd(a,a2,...,an) divides c. Proof: WLOG, assume that all coefficients a,a2,...an are positive. We prove onl the F case b induction, the proof in the other direction is trivial. nduction is on min(smallest coefficient, number of variables). Base case: f (# of variables ), then equation is a c which has integer solutions if a divides c. f (smallest coefficient ), then gcd(a,a2,...,an) which divides c. Wlog, assume that a, and observe that the equation has solutions of the form (c - a2 t2 - a3 t an tn, t2, t3,...tn). nductive case: ummar: Eqn: a + a an n c uppose smallest coefficient is a, and let t + floor(a2/a) floor(an/a) n n terms of this variable, the equation can be rewritten as (a) t + (a2 mod a) (an mod a) n c () where we assume that all terms with zero coefficient have been deleted. Observe that () has integer solutions iff original equation does too. ow gcd(a,b) gcd(a mod b, b) > gcd(a,a2,...,an) gcd(a, (a2 mod a),..,(an mod a)) > gcd(a, (a2 mod a),..,(an mod a)) divides c. f a is the smallest co-efficient in (), we are left with variable base case. Otherwise, the size of the smallest co-efficient has decreased, so we have made progress in the induction. - Does this have integer solutions? Does gcd(a,a2,...,an) divide c? t is useful to consider solution process in matri-theoretic terms. We can write single equation as T (3 8)( z) 6 t is hard to read off solution from this, but for special matrices, it is eas. (2 0)(a b) T 8 olution is a 4, b t looks lower triangular, right? Ke concept: column echelon form - "lower triangular form for underdetermined sstems" For a matri with a single row, column echelon form is ( ) z 6 ubstitution: t + + 2z ew equation: 3t z 6 ubstitution: u +z+t ew equation: 2u + t 6 olution: u p t (6-2p) Backsubstitution: p2 t (6-2p) z (3p-p2-6) Backsubstitution: (8-8p+p2) p2 z (3p-p2-6) (3 8) (3 2 2) ( 2 0) (3 8) (3 2 2) ( 0 0) T olution: (6 a b) U3 ( 2 0) Product of matrices olution to original sstem: U*U2*U3*(6 a b) T U U2 U*U2*U a-b -6+3a-b b

8 stems of Diophatine Equations: Ke idea: use integer Gaussian elimination Eample: z - + 2z > t is not eas to determine if this Diophatine sstem has solutions. Eas special case: lower triangular matri z > Question: Can we convert general integer matri into equivalent lower triangular sstem? z TEGER GAUA ELMATO 3 z arbitrar integer nteger gaussian Elimination - Use row/column operations to get matri into triangular form - For us, column operations are more important because we usuall have more unknowns than equations Overall strateg: Given A b Find matrices U, U2,...Uk such that Proof: A*U*U2*...*Uk is lower triangular (sa L) olve L b (eas) Compute (U*U2*...*Uk)* (A*U*U2...*Uk) b > A(U*U2*...*Uk) b > (U*U2...*Uk) Caution: ot all column operations preserve integer solutions olution: -8, 7 which has no integer solutions! ntuition: With some column operations, recovering solution of original sstem requires solving lower triangular sstem using rationals. Question: Can we sta purel in the integer domain? One solution: Use onl unimodular column operations Unimodular Column Operations: (a) nterchange two columns (b) egate a column Check Let, satisf first eqn. Let, satisf second eqn., Check, - (c) Add an integer multiple of one column to another n - Check + n Eample: z > > > > Facts:. The three unimodular column operations - interchanging two columns - negating a column - adding an integer multiple of one column to another on the matri A of the sstem A b preserve integer solutions, as do sequences of these operations > > 3 z z t z t 4-2t - t 2. Unimodular column operations can be used to reduce a matri A into lower triangular form. 3. A unimodular matri of + or -. has integer entries and a determinant 4. The product of two unimodular matrices is also unimodular.

9 Algorithm: Given a sstem of Diophantine equations A b. Use unimodular column operations to reduce matri A to lower triangular form L. 2. f L b has integer solutions, so does the original sstem. 3. f eplicit form of solutions is desired, let U be the product of unimodular matrices corresponding to the column operations. U where is the solution of the sstem L b Detail: nstead of lower triangular matri, ou should to compute column echelon form of matri. Column echelon form: Let rj be the row containing the first non-zero in column j. (i) r(j+) > rj if column j is not entirel zero. (ii) column (j+) is zero if column j is is lower triangular but not column echelon. Point: writing down the solution for this sstem requires additional work with the last equation ( equation, 2 variables). This work is precisel what is required to produce the column echelon form. ote: Even in regular Gaussian elimination, we want column echelon form rather than lower triangular form when we have under-determined sstems.

Organization of a Modern Compiler. Middle1

Organization of a Modern Compiler. Middle1 Organization of a Modern Compiler Source Program Front-end syntax analysis + type-checking + symbol table High-level Intermediate Representation (loops,array references are preserved) Middle1 loop-level

More information

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation register allocation instruction selection Code Low-level intermediate Representation Back-end Assembly array references converted into low level operations, loops converted to control flow Middle2 Low-level

More information

Loop parallelization using compiler analysis

Loop parallelization using compiler analysis Loop parallelization using compiler analysis Which of these loops is parallel? How can we determine this automatically using compiler analysis? Organization of a Modern Compiler Source Program Front-end

More information

' $ Dependence Analysis & % 1

' $ Dependence Analysis & % 1 Dependence Analysis 1 Goals - determine what operations can be done in parallel - determine whether the order of execution of operations can be altered Basic idea - determine a partial order on operations

More information

Homework #2: assignments/ps2/ps2.htm Due Thursday, March 7th.

Homework #2:   assignments/ps2/ps2.htm Due Thursday, March 7th. Homework #2: http://www.cs.cornell.edu/courses/cs612/2002sp/ assignments/ps2/ps2.htm Due Thursday, March 7th. 1 Transformations and Dependences 2 Recall: Polyhedral algebra tools for determining emptiness

More information

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS.

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS. M-Lecture():.-. Linear algebra provides concepts that are crucial to man areas of information technolog and computing, including: Graphics Image processing Crptograph Machine learning Computer vision Optimiation

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

Gauss and Gauss Jordan Elimination

Gauss and Gauss Jordan Elimination Gauss and Gauss Jordan Elimination Row-echelon form: (,, ) A matri is said to be in row echelon form if it has the following three properties. () All row consisting entirel of zeros occur at the bottom

More information

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15)

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) Date: Chapter Goals: Identif solutions to an equation. Solve an equation for one variable in terms of another. What is a function? Understand

More information

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations (9 Fall) Chapter Matrices and Sstems of Equations Chih-Wei Yi Dept. of Computer Science National Chiao Tung Universit October 9, 9 Linear Sstems Linear Sstems Linear Sstems Linear Equations De nition (Linear

More information

Demonstrate solution methods for systems of linear equations. Show that a system of equations can be represented in matrix-vector form.

Demonstrate solution methods for systems of linear equations. Show that a system of equations can be represented in matrix-vector form. Chapter Linear lgebra Objective Demonstrate solution methods for sstems of linear equations. Show that a sstem of equations can be represented in matri-vector form. 4 Flowrates in kmol/hr Figure.: Two

More information

Data Dependences and Parallelization. Stanford University CS243 Winter 2006 Wei Li 1

Data Dependences and Parallelization. Stanford University CS243 Winter 2006 Wei Li 1 Data Dependences and Parallelization Wei Li 1 Agenda Introduction Single Loop Nested Loops Data Dependence Analysis 2 Motivation DOALL loops: loops whose iterations can execute in parallel for i = 11,

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3 Roger Johnson Structure and Dnamics: The 23 space groups Lecture 3 3.1. Summar In the first two lectures we considered the structure and dnamics of single molecules. In this lecture we turn our attention

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

m x n matrix with m rows and n columns is called an array of m.n real numbers

m x n matrix with m rows and n columns is called an array of m.n real numbers LINEAR ALGEBRA Matrices Linear Algebra Definitions m n matri with m rows and n columns is called an arra of mn real numbers The entr a a an A = a a an = ( a ij ) am am amn a ij denotes the element in the

More information

MTH 112 Practice Test 3 Sections 3.3, 3.4, 3.5, 1.9, 7.4, 7.5, 8.1, 8.2

MTH 112 Practice Test 3 Sections 3.3, 3.4, 3.5, 1.9, 7.4, 7.5, 8.1, 8.2 MTH 112 Practice Test 3 Sections 3.3, 3., 3., 1.9, 7., 7., 8.1, 8.2 Use properties of logarithms to epand the logarithmic epression as much as possible. Where possible, evaluate logarithmic epressions

More information

OBJECTIVE 5 SOLVING SYSTEMS 5/19/2016 SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION:

OBJECTIVE 5 SOLVING SYSTEMS 5/19/2016 SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION: /9/ OBJECTIVE Sstems & Matrices SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION:. Solve one of the equations for one of the variables in terms of the other.. Substitute this epression into the nd equation,

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

Chapter 6 Class Notes 6-1 Solving Inequalities Using Addition and Subtraction p n 1

Chapter 6 Class Notes 6-1 Solving Inequalities Using Addition and Subtraction p n 1 Chapter Class Notes Alg. CP - Solving Inequalities Using Addition and Subtraction p.. t. a. n. r r - Solving Inequalities Using Multiplication and Division p. 0-0 A) n B) n A) B) p When ou multipl or divide

More information

Licensed to: ichapters User

Licensed to: ichapters User Publisher: Richard Stratton Senior Sponsoring Editor: Cath Cantin Senior Marketing Manager: Jennifer Jones Discipline Product Manager: Gretchen Rice King Associate Editor: Janine Tangne Associate Editor:

More information

Get Solution of These Packages & Learn by Video Tutorials on Matrices

Get Solution of These Packages & Learn by Video Tutorials on  Matrices FEE Download Stud Package from website: wwwtekoclassescom & wwwmathsbsuhagcom Get Solution of These Packages & Learn b Video Tutorials on wwwmathsbsuhagcom Matrices An rectangular arrangement of numbers

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

M 340L CS Homework Set 1

M 340L CS Homework Set 1 M 340L CS Homework Set 1 Solve each system in Problems 1 6 by using elementary row operations on the equations or on the augmented matri. Follow the systematic elimination procedure described in Lay, Section

More information

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems AMS 209, Fall 205 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems. Overview We are interested in solving a well-defined linear system given

More information

Solving Systems Using Tables and Graphs

Solving Systems Using Tables and Graphs 3-1 Solving Sstems Using Tables and Graphs Vocabular Review 1. Cross out the equation that is NOT in slope-intercept form. 1 5 7 r 5 s a 5!3b 1 5 3 1 7 5 13 Vocabular Builder linear sstem (noun) LIN ee

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

MATH 115: Review for Chapter 6

MATH 115: Review for Chapter 6 MATH 115: Review for Chapter 6 In order to prepare for our test on Chapter 6, ou need to understand and be able to work problems involving the following topics: I SYSTEMS OF LINEAR EQUATIONS CONTAINING

More information

Math 369 Exam #1 Practice Problems

Math 369 Exam #1 Practice Problems Math 69 Exam # Practice Problems Find the set of solutions of the following sstem of linear equations Show enough work to make our steps clear x + + z + 4w x 4z 6w x + 5 + 7z + w Answer: We solve b forming

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

ANALYTIC CENTER CUTTING PLANE METHODS FOR VARIATIONAL INEQUALITIES OVER CONVEX BODIES

ANALYTIC CENTER CUTTING PLANE METHODS FOR VARIATIONAL INEQUALITIES OVER CONVEX BODIES ANALYI ENER UING PLANE MEHODS OR VARIAIONAL INEQUALIIES OVER ONVE BODIES Renin Zen School of Mathematical Sciences honqin Normal Universit honqin hina ABSRA An analtic center cuttin plane method is an

More information

Saturday, April 23, Dependence Analysis

Saturday, April 23, Dependence Analysis Dependence Analysis Motivating question Can the loops on the right be run in parallel? i.e., can different processors run different iterations in parallel? What needs to be true for a loop to be parallelizable?

More information

A Preview of College Algebra CHAPTER

A Preview of College Algebra CHAPTER hal9_ch_-9.qd //9 : PM Page A Preview of College Algebra CHAPTER Chapter Outline. Solving Sstems of Linear Equations b Using Augmented Matrices. Sstems of Linear Equations in Three Variables. Horizontal

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

Homework Notes Week 6

Homework Notes Week 6 Homework Notes Week 6 Math 24 Spring 24 34#4b The sstem + 2 3 3 + 4 = 2 + 2 + 3 4 = 2 + 2 3 = is consistent To see this we put the matri 3 2 A b = 2 into reduced row echelon form Adding times the first

More information

Pure Core 1. Revision Notes

Pure Core 1. Revision Notes Pure Core Revision Notes Ma 06 Pure Core Algebra... Indices... Rules of indices... Surds... 4 Simplifing surds... 4 Rationalising the denominator... 4 Quadratic functions... 5 Completing the square....

More information

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr.

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr. Course Title: Real Analsis Course Code: MTH3 Course instructor: Dr. Atiq ur Rehman Class: MSc-II Course URL: www.mathcit.org/atiq/fa5-mth3 You don't have to be a mathematician to have a feel for numbers.

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Loop Parallelization Techniques and dependence analysis

Loop Parallelization Techniques and dependence analysis Loop Parallelization Techniques and dependence analysis Data-Dependence Analysis Dependence-Removing Techniques Parallelizing Transformations Performance-enchancing Techniques 1 When can we run code in

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

Chapter Adequacy of Solutions

Chapter Adequacy of Solutions Chapter 04.09 dequac of Solutions fter reading this chapter, ou should be able to: 1. know the difference between ill-conditioned and well-conditioned sstems of equations,. define the norm of a matri,

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Advanced Restructuring Compilers. Advanced Topics Spring 2009 Prof. Robert van Engelen

Advanced Restructuring Compilers. Advanced Topics Spring 2009 Prof. Robert van Engelen Advanced Restructuring Compilers Advanced Topics Spring 2009 Prof. Robert van Engelen Overview Data and control dependences The theory and practice of data dependence analysis K-level loop-carried dependences

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Lesson 5.1 Solving Systems of Equations

Lesson 5.1 Solving Systems of Equations Lesson 5.1 Solving Sstems of Equations 1. Verif whether or not the given ordered pair is a solution to the sstem. If it is not a solution, eplain wh not. a. (, 3) b. (, 0) c. (5, 3) 0.5 1 0.5 2 0.75 0.75

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Section.1 Review: Graphing a Linear Equation 57.1 Review: Graphing a Linear Equation A linear equation means the equation of a straight line, and can be written in one of two forms.

More information

1 Greedy Graph Algorithms

1 Greedy Graph Algorithms +//+ Algorithms & Data Structures (DL) Exam of 7 December 5 Instructions: This is a multiple-choice exam, to save ou the time of tiding up the presentation of our answers. There is exactl one correct answer

More information

TROPICAL SCHEME THEORY

TROPICAL SCHEME THEORY TROPICAL SCHEME THEORY 1. Tropical ideals The idea of tropical scheme theor in general is the following. An ideal I K[ 1,..., n ] gives rise to a variet V (I) A n K a variet. With classical tropicalization

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 4 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

Chapter 11 Optimization with Equality Constraints

Chapter 11 Optimization with Equality Constraints Ch. - Optimization with Equalit Constraints Chapter Optimization with Equalit Constraints Albert William Tucker 95-995 arold William Kuhn 95 oseph-ouis Giuseppe odovico comte de arane 76-. General roblem

More information

Dependence Analysis. Dependence Examples. Last Time: Brief introduction to interprocedural analysis. do I = 2, 100 A(I) = A(I-1) + 1 enddo

Dependence Analysis. Dependence Examples. Last Time: Brief introduction to interprocedural analysis. do I = 2, 100 A(I) = A(I-1) + 1 enddo Dependence Analysis Dependence Examples Last Time: Brief introduction to interprocedural analysis Today: Optimization for parallel machines and memory hierarchies Dependence analysis Loop transformations

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

CONTINUOUS SPATIAL DATA ANALYSIS

CONTINUOUS SPATIAL DATA ANALYSIS CONTINUOUS SPATIAL DATA ANALSIS 1. Overview of Spatial Stochastic Processes The ke difference between continuous spatial data and point patterns is that there is now assumed to be a meaningful value, s

More information

Low-Complexity Encoding Algorithm for LDPC Codes

Low-Complexity Encoding Algorithm for LDPC Codes EECE 580B Modern Coding Theory Low-Complexity Encoding Algorithm for LDPC Codes Problem: Given the following matrix (imagine a larger matrix with a small number of ones) and the vector of information bits,

More information

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name 1) Find the SUM of the solutions of the equation. 82 + 0 = 16 Use the quadratic formula to solve the equation. (All solutions are real numbers.)

More information

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar MTH Finite Mathematics or usiness Math Lecture Notes uthor / opright: Kevin Pinegar MTH Module Notes: SYSTEMS OF EQUTONS & MTES. MT NVESES & POPETES OF MTES Definition: We cannot discuss the inverse of

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv Universit, 2013/14 Analsis-III,IV 53 4 Inverse function theorem 4a What is the problem................ 53 4b Simple observations before the theorem..... 54 4c The theorem.....................

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr Tereza Kovářová, PhD following content of lectures by Ing Petr Beremlijski, PhD Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 3 Inverse Matrix

More information

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1.

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1. 8.4 An Introduction to Functions: Linear Functions, Applications, and Models We often describe one quantit in terms of another; for eample, the growth of a plant is related to the amount of light it receives,

More information

Course 15 Numbers and Their Properties

Course 15 Numbers and Their Properties Course Numbers and Their Properties KEY Module: Objective: Rules for Eponents and Radicals To practice appling rules for eponents when the eponents are rational numbers Name: Date: Fill in the blanks.

More information

The Entropy Power Inequality and Mrs. Gerber s Lemma for Groups of order 2 n

The Entropy Power Inequality and Mrs. Gerber s Lemma for Groups of order 2 n The Entrop Power Inequalit and Mrs. Gerber s Lemma for Groups of order 2 n Varun Jog EECS, UC Berkele Berkele, CA-94720 Email: varunjog@eecs.berkele.edu Venkat Anantharam EECS, UC Berkele Berkele, CA-94720

More information

Foundations of Databases

Foundations of Databases Foundations of Databases (Slides adapted from Thomas Eiter, Leonid Libkin and Werner Nutt) Foundations of Databases 1 Quer optimization: finding a good wa to evaluate a quer Queries are declarative, and

More information

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2 Linear Programming Man real world problems require the optimization of some function subject to a collection of constraints. Note: Think of optimizing as maimizing or minimizing for MATH1010. For eample,

More information

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization WWW.CEMC.UWATERLOO.CA The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Intermediate Math Circles Wednesda November 21 2012 Inequalities and Linear Optimization Review: Our goal is to solve sstems

More information

Math098 Practice Final Test

Math098 Practice Final Test Math098 Practice Final Test Find an equation of the line that contains the points listed in the table. 1) 0-6 1-2 -4 3-3 4-2 Find an equation of the line. 2) 10-10 - 10 - -10 Solve. 3) 2 = 3 + 4 Find the

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus .1 Rates of Change and Limits AP Calculus.1 RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

SF2972 Game Theory Problem set on extensive form games

SF2972 Game Theory Problem set on extensive form games SF2972 Game Theor Problem set on etensive form games Mark Voorneveld There are five eercises, to be handed in at the final lecture (March 0). For a bonus point, please answer all questions; at least half

More information

Geometry of Span (continued) The Plane Spanned by u and v

Geometry of Span (continued) The Plane Spanned by u and v Geometric Description of Span Geometr of Span (contined) 2 Geometr of Span (contined) 2 Span {} Span {, } 2 Span {} 2 Geometr of Span (contined) 2 b + 2 The Plane Spanned b and If a plane is spanned b

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW MATH 234 - LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW Now will will begin with the process of learning how to solve differential equations. We will learn different techniques for

More information

6. Vector Random Variables

6. Vector Random Variables 6. Vector Random Variables In the previous chapter we presented methods for dealing with two random variables. In this chapter we etend these methods to the case of n random variables in the following

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 8 CHAPTER Limits and Their Properties Section Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach Learn different was that a it can fail to eist Stud and use

More information

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations MA 800, Summer 06 Lesson Notes Solving a Sstem of Equations b substitution (or elimination) Matrices Consider the graphs of the two equations below. A Sstem of Equations From our mathematics eperience,

More information

Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations

Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations Handout for dequac of Solutions Chapter 04.07 SET ONE The solution to 7.999 4 3.999 Make a small change in the right hand side vector of the equations 7.998 4.00 3.999 4.000 3.999 Make a small change in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAT 10 Test 2 Review (chapters 6,7,11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Multipl both sides of each equation b a common denominator

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Local Phase Portrait of Nonlinear Systems Near Equilibria

Local Phase Portrait of Nonlinear Systems Near Equilibria Local Phase Portrait of Nonlinear Sstems Near Equilibria [1] Consider 1 = 6 1 1 3 1, = 3 1. ( ) (a) Find all equilibrium solutions of the sstem ( ). (b) For each equilibrium point, give the linear approimating

More information

Graph the linear system and estimate the solution. Then check the solution algebraically.

Graph the linear system and estimate the solution. Then check the solution algebraically. (Chapters and ) A. Linear Sstems (pp. 6 0). Solve a Sstem b Graphing Vocabular Solution For a sstem of linear equations in two variables, an ordered pair (x, ) that satisfies each equation. Consistent

More information

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS arxiv:1803.0591v1 [math.gm] QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS Aleander Panfilov stable spiral det A 6 3 5 4 non stable spiral D=0 stable node center non stable node saddle 1 tr A QUALITATIVE

More information

(2.5) 1. Solve the following compound inequality and graph the solution set.

(2.5) 1. Solve the following compound inequality and graph the solution set. Intermediate Algebra Practice Final Math 0 (7 th ed.) (Ch. -) (.5). Solve the following compound inequalit and graph the solution set. 0 and and > or or (.7). Solve the following absolute value inequalities.

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading:

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading: Reading Required: Watt, Section.. Further reading: 4. Affine transformations Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd Ed., McGraw-Hill,

More information

CPS 616 ITERATIVE IMPROVEMENTS 10-1

CPS 616 ITERATIVE IMPROVEMENTS 10-1 CPS 66 ITERATIVE IMPROVEMENTS 0 - APPROACH Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Chapter 6: Systems of Equations and Inequalities

Chapter 6: Systems of Equations and Inequalities Chapter 6: Sstems of Equations and Inequalities 6-1: Solving Sstems b Graphing Objectives: Identif solutions of sstems of linear equation in two variables. Solve sstems of linear equation in two variables

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 60_00.qd //0 :05 PM Page 8 8 CHAPTER Limits and Their Properties Section. Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach. Learn different was that a it can

More information

A Review of Complex Numbers Ilya Pollak ECE 301 Signals and Systems Section 2, Fall 2010 Purdue University

A Review of Complex Numbers Ilya Pollak ECE 301 Signals and Systems Section 2, Fall 2010 Purdue University A Review of Complex Numbers la Pollak ECE 30 Signals and Sstems Section, Fall 00 Purdue Universit A complex number is represented in the form z = x + j, where x and are real numbers satisfing the usual

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAT 1033 Test 2 Review (chapters 6,7,11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Multipl both sides of each equation b a common denominator

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 5 Maintaining Mathematical Proficienc Graph the equation. 1. + =. = 3 3. 5 + = 10. 3 = 5. 3 = 6. 3 + = 1 Solve the inequalit. Graph the solution. 7. a 3 > 8. c 9. d 5 < 3 10. 8 3r 5 r

More information