Evaluation, transformation, and parameterization of epipolar conics

Size: px
Start display at page:

Download "Evaluation, transformation, and parameterization of epipolar conics"

Transcription

1 Evaluation, transformation, and parameterization of epipolar conics Tomáš Svoboda N - CTU CMP July 31, 2000 Available at ftp://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/svoboda-tr pdf This research was supported by the Czech Ministry of Education under the grant VS96049 and 4/11/AIP CR, by the Grant Agency of the Czech Republic under the grant GACR 102/00/1679, by the Research Programme J04/98: Decision and control for industry, and by EU Fifth Framework Programme project Omniviews No Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University Karlovo náměstí 13, Prague 2, Czech Republic fax , phone , www:

2

3 Transformation of planar conics is the topic of this report. The main goal is to find an Euclidean transformation of a conic into its essential position. Appropriate parameterizations of conics for drawing are proposed. Both regular and singular conics are discussed. 1 Intro and motivation Epipolar curves of a pair of central catadioptric panoramic cameras are general conics 1 [4, 9]. A visualization of conics in a panoramic image is sometimes useful. An example is a drawing of curved polygons during a texture extraction needed for a scene reconstruction [11]. Algorithms for drawing of conics, used in computer graphics, usually assume that a conic, is at least axially oriented, better, in its essential position [1, 7, 12]. Epipolar conics transformed to its essential position can be easier parameterized. The choice of proper parameterization is important because of sampling problem in digital images. 2 Transformation A conic is understood as the locus of 2-D points [u, v] T which satisfy the following quadratic equation a u 2 + b uv + c u + d v 2 + e v + f = 0. This quadratic form can be rewritten in the matrix form where A is a symmetric 3 3 matrix A = u T Au = 0, (1) a b/2 c/2 b/2 d e/2 c/2 e/2 f and u = [u, v, 1] T are image pixel coordinates (axis u is consistently oriented with Cartesian 2 x axis, and axis v is oriented in the opposite direction as y axis). Conics have a number of interesting properties that are not discussed here, a reader is referred to [2] or [10]. A type of the conic can be recognized from matrix A. Let = det(a) and [ ] a11 a δ = det 12. a 21 a 22 Type of the conic depends on values of and δ, [6]. Conic types are summarized in Table 1. The goal is to find a transformation that transforms a conic to its essential position. The center, 1 Expression conic is used in this text as an abbreviation of more precise term conical section. 2 Right-handed Cartesian coordinate system is assumed. 1

4 2 Transformation Regular conics ( 0) Singular conics ( = 0) δ > 0 ellipse (could be real or imaginary) two imaginary lines with a real intersection (eg. x 2 + y 2 = 0) δ < 0 hyperbola two transverses δ = 0 parabola two parallel lines (could be real or imaginary) Table 1: The kind of a conic depends on matrix determinants. of the conic in the essential position coincides with the center of the coordinate system and axes of the conics are oriented accordingly to axes of the coordinate system, see Fig 1. u (0, 0) ϕ u v A u v u 0 Figure 1: Transformation of an ellipse from a general to its essential position. v 2.1 Rotation We want find the matrix A = f(a, ϕ), which satisfy u T A u = 0, (2) where u are point coordinates in rotated coordinate system such that u and v are oriented the same as the axis of the conic, see Figure 1. Being the angle of rotation denoted by ϕ, then new coordinates u are u = cos ϕ sin ϕ 0 sin ϕ cos ϕ u. 2

5 2.2 Translation Contrary u = cos ϕ sin ϕ 0 sin ϕ cos ϕ u. (3) Equations for elements of A matrix are derived by substituting of (3) into (1). a 11 = a 11 cos 2 ϕ + a 22 sin 2 ϕ 2a 12 cos ϕ sin ϕ, a 22 = a 11 sin 2 ϕ + a 22 cos 2 ϕ + 2a 12 cos ϕ sin ϕ, a 13 = a 13 cos ϕ a 23 sin ϕ, a 13 = a 13 sin ϕ + a 23 cos ϕ, a 12 = a 11 cos ϕ sin ϕ a 22 sin ϕ cos ϕ + a 12 (cos 2 ϕ sin 2 ϕ), a 33 = a 33. If u and v are oriented the same as the axis of the conic then a 12 equation tan 2ϕ = 2 tan ϕ 1 tan 2 ϕ we can derive an equation for ϕ from = 0 should hold. Using the 0 = a 11 cos ϕ sin ϕ a 22 sin ϕ cos ϕ + a 12 (cos 2 ϕ sin 2 ϕ). After some manipulation we end up with tan 2ϕ = 2a 12 a 22 a 11. (4) Note that the function tan is defined even for a 22 = a 11. Moreover, if this equality holds, the epipolar conic is a circle, so it has no sense to consider rotation. 2.2 Translation The shift of a conic is determined by the position of the conic center u 0, see Figures 1 and 2. The task is to find elements of the matrix A in rotated and shifted coordinate system u T A u = 0. (5) By substituting u = u + u 0 (6) 3

6 3 Parametric expressions of regular conics into (2) we end up with 11 = a 11, 22 = a 22, 13 = 2a 11u 0 + 2a 13, 23 = 2a 22v 0 + 2a 23, 33 = a 33 + u 02 a 11 + v 02 a a 13u 0 + 2a 23v 0. For an ellipse and a hyperbola in the essential position holds 13 = a 23 this nullity condition into equation for elements of A we end up with = 0. By substituting u 0 = a 13 a, (7) 11 v 0 = a 23 a. (8) 22 This derivation has to be slightly modified for a parabola since at least one from the diagonal elements a 11, a 22 equals to zero. Assuming a 22 = 0, u 0 can be estimated from (7). The second coordinate of the shift v 0 is computed by substituting u 0 into (2) v 0 = a 11 u 2 0 2a 13u 0 a 33 2a 23. (9) Similarly, assuming a 11 = 0, v 0 is computed from (8) and u 0 is computed by substituting v 0 into (2). 3 Parametric expressions of regular conics Once the matrix of a conics in the essential position is known, the conic be easily parametrized by a parameter t. In this section we propose parameterization suitable for drawing of conics. 3.1 Ellipse One of the suitable parameterization of an ellipse is [u, v] = [a cos t, b sin t], where 0 t 2π, (10) where a is the semi-major axis and b is the semi-minor axis. Parameters a, b can be estimated from the matrix A. A central conic 3 has, in its essential position, equation 3 Central conics are ellipses and hyperbolas. 11u v 2 = 33. 4

7 3.2 Hyperbola By comparing this equation with known form of an ellipse equation we end up with a = u 2 a 2 a v 2 b 2 = 1, and b = a 33. (11) Hyperbola One of the possible parameterization of a hyperbola could be [u, v] = [ a cos t, b tan t ], where 0 t 2π, (12) see [3]. However, this parameterization is not suitable for drawing due to the significant discontinuity when t approaches π/2. We propose more appropriate parameterization. The essential u ϕ (0, 0) v A u u v u 0 v Figure 2: Transformation of a hyperbola from a general to its essential position. equation of a hyperbola in pixel coordinates is v 2 a 2 u2 b 2 = 1. (13) 5

8 4 Singular conics By parameterizing t = u, we obtain [u, v] = t, ±a 1 + t2, (14) where parameters a, b can be computed alike for an ellipse. The parameter t is bounded by the image resolution. 3.3 Parabola The parameterization by an angle is not convenient for the same reason as for a hyperbola. Depending on the nullity of diagonal elements of A, 11 and a 22, a proper parameterization is chosen. Assuming 22 = 0, one of the possible parameterization is ] [u, v] = [t, a 11 2 t 2, (15) 23 where the parameter t is bounded by the image resolution. 4 Singular conics A conic is said to be singular if b 2 det(a) = 0, (16) where A is from (1). We modified this condition for numerical computation to det(a) < ɛ, where ɛ is floating point relative accuracy 4. We do not need to consider all possibilities of singular conics, see Table 1. An epipolar conic becomes a singular one if the epipolar plane contains the axis of the mirror [4, 9]. Then the singular conic is a radial line going through the image center 5. An epipolar conics also becomes singular if the image plane is parallel to the axis of the mirror [4]. However, this configuration hardly ever appears in real panoramic cameras and it is neglected here. If singularity of a conic is detected, the decision about the type of a conic is made according to the value of the sub-determinant δ, see Table Central conics The matrix A is for a singular central conics A = a 11 a11 a 22 0 a11 a 22 a (17) 4 On machines with IEEE floating-point arithmetic, ɛ = 2 52, which is roughly Detailed analysis of numerical machine precision can be found in [5]. 5 More precisely, it goes through the point where the axis of the mirror pierces the image plane, which point usually coincides with the image center. 6

9 4.2 Parabola The proof can be found in [8]. By substituting (17) into (1) we end up with the equation of the radial line a11 u + a 22 v = 0. (18) This line do not need to be rotated or shifted, since it goes through the origin of the image coordinate system. For drawing, we express the line as a functional dependency of one coordinate on the second one. The range of u and v is limited by the image resolution. 4.2 Parabola The matrix A looks a22 u = v, if a 11 a 22, a 11 v = A = a11 a 22 u, if a 22 > a a a 23 a 13 a (19) By substituting this matrix into (1) the following equation of the radial line is obtained. a 13 u + a 23 v = 0. (20) For drawing, we use the same approach as for singular central conics. References [1] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics- Principles and Practice. Addison-Wesley, 2-nd edition, [2] Michiel Hazewinkel, editor. Encyclopaedia of Mathematics. Kluwer Academic Publishers, [3] I. Herman. The Use of Projective Geometry in Computer Graphics. Springer-Verlag, [4] Tomáš Pajdla, Tomáš Svoboda, and Václav Hlaváč. Epipolar geometry of central panoramic cameras. In Ryad Benosman, editor, Panoramic Imaging. Springer, To appear. [5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, 2-nd edition, [6] Karel Rektorys. Přehled užité matematiky. Prometheus Praha, 6-th edition,

10 Contents [7] Jiří Sochor, Jiří Žára, and Bedřich Beneš. Algoritmy počítačové grafiky. ČVUT Praha, 2-nd edition, [8] Tomáš Svoboda. Central Panoramic Cameras Design, Geometry, Egomotion. PhD Thesis, Center for Machine Perception, Czech Technical University, Prague, Czech Republic, April [9] Tomáš Svoboda, Tomáš Pajdla, and Václav Hlaváč. Epipolar geometry for panoramic cameras. In Hans Burkhardt and Neumann Bernd, editors, the fifth European Conference on Computer Vision, Freiburg, Germany, volume 1406 of Lecture Notes in Computer Science, pages , Berlin, Germany, June Springer. [10] Eric W. Weisstein. Eric Weisstein s world of mathematics. [11] Tomáš Werner, Tomáš Pajdla, and Martin Urban. REC3D: Toolbox for 3D Reconstruction from Uncalibrated 2D Views. Technical Report CTU-CMP , Czech Technical University, FEL ČVUT, Karlovo náměstí 13, Praha, Czech Republic, December [12] Jiří Žára, Bedřich Beneš, and Petr Felkel. Moderní počítačová grafika. Computer Press, Praha, Contents 1 Intro and motivation 1 2 Transformation Rotation Translation Parametric expressions of regular conics Ellipse Hyperbola Parabola Singular conics Central conics Parabola References 7 8

Least squares Solution of Homogeneous Equations

Least squares Solution of Homogeneous Equations Least squares Solution of Homogeneous Equations supportive text for teaching purposes Revision: 1.2, dated: December 15, 2005 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering

More information

Rotational Invariants for Wide-baseline Stereo

Rotational Invariants for Wide-baseline Stereo Rotational Invariants for Wide-baseline Stereo Jiří Matas, Petr Bílek, Ondřej Chum Centre for Machine Perception Czech Technical University, Department of Cybernetics Karlovo namesti 13, Prague, Czech

More information

Decomposition of Screw-motion Envelopes of Quadrics

Decomposition of Screw-motion Envelopes of Quadrics Decomposition of Screw-motion Envelopes of Quadrics Šárka Voráčová * Department of Applied Mathematics Faculty of Transportation, CTU in Prague Study and realization of the construction of the envelope

More information

Numerical Analysis: Solving Systems of Linear Equations

Numerical Analysis: Solving Systems of Linear Equations Numerical Analysis: Solving Systems of Linear Equations Mirko Navara http://cmpfelkcvutcz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision: 1.3, dated: December 7, 2005 Tomáš Svoboda Czech Technical University, Faculty of

More information

On Geometric Error for Homographies

On Geometric Error for Homographies On Geometric Error for Homographies Ondra Chum, Tomás Pajdla, Peter Sturm To cite this version: Ondra Chum, Tomás Pajdla, Peter Sturm. On Geometric Error for Homographies. [Research Report] CTU-CMP-0000-00,

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

Numerical Analysis: Approximation of Functions

Numerical Analysis: Approximation of Functions Numerical Analysis: Approximation of Functions Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision: 1.4, dated: May 25, 2006 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

EM Algorithm LECTURE OUTLINE

EM Algorithm LECTURE OUTLINE EM Algorithm Lukáš Cerman, Václav Hlaváč Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

More information

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

More information

Utah Core State Standards for Mathematics - Precalculus

Utah Core State Standards for Mathematics - Precalculus A Correlation of A Graphical Approach to Precalculus with Limits A Unit Circle Approach 6 th Edition, 2015 to the Resource Title: with Limits 6th Edition Publisher: Pearson Education publishing as Prentice

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory 1/27 lecturer: authors: Jiri Matas, matas@cmp.felk.cvut.cz Václav Hlaváč, Jiri Matas Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center

More information

Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle

Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle M. John D, Hayes 1, Zachary A. Copeland 1, Paul J. Zsombor-Murray 2, and Anton Gfrerrer 3 1 Carleton University, Department of Mechanical

More information

Conic Sections Session 3: Hyperbola

Conic Sections Session 3: Hyperbola Conic Sections Session 3: Hyperbola Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 3: Hyperbola Oct 2017 1 / 16 Problem 3.1 1 Recall that an ellipse is defined as the locus of points P such that

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

Randomized RANSAC with T d,d test

Randomized RANSAC with T d,d test Randomized RANSAC with T d,d test O. Chum 1,J.Matas 1,2 1 Center for Machine Perception, Dept. of Cybernetics, CTU Prague, Karlovo nám 13, CZ 121 35 2 CVSSP, University of Surrey, Guildford GU2 7XH, UK

More information

ALGEBRAIC LONG DIVISION

ALGEBRAIC LONG DIVISION QUESTIONS: 2014; 2c 2013; 1c ALGEBRAIC LONG DIVISION x + n ax 3 + bx 2 + cx +d Used to find factors and remainders of functions for instance 2x 3 + 9x 2 + 8x + p This process is useful for finding factors

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational expressions Solve polynomial equations and equations involving rational expressions Review Chapter 1 and their

More information

y 1 x 1 ) 2 + (y 2 ) 2 A circle is a set of points P in a plane that are equidistant from a fixed point, called the center.

y 1 x 1 ) 2 + (y 2 ) 2 A circle is a set of points P in a plane that are equidistant from a fixed point, called the center. Ch 12. Conic Sections Circles, Parabolas, Ellipses & Hyperbolas The formulas for the conic sections are derived by using the distance formula, which was derived from the Pythagorean Theorem. If you know

More information

International Journal of Pure and Applied Mathematics Volume 30 No ,

International Journal of Pure and Applied Mathematics Volume 30 No , International Journal of Pure and Applied Mathematics Volume 30 No. 3 2006, 393-401 GENERAL EQUATION FOR CHINESE CHECKER CONICS AND FOCUS-DIRECTRIX CHINESE CHECKER CONICS Mine Turan 1, Münevver Özcan2

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Chetek-Weyerhaeuser High School

Chetek-Weyerhaeuser High School Chetek-Weyerhaeuser High School Advanced Math A Units and s Advanced Math A Unit 1 Functions and Math Models (7 days) 10% of grade s 1. I can make connections between the algebraic equation or description

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter

Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter Vladimír Hanta 1, Jaroslav Poživil 1, Karel Friess 2 Department of Computing and Control Engineering 1, Department of

More information

Algebra & Trigonometry for College Readiness Media Update, 2016

Algebra & Trigonometry for College Readiness Media Update, 2016 A Correlation of Algebra & Trigonometry for To the Utah Core Standards for Mathematics to the Resource Title: Media Update Publisher: Pearson publishing as Prentice Hall ISBN: SE: 9780134007762 TE: 9780133994032

More information

A. Correct! These are the corresponding rectangular coordinates.

A. Correct! These are the corresponding rectangular coordinates. Precalculus - Problem Drill 20: Polar Coordinates No. 1 of 10 1. Find the rectangular coordinates given the point (0, π) in polar (A) (0, 0) (B) (2, 0) (C) (0, 2) (D) (2, 2) (E) (0, -2) A. Correct! These

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0)

More information

Conic Sections and Polar Graphing Lab Part 1 - Circles

Conic Sections and Polar Graphing Lab Part 1 - Circles MAC 1114 Name Conic Sections and Polar Graphing Lab Part 1 - Circles 1. What is the standard equation for a circle with center at the origin and a radius of k? 3. Consider the circle x + y = 9. a. What

More information

CG Basics 1 of 10. Mathematical Foundations: Vectors, Matrices, & Parametric Equations

CG Basics 1 of 10. Mathematical Foundations: Vectors, Matrices, & Parametric Equations CG Basics 1 of 10 ematical Foundations: Vectors, Matrices, & Parametric Equations William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://bit.ly/hgvxlh Course web

More information

Making Minimal Problems Fast

Making Minimal Problems Fast Making Minimal Problems Fast T o m a s P a j d l a presents work of M. Bujnak, Z. Kukelova & T. Pajdla Czech Technical University Prague Center for Machine Perception M o t i v a t i o n 3 D R E C O N

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Mathematics for 3D Graphics

Mathematics for 3D Graphics math 1 Topics Mathematics for 3D Graphics math 1 Points, Vectors, Vertices, Coordinates Dot Products, Cross Products Lines, Planes, Intercepts References Many texts cover the linear algebra used for 3D

More information

Utah Math Standards for College Prep Mathematics

Utah Math Standards for College Prep Mathematics A Correlation of 8 th Edition 2016 To the A Correlation of, 8 th Edition to the Resource Title:, 8 th Edition Publisher: Pearson Education publishing as Prentice Hall ISBN: SE: 9780133941753/ 9780133969078/

More information

MCPS Algebra 2 and Precalculus Standards, Categories, and Indicators*

MCPS Algebra 2 and Precalculus Standards, Categories, and Indicators* Content Standard 1.0 (HS) Patterns, Algebra and Functions Students will algebraically represent, model, analyze, and solve mathematical and real-world problems involving functional patterns and relationships.

More information

FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones.

FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones. italian journal of pure and applied mathematics n. 3 04 (393 400) 393 FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones. František Mošna Department of Mathematics Technical

More information

correlated to the Indiana Academic Standards for Precalculus CC2

correlated to the Indiana Academic Standards for Precalculus CC2 correlated to the Indiana Academic Standards for Precalculus CC2 6/2003 2003 Introduction to Advanced Mathematics 2003 by Richard G. Brown Advanced Mathematics offers comprehensive coverage of precalculus

More information

Math Conic Sections

Math Conic Sections Math 114 - Conic Sections Peter A. Perry University of Kentucky April 13, 2017 Bill of Fare Why Conic Sections? Parabolas Ellipses Hyperbolas Shifted Conics Goals of This Lecture By the end of this lecture,

More information

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague VSUALZNG PSEUDOSPECTRA FOR POLYNOMAL EGENVALUE PROBLEMS Adéla Klimentová *, Michael Šebek ** * Department of Control Engineering Czech Technical University in Prague ** nstitute of nformation Theory and

More information

The Distance Formula. The Midpoint Formula

The Distance Formula. The Midpoint Formula Math 120 Intermediate Algebra Sec 9.1: Distance Midpoint Formulas The Distance Formula The distance between two points P 1 = (x 1, y 1 ) P 2 = (x 1, y 1 ), denoted by d(p 1, P 2 ), is d(p 1, P 2 ) = (x

More information

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems.

Linear Algebra. Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems. Linear Algebra Chapter 8: Eigenvalues: Further Applications and Computations Section 8.2. Applications to Geometry Proofs of Theorems May 1, 2018 () Linear Algebra May 1, 2018 1 / 8 Table of contents 1

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

Isometric Invariants of Conics in the Isotropic Plane Classification of Conics

Isometric Invariants of Conics in the Isotropic Plane Classification of Conics Journal for Geometry and Graphics Volume 6 (2002), No. 1, 17 26. Isometric Invariants of Conics in the Isotropic Plane Classification of Conics Jelena Beban-Brkić Faculty of Geodesy, University of Zagreb,

More information

Introduction to conic sections. Author: Eduard Ortega

Introduction to conic sections. Author: Eduard Ortega Introduction to conic sections Author: Eduard Ortega 1 Introduction A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms

More information

= 1, where a is semi-major axis, and b is semi-minor axis, a b. This ellipse

= 1, where a is semi-major axis, and b is semi-minor axis, a b. This ellipse Solutions of Homework 6 1 Let C be an ellipse in the plane E such that its foci are at points F 1 = 1, 0) and F = 1, 0) and it passes through the point K = 0, ). Write down the analytical formula which

More information

Prentice Hall Mathematics, Algebra Correlated to: Achieve American Diploma Project Algebra II End-of-Course Exam Content Standards

Prentice Hall Mathematics, Algebra Correlated to: Achieve American Diploma Project Algebra II End-of-Course Exam Content Standards Core: Operations on Numbers and Expressions Priority: 15% Successful students will be able to perform operations with rational, real, and complex numbers, using both numeric and algebraic expressions,

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Sophomore Year: Algebra II Tetbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Course Description: The purpose of this course is to give students a strong foundation

More information

Complex Numbers Year 12 QLD Maths C

Complex Numbers Year 12 QLD Maths C Complex Numbers Representations of Complex Numbers We can easily visualise most natural numbers and effectively use them to describe quantities in day to day life, for example you could describe a group

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Level 3, Calculus

Level 3, Calculus Level, 4 Calculus Differentiate and use derivatives to solve problems (965) Integrate functions and solve problems by integration, differential equations or numerical methods (966) Manipulate real and

More information

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning.

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. PRE-CALCULUS FORM IV Tetbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. Course Description: This course is designed to prepare students

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Hamed Masnadi Shirazi, Solmaz Alipour LECTURE 5 Relationships between the Homography and the Essential Matrix 5.1. Introduction In practice,

More information

Standard Form of Conics

Standard Form of Conics When we teach linear equations in Algebra1, we teach the simplest linear function (the mother function) as y = x. We then usually lead to the understanding of the effects of the slope and the y-intercept

More information

Numerical Analysis: Solving Nonlinear Equations

Numerical Analysis: Solving Nonlinear Equations Numerical Analysis: Solving Nonlinear Equations Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

8.6 Translate and Classify Conic Sections

8.6 Translate and Classify Conic Sections 8.6 Translate and Classify Conic Sections Where are the symmetric lines of conic sections? What is the general 2 nd degree equation for any conic? What information can the discriminant tell you about a

More information

A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES

A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES G. Rex and J. Rohn Abstract It is proved that two previously known sufficient conditions for regularity of interval matrices are equivalent in the sense

More information

Algebra II Standards of Learning Curriculum Guide

Algebra II Standards of Learning Curriculum Guide Expressions Operations AII.1 identify field properties, axioms of equality inequality, properties of order that are valid for the set of real numbers its subsets, complex numbers, matrices. be able to:

More information

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine.

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine. Automatic Can Separation Kjersti Aas Line Eikvil Otto Milvang Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway e-mail: Kjersti.Aas@nr.no Tel: (+47) 22 85 25 00 Fax: (+47) 22 69 76

More information

Elementary and Intermediate Algebra

Elementary and Intermediate Algebra Elementary and Intermediate Algebra 978-1-63545-106-1 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Lynn Marecek, Santa

More information

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS

CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (003), 1 5 www.emis.de/journals CALIBRATION OF AN ELLIPSE S ALGEBRAIC EQUATION AND DIRECT DETERMINATION OF ITS PARAMETERS MOHAMED ALI SAID Abstract.

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra 978-1-63545-084-2 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable) Openstax Lyn Marecek, MaryAnne Anthony-Smith

More information

Fractions, Projective Representation, Duality, Linear Algebra and Geometry

Fractions, Projective Representation, Duality, Linear Algebra and Geometry Fractions, Projective Representation, Duality, Linear Algebra and Geometry Vaclav Skala Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Univerzitni

More information

Investigating Measures of Association by Graphs and Tables of Critical Frequencies

Investigating Measures of Association by Graphs and Tables of Critical Frequencies Investigating Measures of Association by Graphs Investigating and Tables Measures of Critical of Association Frequencies by Graphs and Tables of Critical Frequencies Martin Ralbovský, Jan Rauch University

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -), find M (3. 5, 3) (1.

More information

Parallel Turing Machines on a Two-Dimensional Tape

Parallel Turing Machines on a Two-Dimensional Tape Czech Pattern ecognition Workshop 000, Tomáš Svoboda (Ed.) Peršlák, Czech epublic, February 4, 000 Czech Pattern ecognition Society Parallel Turing Machines on a Two-Dimensional Tape Daniel Průša František

More information

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS.

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS. STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF 2017 - DRAFT SYLLABUS Subject :Mathematics Class : XI TOPIC CONTENT Unit 1 : Real Numbers - Revision : Rational, Irrational Numbers, Basic Algebra

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information

Tennessee s State Mathematics Standards Precalculus

Tennessee s State Mathematics Standards Precalculus Tennessee s State Mathematics Standards Precalculus Domain Cluster Standard Number Expressions (N-NE) Represent, interpret, compare, and simplify number expressions 1. Use the laws of exponents and logarithms

More information

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle Episode:43 Faculty: Prof. A. NAGARAJ Conic section 1. A circle gx fy c 0 is said to be imaginary circle if a) g + f = c b) g + f > c c) g + f < c d) g = f. If (1,-3) is the centre of the circle x y ax

More information

College Algebra with Corequisite Support: Targeted Review

College Algebra with Corequisite Support: Targeted Review College Algebra with Corequisite Support: Targeted Review 978-1-63545-056-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable)

More information

GLOSSARY GLOSSARY. For commonly-used formulas, see inside back cover.

GLOSSARY GLOSSARY. For commonly-used formulas, see inside back cover. A abscissa (5) the first element of an ordered pair absolute maximum (171) a point that represents the maximum value a function assumes over its domain absolute minimum (171) a point that represents the

More information

Utah Secondary Mathematics Core Curriculum Precalculus

Utah Secondary Mathematics Core Curriculum Precalculus A Correlation of Trigonometry Lial To the Utah Secondary Mathematics Core Curriculum Precalculus Resource Title: Trigonometry Publisher: Pearson Education Inc Publishing as Prentice Hall ISBN (10 or 13

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

RADNOR TOWNSHIP SCHOOL DISTRICT Course Overview Seminar Algebra 2 ( )

RADNOR TOWNSHIP SCHOOL DISTRICT Course Overview Seminar Algebra 2 ( ) RADNOR TOWNSHIP SCHOOL DISTRICT Course Overview Seminar Algebra 2 (05040430) General Information Prerequisite: Seminar Geometry Honors with a grade of C or teacher recommendation. Length: Full Year Format:

More information

Precalculus Graphical, Numerical, Algebraic 9 th Edition, 2015

Precalculus Graphical, Numerical, Algebraic 9 th Edition, 2015 A Correlation of 9 th Edition, To The Copyright Pearson Education, Inc. or its affiliate(s). All rights reserved. A Correlation of, to the, - The Complex Number System N.CN Use properties of rational and

More information

SESSION CLASS-XI SUBJECT : MATHEMATICS FIRST TERM

SESSION CLASS-XI SUBJECT : MATHEMATICS FIRST TERM TERMWISE SYLLABUS SESSION-2018-19 CLASS-XI SUBJECT : MATHEMATICS MONTH July, 2018 to September 2018 CONTENTS FIRST TERM Unit-1: Sets and Functions 1. Sets Sets and their representations. Empty set. Finite

More information

College Algebra & Trig w Apps

College Algebra & Trig w Apps WTCS Repository 10-804-197 College Algebra & Trig w Apps Course Outcome Summary Course Information Description Total Credits 5.00 This course covers those skills needed for success in Calculus and many

More information

The Orchid School Weekly Syllabus Overview Std : XI Subject : Math. Expected Learning Objective Activities/ FAs Planned Remark

The Orchid School Weekly Syllabus Overview Std : XI Subject : Math. Expected Learning Objective Activities/ FAs Planned Remark The Orchid School Weekly Syllabus Overview 2015-2016 Std : XI Subject : Math Month Lesson / Topic Expected Learning Objective Activities/ FAs Planned Remark March APRIL MAY Linear Inequalities (Periods

More information

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH DAY 1 - CLASSIFYING CONICS 4 Conics Parabola Circle Ellipse Hyperbola DAY 1 - CLASSIFYING CONICS GRAPHICALLY Parabola Ellipse Circle Hyperbola DAY 1 - CLASSIFYING

More information

Algebra II Learning Targets

Algebra II Learning Targets Chapter 0 Preparing for Advanced Algebra LT 0.1 Representing Functions Identify the domain and range of functions LT 0.2 FOIL Use the FOIL method to multiply binomials LT 0.3 Factoring Polynomials Use

More information

CIRCLES: #1. What is an equation of the circle at the origin and radius 12?

CIRCLES: #1. What is an equation of the circle at the origin and radius 12? 1 Pre-AP Algebra II Chapter 10 Test Review Standards/Goals: E.3.a.: I can identify conic sections (parabola, circle, ellipse, hyperbola) from their equations in standard form. E.3.b.: I can graph circles

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

Instructional Units Plan Algebra II

Instructional Units Plan Algebra II Instructional Units Plan Algebra II This set of plans presents the topics and selected for ACT s rigorous Algebra II course. The topics and standards are arranged in ten units by suggested instructional

More information

COURSE OF STUDY MATHEMATICS

COURSE OF STUDY MATHEMATICS COURSE OF STUDY MATHEMATICS Name of Course: Honors PreCalculus Course Number: 341 Grade Level: 11 Length of Course: 180 Days Type of Offering: Academic Credit Value: 1 credit Prerequisite/s: Honors Geometry

More information

Algebra and Trigonometry

Algebra and Trigonometry Algebra and Trigonometry 978-1-63545-098-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Jay Abramson, Arizona State

More information

PHASE 1 CURRICULUM MAP M. Fellmeth Course/Subject: Honors Precalculus Grade: 11 th Teacher: M. Hart

PHASE 1 CURRICULUM MAP M. Fellmeth Course/Subject: Honors Precalculus Grade: 11 th Teacher: M. Hart Month: September 1. How to describe angles using different units of measure and how to find the lengths associated with those angles. 2.3.11 A Select and use appropriate units and tools to measure to the

More information

Teaching Mathematics in Twenty First Century: An Integrated Approach

Teaching Mathematics in Twenty First Century: An Integrated Approach Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. Teaching Mathematics in Twenty First Century: An Integrated Approach Chanchal Dass Abstract Teaching mathematics,

More information

ELLIPTIC CURVES BJORN POONEN

ELLIPTIC CURVES BJORN POONEN ELLIPTIC CURVES BJORN POONEN 1. Introduction The theme of this lecture is to show how geometry can be used to understand the rational number solutions to a polynomial equation. We will illustrate this

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

Parametric Equations

Parametric Equations Parametric Equations By: OpenStaxCollege Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in [link]. At any moment, the moon is located at a

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Algebra II - Mathematics

Algebra II - Mathematics Course Overview GENERAL DESCRIPTION: This course is an extension of Algebra I, with more emphasis placed on material for the advanced college track student. Students will solve linear and quadratic equations

More information

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz 318 NDA Mathematics Practice Set 1. (1001)2 (101)2 (110)2 (100)2 2. z 1/z 2z z/2 3. The multiplication of the number (10101)2 by (1101)2 yields which one of the following? (100011001)2 (100010001)2 (110010011)2

More information

ALGEBRA 2 X. Final Exam. Review Packet

ALGEBRA 2 X. Final Exam. Review Packet ALGEBRA X Final Exam Review Packet Multiple Choice Match: 1) x + y = r a) equation of a line ) x = 5y 4y+ b) equation of a hyperbola ) 4) x y + = 1 64 9 c) equation of a parabola x y = 1 4 49 d) equation

More information

Precalculus. Precalculus Higher Mathematics Courses 85

Precalculus. Precalculus Higher Mathematics Courses 85 Precalculus Precalculus combines the trigonometric, geometric, and algebraic techniques needed to prepare students for the study of calculus, and strengthens students conceptual understanding of problems

More information

Unit 1 Linear Functions I CAN: A.1.a Solve single-step and multistep equations and inequalities in one variable

Unit 1 Linear Functions I CAN: A.1.a Solve single-step and multistep equations and inequalities in one variable CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE School: CCHS Subject: Precalculus Grade: 12 Benchmark Assessment 1 Instructional Timeline: Units 1, 2, 3 Term 1 Dependent

More information