Gravity data reduction

Size: px
Start display at page:

Download "Gravity data reduction"

Transcription

1 Gravity data reduction REDUCTION: raw data à gravity anomaly data Temporal corrections tides and instrument drift Spatial corrections latitude and elevation GRS67 = gravity variation with latitude at sea level:

2 Elevation corrections after removing the effects of latitude, any variation in gravity is due to local topography (elevation) and local geology EFFECT OF ELEVATION: g depends on the distance from the centre of the Earth (r): g = GM r à further from centre = smaller g (pg 5 in notes): change in gravity with elevation change is: 2 E Δg = Δh (Δg in mgal and Δh in m)

3 Going from Site A to Site B: increase in elevation of 100 m predicted decrease in gravity is: Δg = = 30.86mgal This is not a small change!

4 Free air correction In order to compare the gravity data from Sites A, B and C, it is necessary to correct for the differences in elevation. à Free Air Correction (C FA ) First, define a reference level sea level, Prairies, elevation of Site A.

5 Free-air correction: C FA = Δh Δh is the difference in elevation between site and reference level for a site above the reference level (SITE B), C FA is added to observed gravity value ( moving site closer to centre of Earth) for a site below the reference level (SITE C), C FA is subtracted Resulting gravity value is called the Free Air Anomaly (g FA ) à this is gravity variation if you were to take measurements at a constant distance from the centre of the Earth

6 Free Air Anomaly from GRACE satellite data: gravity field measured at the altitude of the satellites, after correction for latitude effects (GRS67) (

7 Bouguer Correction Site B: observed gravity will be due to elevation AND all the mass below the surface elevation corrected with C FA but the gravity value will still be larger than at Site A because of the mass of the hill

8 Infinite layer Approximate the gravity effect of the hill by an infinite slab of uniform density and thickness. Remember: gravity of an infinite slab is: g = 2πGρΔh Δh is the thickness ρ is the density (assumed to be constant)

9 Infinite layer Correction for the difference in mass due to elevation is the Bouguer correction: C B = 2πGρΔ h = ρΔ h (mgal) Often assumed that ρ = 2670 kg m -3 (average density of crustal rocks). Other methods: local geology, borehole data, seismic velocities, Nettleton s method With ρ = 2670 kg m -3 : C B = Δh

10 For site B: C B = Δh = = 11.19mgal Not small! Site B: Above reference level à Subtract C B (removing the gravitational effect of the hill) Site C: Below reference level - therefore missing mass à Add C B Resulting gravity value is the Bouguer Anomaly (g B )

11 Summary of Elevation Corrections à Choose a reference level C FA = Δh C B = Δh Site elevation Above reference level: Below reference level: C FA C B Add Subtract Subtract Add

12 Terrain correction In areas of rugged topography, there is a non-negligible effect of topographic features surrounding the measurement site. At stations A and C: the presence of the hill will cause a small upward pull à observed gravity will be slightly too low At site B: the observed gravity will be slightly too low due to the missing mass in the adjacent valleys In both cases: need to ADD a correction to account for topographic effects

13 Terrain correction: Hammer chart divide surrounding region (to 22 km away) into compartments determine average elevation in each compartment calculate gravitational effect of each compartment (empirical equation) sum of compartments = terrain correction à add to Bouguer anomaly Tedious and can have large uncertainties only used if there is significant topography

14 Gravity Data Reduction - removing known effects from observed gravity values: 1. Temporal corrections tides instrument drift 2. Latitude correction GRS67 equation 3. Elevation corrections Free air Bouguer terrain correction (if needed) If the resulting gravity value (Bouguer anomaly) is not zero: à gravity anomaly due to local density structure

15 Example of data reduction Using a relative gravimeter, these gravity values were recorded: outside CCIS building: mgal - elevation is 605 m above sea level at airport: mgal Assume data has already been corrected for instrument drift and tidal effects. The absolute value of gravity at the airport is: 981, mgal. Using sea level as the reference, what is the Bouguer gravity anomaly outside CCIS? The topography is fairly flat no terrain correction is needed

16 1. Find absolute gravity at CCIS outside CCIS building: mgal at airport: mgal à CCIS gravity is mgal larger Airport absolute gravity = 981, mgal Therefore CCIS absolute gravity is: 981, = 981, mgal

17 2. Gravity anomaly (w.r.t. GRS67) at CCIS Observed CCIS absolute gravity = 981, mgal Latitude is N à GRS67 equation gives a gravity value of 981, mgal (page 4 in notes) Observed is less than expected: à gravity anomaly is mgal Gravity (m/s2) GRS Latitude (degrees)

18 3. Free air anomaly at CCIS Gravity anomaly is mgal after latitude correction. Elevation of CCIS is 605 m above sea level. Taking sea level as a reference Δh=605 m Free air correction is: C FA = Δh = mgal ADD C FA (CCIS is above sea level) Free air anomaly is: g FA = = mgal

19 4. Bouguer anomaly at CCIS Free air gravity anomaly is mgal Need to correct for the 605 m thickness of material between CCIS and the reference level (sea level) using a density of 2670 kg/m 3 Bouguer correction is: C B = Δh = mgal (SUBTRACT THIS removing rocks to get to the reference level) Bouguer anomaly (sea level reference) is: g B = = mgal

20 Bouguer gravity data for Alberta (Pilkington et al., 2000)

21 Gravity survey procedures (on land) Survey design: station spacing depends on what you are studying - small (near-surface) features require closely-spaced measurements (Q#1 on assignment) conduct study on a 2D grid if possible helps with interpretation (sphere vs. cylinder) allows you to examine repeatability of measurements establish a base station and visit several times (at least once every 1-2 hours) one station should be at a location where absolute gravity measurements have been made

22 Gravity survey procedures At each station: measure latitude and elevation (GPS, leveling) level the gravimeter record the time at which the measurement is made observe surrounding topography à terrain correction needed? Terrain correction (Hammer) chart

23 Data reduction steps 1. Remove tidal effects (use tide model or base station readings) 2. Correct for instrument drift using base station readings 3. Calculate absolute gravity 4. Subtract GRS67 gravity value (theoretical gravity) latitude correction 5. Choose reference level and correct for station elevation free air and Bouguer corrections 6. Make any additional terrain corrections à the result is a map (or profile) of the Bouguer gravity anomaly in the study area

24 Observed gravity for Canada (

25 Bouguer gravity for Canada (

26 Bouguer gravity in Canada (

Note that gravity exploration is different to seismic exploration in the following way:

Note that gravity exploration is different to seismic exploration in the following way: 224B3 Other factors that cause changes in g and need to be corrected Note that gravity exploration is different to seismic exploration in the following way: In a seismic survey, the travel time depends

More information

2.2 Gravity surveys. Gravity survey

2.2 Gravity surveys. Gravity survey 2.2 Gravity surveys Gravity survey The effect of latitude The effect of elevation The Bouguer effect Topographic effect The effect of tides Summary of corrections Gravity in boreholes Gravity survey In

More information

Introduction to the use of gravity measurements in Ge111A

Introduction to the use of gravity measurements in Ge111A Introduction to the use of gravity measurements in Ge111A Background & basic intuition Data reduction Use of the instrument See Reynolds for detailed quantitative discussion What and Why Gravity measures

More information

r 1 r 2 r 3 Dr is what matters!

r 1 r 2 r 3 Dr is what matters! Today s Agenda Gravity - Background & basic intuition - Data reduction - Use of the instrument - See textbook for detailed quantitative discussion - Measure height of Millikan or S. Mudd What and Why Gravity

More information

Introduction to the use of gravity measurements

Introduction to the use of gravity measurements Introduction to the use of gravity measurements Background & basic intuition Data reduction Use of the instrument See Reynolds, Chpt 2, for detailed quantitative discussion What and Why Gravity measures

More information

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 KING SAUD UNIVERSITY FACULTY OF SCIENCES Department of Geology and Geophysics GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 INTRODUCTION Definition Gravity method consists of measuring, studying

More information

Last week we obtained a general solution: 1 cos αdv

Last week we obtained a general solution: 1 cos αdv GRAVITY II Surface Gravity Anomalies Due to Buried Bodies Simple analytical solution may be derived for bodies with uniform density contrast simple shape, such as: Sphere Horizontal/vertical cylinders

More information

Lab 8: Gravity and Isostasy (35 points)

Lab 8: Gravity and Isostasy (35 points) it's not the most important thing in your life right now. But what is important is gravity. Arnold Schwarzenegger as Colonel John Matrix, Commando (Check out this classic of American cinema!) Lab 8: Gravity

More information

mdu G = Fdr = mgdr Dr. Clint Conrad POST 804 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid U G = G M r

mdu G = Fdr = mgdr Dr. Clint Conrad POST 804 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid U G = G M r GG 611 Big Gulp Fall 2014 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid Dr. Clint Conrad POST 804 clintc@hawaii.edu Gravitational Potential For a point mass: Newton s law of gravitation:

More information

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity Exploration GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity: force of attraction between objects with mass Consider two objects with mass m 1 and m 2 : m 1 m 2 F g F g distance (r)

More information

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique Journal of Earth Sciences and Geotechnical Engineering, vol. 7, no.2, 2017, 63-69 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2017 Determination of Subsurface Bulk Density Distribution

More information

GRAVITY EXPLORATION. subsurface density. (material property) Gravity anomalies of some simple shapes

GRAVITY EXPLORATION. subsurface density. (material property) Gravity anomalies of some simple shapes GRAVITY EXPLORATION g at surface (observation) subsurface density (material property) subsurface geology Gravity anomalies of some simple shapes Reminder: we are working with values about... 0.01-0.001

More information

Magnetic and Gravity Methods for Geothermal Exploration

Magnetic and Gravity Methods for Geothermal Exploration Magnetic and Gravity Methods for Geothermal Exploration Dr. Hendra Grandis Geophysics - ITB method and survey procedure Aero- or ground magnetic (covers a large area) Schlumberger resistivity mapping and

More information

Gravity Methods (IV)

Gravity Methods (IV) Environmental and Exploration Geophysics II Gravity Methods (IV) tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Possible employment opportunities

More information

TERRAIN (BOUGUER) DENSITY. One of the largest effects on gravity is the attraction of the topography near the

TERRAIN (BOUGUER) DENSITY. One of the largest effects on gravity is the attraction of the topography near the TERRAIN (BOUGUER) DENSITY One of the largest effects on gravity is the attraction of the topography near the gravity station. This is distinct from the Bouguer correction, which corrects for the attraction

More information

Total gravitational field is sum of contributions from all masses.

Total gravitational field is sum of contributions from all masses. Gravity force (acceleration) vs potential (energy) acceleration (g) => GM/r 2 Potential => - GM/r G is Newton s gravitational constant 6.67x10-11 (S.I. units) you should determine what the S.I. units are

More information

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE Report prepared for the B.C. Ministry of Energy and Mines Resource Development Division New Ventures Branch by Bemex Consulting

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

GRAVITY AND MAGNETIC METHODS

GRAVITY AND MAGNETIC METHODS Presented at Short Course IX on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 2-24, 2014. Kenya Electricity Generating Co.,

More information

Gravity Measurements Making Corrections and Calculating Anomalies

Gravity Measurements Making Corrections and Calculating Anomalies Gravity Measurements Making Corrections and Calculating Anomalies After completing this practical you should be able to: Use Excel to perform basic calculations using formulae. Use formulae to automatically

More information

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen Geothermal Energy Resources Exploration using Gravity and magnetics By Mariita, N.O. KenGen What is Geothermal Energy? Geothermal Energy = heat from the Earth Transmitted by fluids via fractures and pores

More information

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar GRAVIMETRIC MAP OF CHILE Araneda M., Rivas L., Avendaño M, Sottolichio G., Rubio W. Services Mining and Engineering Geophysics segmi@netexpress.cl) Instituto Geográfico Militar (lrivas@igm.cl) Abstract

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006 SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 26 Introduction The point of this solution set is merely to plot the gravity data and show the basic computations. This document contains a

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION GEOL 481.3 OUTLINE POTENTIAL FIELD METHODS GEOL 481.3 email: jim.merriam@usask.ca POTENTIAL FIELD METHODS Many of us secretly dream of six months without gravity Allan Fotheringham COURSE DESCRIPTION This

More information

SURVEI GRAVITI (Gravity Surveying)

SURVEI GRAVITI (Gravity Surveying) Introduction SURVEI GRAVITI (Gravity Surveying) Gravity surveys measure the acceleration due to gravity, g. Average value of g at Earth s surface is 9.80 ms -2. Gravitational attraction depends on density

More information

http://foundation.aapg.org/students/undergraduate/weeks.cfm Tim Carr - West Virginia University 3 Potential Fields Indirect Visualization Density and Magnetization Gravity and Magnetic Exploration Locate

More information

Gravitational Fields

Gravitational Fields Gravitational Fields although Earth and the Moon do not touch, they still exert forces on each other Michael Faraday developed the idea of a field to explain action at a distance a field is defined as

More information

Getting Started: Using and Understanding Gravity Data

Getting Started: Using and Understanding Gravity Data The University of Texas at El Paso Pan-American Center for Earth and Environmental Studies Thu 13-Sep-2007 ABOUT PACES Mission Newsletter Sponsors RESEARCH Geoinformatics Remote Sensing Geoscience GIS

More information

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN By Melvyn E. Best Bemex Consulting International 5288 Cordova Bay Road Victoria, B.C. V8Y 2L4 KEYWORDS: potential fields,

More information

Section 2: Gravity Surveying

Section 2: Gravity Surveying Introduction Section 2: Gravity Surveying Gravity surveys measure the acceleration due to gravity, g. Average value of g at Earth s surface is 9.80 ms -2. Gravitational attraction depends on density of

More information

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND Jan Krynski Institute of Geodesy and Cartography, Poland krynski@igik.edu.pl Adam Lyszkowicz University of Warmia and Mazury in Olsztyn, Poland

More information

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity I. Geomagnetism Name ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity The earth's magnetic field can be viewed as a simple bar magnet located near the center of the earth and inclined

More information

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL Mt. Everest HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL -Niraj Manandhar Head, Geodetic Survey Branch Survey Department, Geodetic Survey Branch Project Background Air Borne Gravity Survey Project was

More information

C5 Magnetic exploration methods data analysis techniques

C5 Magnetic exploration methods data analysis techniques C5 Magnetic exploration methods data analysis techniques C5.1 Data processing and corrections After magnetic field data have been collected a number of corrections are applied to simplify the interpretation.

More information

GRAVITATIONAL FORCE NEAR EARTH

GRAVITATIONAL FORCE NEAR EARTH GRAVITATIONAL FORCE NEAR EARTH Recap: Gravitational Force Field Recall that gravity is an action-at-adistance force that pulls on objects (regardless of their size or mass) without making any contact with

More information

Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method

Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 5, No 1, February 2002, p. 3-8, 7 figs. Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method

More information

GRAVITY MEASUREMENTS IN THE BEAUFORT SEA AREA*

GRAVITY MEASUREMENTS IN THE BEAUFORT SEA AREA* 50 Papers GRAVITY MEASUREMENTS IN THE BEAUFORT SEA AREA* Donald Plouff G Introduction RAVITY and other geophysical measurements (Plouff et al. 96) were made on Fletcher s Ice Island (T-) as part of studies

More information

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity UNIVERSITY OF SOUTH ALABAMA Last Time MAS 603: Geological Oceanography Extinctions Lecture 21: 1: http://www.cartoonstock.com/newscartoons/cartoonists/for/lowres/forn441l.jpg Today s s Agenda Introduction

More information

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2 ENV-5004B/ENVK5005B Figure 6 Student Registration No UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 014-15 SOLID EARTH GEOPHYSICS SOLID EARTH GEOPHYSICS WITH FIELDCOURSE

More information

Gravitational constraints

Gravitational constraints Gravitational constraints Reading: Fowler p172 187 Gravity anomalies Free-air anomaly: g F = g g( λ ) + δg obs F Corrected for expected variations due to the spheroid elevation above the spheroid Bouguer

More information

THE DEAD SEA RIFT VALLEY

THE DEAD SEA RIFT VALLEY JOINT ISRAELI-PALESTINIAN GRAVITY SURVEY IN THE DEAD SEA RIFT VALLEY by M. Rybakov The Geophysical Institute of Israel P.O. Box 182 Lod, 7 1 100 Israel R El-Kelani Earth Sciences and seismic engineering

More information

a z41. COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No.

a z41. COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No. a z41. COMMONWEALTH OF AUSTRALIA ff..4 *.re /Veis DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No. 66 RED TANK BORE GRAVITY SURVEY, PLENTY RIVER, N.T.

More information

GRAVITY AND ISOSTASY

GRAVITY AND ISOSTASY GRAVITY AND ISOSTASY Gravity The Geoid is the oblate spheroid -- the sea level surface over the entire Earth's surface Physically, the Geoid is an equipotential surface for gravity (i.e. the surface for

More information

Gravity surveys. Introduction. Gravity surveys. Historical perspective

Gravity surveys. Introduction. Gravity surveys. Historical perspective Gravity surveys Introduction These pages introduce the fundamentals and practicalities of gravity surveying. They are not exhaustive, and are meant only to serve as an introduction. Note that the examples

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Environmental and Exploration Geophysics I Gravity I tom.h.wilson

Environmental and Exploration Geophysics I Gravity I tom.h.wilson Environmental and Exploration Geophysics I Gravity I tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Discuss mid term exam Objectives for

More information

Why do we need a proper geoid

Why do we need a proper geoid Why do we need a proper geoid Petr Vaníček Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. CND E3B 53 1 My working hypothesis: Let us all agree

More information

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Dr. Mansour A. Al-Garni Office: room 233/Buld. 27 OR Dept. chair office/buld. 55 Introduction to Geophysics EGP 211 Time: 10-10:55

More information

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008 B6 Isostacy B6.1 Airy and Pratt hypotheses Himalayan peaks on the Tibet-Bhutan border In the 19 th century surveyors used plumblines and theodolites to map India. A plumb line was used when measuring the

More information

Development of a Borehole Gravity Meter for Mining Applications

Development of a Borehole Gravity Meter for Mining Applications Ground and Borehole Geophysical Methods Paper 111 Development of a Borehole Gravity Meter for Mining Applications Seigel, H. O. [1], Nind, C. [1], Lachapelle, R. [1], Chouteau, M. [2], Giroux, B. [2] 1.

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX

International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX International Journal Geology and Mining Vol. 4(1), pp. 151-155, March, 2018. www.premierpublishers.org. ISSN: XXXX-XXXX IJGM Research Article A Study of Anomalous Value of Free-Air Vertical Gradient for

More information

The earth s gravitational field

The earth s gravitational field The earth s gravitational field T. Ramprasad National Institute of Oceanography, Dona Paula, Goa-403 004 rprasad@nio.org Gravity Gravity is a force that for us is always directed downwards. But to say

More information

The rock probably formed 200million years ago. The mineral sample is purple.

The rock probably formed 200million years ago. The mineral sample is purple. Midterm Study Guide 1) Intro to Earth Science (Chapters 1& 2) a) Fact (observation) vs. Inference (assumption/hypothesis) Recognize whether a statement is a fact or an inference. For example: The rock

More information

Different types of maps and how to read them.

Different types of maps and how to read them. Different types of maps and how to read them. A map is a picture or representation of the Earth's surface, showing how things are related to each other by distance, direction, and size. Maps have been

More information

Height systems. Rudi Gens Alaska Satellite Facility

Height systems. Rudi Gens Alaska Satellite Facility Rudi Gens Alaska Satellite Facility Outline Why bother about height systems? Relevant terms Coordinate systems Reference surfaces Geopotential number 2 Why bother about height systems? give a meaning to

More information

δh AB = l 1 l 2. (4 1)

δh AB = l 1 l 2. (4 1) 4 Heights 4.1 Spirit leveling The principle of spirit leveling is well known. To measure the height difference δh between two points and, vertical rods are set up at each of these two points and a level

More information

C3: Magnetic anomalies produced by simple geological structures. Remember that objects can acquire both induced and remnant magnetization.

C3: Magnetic anomalies produced by simple geological structures. Remember that objects can acquire both induced and remnant magnetization. Geophysics 3 February 009 C3: Magnetic anomalies produced by simple geological structures Remember that objects can acquire both induced and remnant magnetization. Induced magnetization will disappear

More information

/////// ///////////// Module ONE /////////////// ///////// Space

/////// ///////////// Module ONE /////////////// ///////// Space // // / / / / //// / ////// / /// / / // ///// ////// ////// Module ONE Space 1 Gravity Knowledge and understanding When you have finished this chapter, you should be able to: define weight as the force

More information

INTRODUCTION TO APPLIED GEOPHYSICS

INTRODUCTION TO APPLIED GEOPHYSICS INTRODUCTION TO APPLIED GEOPHYSICS EXPLORING THE SHALL0W SUBSURFACE H. Robert Burger Anne F. Sheehan Craig H.Jones VERSITY OF COLORADO VERSITY OF COLORADO W. W. NORTON & COMPANY NEW YORK LONDON Contents

More information

KMS Technologies KJT Enterprises Inc. Presentation

KMS Technologies KJT Enterprises Inc. Presentation KMS Technologies KJT Enterprises Inc. Presentation Thomsen, L., Strack, K. M., Brady, J., Biegert, E. 2003 A Novel Approach to 4D: Full Field Density Monitoring Society of Exploration Geophysicists, Annual

More information

(b) What is the amplitude at the altitude of a satellite of 400 km?

(b) What is the amplitude at the altitude of a satellite of 400 km? Practice final quiz 2015 Geodynamics 2015 1 a) Complete the following table. parameter symbol units temperature T C or K thermal conductivity heat capacity density coefficient of thermal expansion volumetric)

More information

Monitoring of geothermal reservoirs by hybrid gravimetry

Monitoring of geothermal reservoirs by hybrid gravimetry Monitoring of geothermal reservoirs by hybrid gravimetry Jacques Hinderer 1, Marta Calvo 1, 3, Basile Hector 1, Umberto Riccardi 2, Gilbert Ferhat 1, Yassine Abdelfettah 1,4 & Jean Daniel Bernard 1 1 Institut

More information

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008 GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED Dr. Abdelrahim Elgizouli Mohamed Ahmed* WITH THE EGM96 ANG EGM2008 Abstract: Positioning by satellite system determine the normal height above

More information

Determination of the relative soil compactness in the foundation condition by microgravity data

Determination of the relative soil compactness in the foundation condition by microgravity data Bollettino di Geofisica Teorica ed Applicata Vol. 54, n. 2, pp. 129-143; June 2013 DOI 10.4430/bgta0088 Determination of the relative soil compactness in the foundation condition by microgravity data V.E.

More information

Gravity 6. Density. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 6. Gravity 6. Objectives. Density of Rocks. Density with depth

Gravity 6. Density. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 6. Gravity 6. Objectives. Density of Rocks. Density with depth of with Chuck Connor, Laura Connor Potential Fields Geophysics: Week 6 for Week 5 of with Bulk, true, and natural density of the Earth s and compounds of with Densities of rocks near the surface of the

More information

ifly Post Field Trip Activity Teacher Instructions Grades 6-8

ifly Post Field Trip Activity Teacher Instructions Grades 6-8 ifly Post Field Trip Activity Teacher Instructions Grades 6-8 Learning Outcomes: Use measured data to predict results Understand the variables that affect terminal velocity Use algebraic reasoning to solve

More information

Notes and Summary pages:

Notes and Summary pages: Topographic Mapping 8.9C Interpret topographical maps and satellite views to identify land and erosional features and predict how these shapes may be reshaped by weathering ATL Skills: Communication taking

More information

Gravity reduction spreadsheet to calculate the Bouguer anomaly using standardized methods and constants

Gravity reduction spreadsheet to calculate the Bouguer anomaly using standardized methods and constants Gravity reduction spreadsheet to calculate the Bouguer anomaly using standardized methods and constants Derek I. Holom John S. Oldow Department of Geological Sciences, University of Idaho, Moscow, Idaho

More information

CHAPTER 10 GRAVITATION

CHAPTER 10 GRAVITATION CHAPTER 10 GRAVITATION Earth attracts everything towards it by an unseen force of attraction. This force of attraction is known as gravitation or gravitation pull. Universal Law of Gravitation:- Every

More information

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT Surface geophysical methods can be an important part

More information

Mapping Earth. Technology and Mapmaking

Mapping Earth. Technology and Mapmaking CHAPTER 1 LESSON 2 Mapping Earth Technology and Mapmaking Key Concepts What can a topographic map tell you about the shape of Earth s surface? What can you learn from geologic maps about the rocks near

More information

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Open Access Library Journal Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Hans Schmidt Santos 1, Diego Moreno Monteiro 2, Bruno Leite Teixeira 2 1 Department of Research

More information

7 - GRAVITATION Page 1 ( Answers at the end of all questions )

7 - GRAVITATION Page 1 ( Answers at the end of all questions ) 7 - GRAVITATION Page 1 1 ) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the

More information

The Atmosphere in the Vertical ACTIVITY. Introduction. Materials. Investigations

The Atmosphere in the Vertical ACTIVITY. Introduction. Materials. Investigations ACTIVITY Activity The Atmosphere in the Vertical After completing this activity, you should be able to: Describe the vertical structure of the atmosphere in the troposphere (the "weather" layer) and in

More information

Mean Vertical Gradient of Gravity

Mean Vertical Gradient of Gravity Mean Vertical Gradient of Gravity P. Vaníek, J. Janák Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O.Box 4400, Fredericton, New Brunswick, Canada, E3B 2M8 J. Huang Geodetic

More information

Height systems. Rüdiger Gens

Height systems. Rüdiger Gens Rüdiger Gens 2 Outline! Why bother about height systems?! Relevant terms! Coordinate systems! Reference surfaces! Geopotential number! Why bother about height systems?! give a meaning to a value defined

More information

224 D4 Instrumentation and data collection techniques for magnetic exploration

224 D4 Instrumentation and data collection techniques for magnetic exploration 224 D4 Instrumentation and data collection techniques for magnetic exploration D4.1 Instrumentation D4.1.1 Flux gate magnetometer Details of operation are described in Keary and Brooks Measures the component

More information

CHAPTER X. Second Half Review 2017

CHAPTER X. Second Half Review 2017 CHAPTER X Second Half Review 217 Here is a quick overview of what we covered in the second half of the class. Remember that the final covers the whole course but there will naturally be a bias towards

More information

Unit I: Earth Dimensions. Review Book pp.19-30

Unit I: Earth Dimensions. Review Book pp.19-30 Unit I: Earth Dimensions Review Book pp.19-30 Objective #1 Describe the actual shape of the Earth and explain 3 pieces of evidence for its actual shape. Earth s Shape The Earth appears to be the shape

More information

Geog Lecture 29 Mapping and GIS Continued

Geog Lecture 29 Mapping and GIS Continued Geog 1000 - Lecture 29 Mapping and GIS Continued http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 13-25, 28-29) 1. Hand back Assignment 3 2. Review of Dr. Peddle s lecture last week

More information

Mapping Earth. How are Earth s surface features measured and modeled?

Mapping Earth. How are Earth s surface features measured and modeled? Name Mapping Earth How are Earth s surface features measured and modeled? Before You Read Before you read the chapter, think about what you know about maps Record your thoughts in the first column Pair

More information

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives Chapter 3 Models of the Earth 3.1 Finding Locations on the Earth 3.1 Objectives Explain latitude and longitude. How can latitude and longitude be used to find locations on Earth? How can a magnetic compass

More information

440 Geophysics: Fieldtrip guide for Death Valley, April 2005

440 Geophysics: Fieldtrip guide for Death Valley, April 2005 440 Geophysics: Fieldtrip guide for Death Valley, April 2005 Thorsten Becker; Jeff Hoeft University of Southern California Objective We will be performing a gravity and several seismic surveys from Friday

More information

The GOCE Geoid in Support to Sea Level Analysis

The GOCE Geoid in Support to Sea Level Analysis The GOCE Geoid in Support to Sea Level Analysis The geoid is a very useful quantity for oceanographers Thomas Gruber Astronomical & Physical Geodesy (IAPG) Technische Universität München 1. Characteristics

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Measuring Changes in Ice Flow Speeds

Measuring Changes in Ice Flow Speeds Measuring Changes in Ice Flow Speeds Ice flow speeds are commonly measured using a technique called Interferometric Synthetic Aperture Radar (InSAR). This is an active imaging technique the instrument

More information

On Ambiguities in Definitions and Applications of Bouguer Gravity Anomaly

On Ambiguities in Definitions and Applications of Bouguer Gravity Anomaly Chapter 3 On Ambiguities in Definitions and Applications of Bouguer Gravity Anomaly P. Vajda, P. Vaníček, P. Novák, R. Tenzer, A. Ellmann, and B. Meurers Abstract Over decades diverse definitions and use

More information

ESA training. Gravity, magnetics and gradients for mapping and modelling. Jörg Ebbing. Department of Geosciences Kiel University

ESA training. Gravity, magnetics and gradients for mapping and modelling. Jörg Ebbing. Department of Geosciences Kiel University ESA training Gravity, magnetics and gradients for mapping and modelling Jörg Ebbing Department of Geosciences Kiel University Contributions from: Eldar Baykiev (Trondheim), Des Fitzgerald (Melbourne),

More information

CIRCULAR MOTION AND SHM : Higher Level Long Questions.

CIRCULAR MOTION AND SHM : Higher Level Long Questions. CIRCULAR MOTION AND SHM : Higher Level Long Questions. ***ALL QUESTIONS ARE HIGHER LEVEL**** Circular Motion 2012 Question 12 (a) (Higher Level ) An Olympic hammer thrower swings a mass of 7.26 kg at the

More information

Acceleration due to Gravity Key Stage 4

Acceleration due to Gravity Key Stage 4 Acceleration due to Gravity Key Stage 4 Topics covered: force, mass, acceleration, gravitational field strength, impact forces. Watch the video Newton s Laws of Motion, https://vimeo.com/159043081 Your

More information

Development of geophysical investigation for verifying treatment efficiency of underground cavities

Development of geophysical investigation for verifying treatment efficiency of underground cavities Development of geophysical investigation for verifying treatment efficiency of underground cavities Hasan A. Kamal* Kuwait Institute for Scientific Research, Infrastructure Risk and Reliability Program,

More information

Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan

Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan Earth Planets Space, 56, 1309 1314, 2004 Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan Masao Komazawa National Institute of

More information

GPS Measurement Protocol

GPS Measurement Protocol GPS Measurement Protocol Purpose To determine the latitude, longitude, and elevation of your school and of all your GLOBE sites Overview The GPS receiver will be used to determine the latitude, longitude

More information

Accuracy Assessment of the Gravitational Geoid Model of Hilla Area, Iraq

Accuracy Assessment of the Gravitational Geoid Model of Hilla Area, Iraq International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Accuracy

More information

Three-dimensional geophysical modelling of the Alalobeda geothermal field

Three-dimensional geophysical modelling of the Alalobeda geothermal field Three-dimensional geophysical modelling of the Alalobeda geothermal field Daniele Rizzello 1, Egidio Armadillo 2, Claudio Pasqua 2,3, Massimo Verdoya 2, Solomon Kebede 4, Andarge Mengiste 4, Getenesh H/Giorgis

More information

GRAVITY. Raymond M. Tracey and Nicholas G. Direen

GRAVITY. Raymond M. Tracey and Nicholas G. Direen GRAVITY Raymond M. Tracey and Nicholas G. Direen Geoscience Australia. PO Box 378, Canberra, ACT 2601. E-mail: ray.tracey@ga.gov.au, nick.direen@ga.gov.au 1. DESCRIPTION Gravity surveys measure variations

More information

Gravity 3. Gravity 3. Gravitational Potential and the Geoid. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 2.

Gravity 3. Gravity 3. Gravitational Potential and the Geoid. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 2. Gravitational Potential and the Geoid Chuck Connor, Laura Connor Potential Fields Geophysics: Week 2 Objectives for Week 1 Gravity as a vector Gravitational Potential The Geoid Gravity as a vector We can

More information