Circuit Q and Field Energy

Size: px
Start display at page:

Download "Circuit Q and Field Energy"

Transcription

1 1 Problem Circuit Q and Field Energy Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (April 1, 01) In a series R-L-C circuit, as sketched below, the maximum power is delivered to the load resistor R at the resonant (angular) frequency ω 0 =1/ LC, wherel is the inductance and C is the capacitance of the circuit. 1 The frequency bandwidth δ is defined by the relation that the power delivered into the resistor at frequencies ω 0 ± δ is one half the maximum. The Q of this circuit is defined as the reciprocal of the relative bandwidth, ω 0 /δ. Deduce the Q of this circuit, and relate it to the electromagnetic field energy of the circuit. Generalize this result to a circuit with frequency-dependent reactance X(ω) for which X(ω 0 )=0. Solution.1 Series R-L-C Circuit The impedance Z of the circuit when operated at angular frequency ω is ( Z = R + ix = R + i ωl 1 ) ωc where X = ωl =1/ωC is the reactance. The resonant frequency is = R + i ω LC 1, (1) ωc ω 0 = 1 LC, () 1 If the circuit represents an antenna (built from perfect conductors), the load power is radiated to infinity and R is the radiation resistance of the antenna. 1

2 at which the reactance vanishes, the impedance is simply Z = R and the drive voltage V 0 e iωt leads to current I 0 e iωt given by I 0 = V 0 R. (3) The time-average power delivered from the source to the load resistor is = Re(VI ) The time-average (magnetic) energy stored in the inductor is = V 0 R = I 0 R. (4) U B (ω 0 ) = LI 0 4 = LV 0 4R, (5) while the time-average (electric) energy stored in the capacitor is U E (ω 0 ) = Q 0 4C = ω 0I0 4C = LI 0 4C = U L(ω 0 ) = U 0, (6) noting that I = dq/dt = iωq, sothati and Q are 90 out of phase, as are the magnetic and electric energies (5)-(6), and hence their equality at resonance implies that each of these are equal to the total (time-average) stored energy U 0. Away from resonance the current is given by I = V 0 Z, (7) and the power delivered to the load resistor is P = Re(VI ) = I R = V 0 Re 1 Z = V 0 Re 1 R ix = V0 R (R + X ) = (8) 1+X /R The power P is one half of at frequencies where X = ±R. Thatis,for ± R = X = ω LC 1 ωc = ω ω 0 ωω 0C, (9) which leads to the quadratic equation The solutions are ω ± ω 0RCω ω 0 =0. (10) ω = ±ω 0RC ± ω 4 0R C +4ω 0. (11) If the circuit is small compared to the wavelength λ =πc/ω 0,wherec is the speed of light, then the current is the same throughout the circuit. Otherwise, I 0 is strictly just the current at the terminals of the voltage source.

3 We now restrict the analysis to cases where the τ = RC time constant is small compared to the period π/ω 0, and we take the second ± sign in eq. (11) to be +, finding ω ω 0 ± ω 0τ ω 0 ± δ. (1) The quantity δ ω 0τ is called the bandwidth of the circuit. The reciprocal of the relative bandwidth is called the Q of the resonance, δ 1 ω 0 τ = ω 0 ω 0 RC = ω 0I0L = ω 0 U 0 = ω 0L R = X L(ω 0 ) = X C(ω 0 ). (13) R R This demonstrates the usual lore that the Q of a series R-L-C circuit can be expressed in terms of (time-average) quantities at resonance, or in terms of component impedances, as Q ω 0 bandwidth ω 0 stored energy at resonance power delivered to the load at resonance reactance of L or of C at resonance. (14) R. Circuit with Impedance Z = R + ix(ω) and X(ω 0 )=0 For a more general circuit only some of the analysis of sec..1 holds, namely eqs. (3)-(4) and (7)-(8). In general, we cannot identify an effective inductance L and effective capacitance C such that the reactance has the form X(ω) =ωl 1/ωC (see footnote 4 of [1]). If the reactance vanishes at some resonant frequency ω 0 then for nearby frequencies it is a good approximation to write X(ω) (ω ω 0 ) dx(ω 0). (15) dω Then, eq. (9) becomes ± R = X(ω ± δ) ±δ dx(ω 0), (16) dω and hence, and δ R dx(ω 0 )/dω, (17) δ ω 0 dx(ω 0 )/dω = πf 0 dx(f 0 )/dω, (18) R R where ω 0 =πf 0. The form (18) is often used to evaluate the Q of an antenna system via computation of the (terminal) reactance near resonance. 3 3 Expression (18) can be generalized to a potential Q of a circuit at angular frequency ω 0 even if X(ω 0 ) 0, in that if the circuit were tuned by adding (lossless) inductors or capacitors as needed to bring X(ω 0 ) to 0, the (potential) Q of the tuned circuit would be [] Q tuned ω 0 dx(ω 0 )/dω + X(ω 0 ). (19) R 3

4 Comparison of eq. (18) with the last form of eq. (14) permits us to say that close to the resonant frequency ω 0 the general circuit is equivalent to a series R-L-C circuit with 4 L 0 = 1 dx(ω 0 ), and C 0 = 1 = dω ω 0L 0 ω 0 dx(ω 0 )/dω. (1) In addition, we can deduce from the complex version of Poynting s theorem (see, for example, [1]) that X(ω) = 4ω[ U B(ω) U E (ω) ] I(ω), () where now U B and U E are the (time-average) energies associated with the magnetic field B and electric field E. 5 Using eq. () in (18), we have that Alternatively, eq. (9) can be written as d(ω[ U B (ω) U E (ω) ]) dω. (4) ω0 ± R = X(ω 0 ± δ) = 4(ω 0 ± δ)[ U B (ω 0 ± δ) U E (ω 0 ± δ) ] I(ω 0 ± δ) = 4(ω 0 ± δ)r[ U B (ω 0 ± δ) U E (ω 0 ± δ) ], (5) noting that since P (ω 0 ± δ) = /, eq. (8) tell us that I(ω 0 ± δ) = /R. Thetwocases of eq. (5) can now be written as ω 0 + δ = 4[ U B (ω 0 + δ) U E (ω 0 + δ) ], (6) ω 0 δ = 4[ U B (ω 0 δ) U E (ω 0 δ) ]. (7) For δ small compared to ω 0 it is a good approximation that U B (ω 0 + δ) U E (ω 0 + δ) U B (ω 0 δ) U E (ω 0 δ), (8) 4 It is proposed in [3] that the equivalent inductance and capacitance at any frequency be defined by L(ω) = 1 ( dx(ω) dω + X(ω) ), and C(ω) = ω ω (dx(ω)/dω X(ω)/ω), (0) for which L(ω) =L and C(ω) =C when X = ωl 1/ωC. The utility of such a definition is unclear. 5 In [8] it is also proposed that we identify L = 4( U B U B,rad ) I, and C = I 4ω ( U E U E,rad ), (3) but as discussed in footnote 4 of [1], this is unsatisfactory since in general U B,rad U E,rad (see the Appendix of [1]), so that we do not recover eq. () when writing X = ωl 1/ωC. That is, the reactive field energy U B U E includes contributions from radiation field energy (contrary to the assumptions of many workers [3, 5, 4, 6, 7], who may have been misled by the special case of a single, small dipole radiatior). 4

5 such that δ 4[ U B (ω 0 + δ) U E (ω 0 + δ) ], (9) and the Q of the circuit is given by δ ω 0[ U B (ω 0 + δ) U E (ω 0 + δ) ]. (30) The forms (4) and (30) differ from that of eq. (14) in that the energy in the numerator is the so-called (time-average) reactive field energy U B U E (see, for example, sec. 3 of [1]), 6 rather than the total stored energy at resonance. 7,8 References [1] K.T. McDonald, Reactance of a Sinusoidally Driven Antenna (Nov. 15, 010), [] J. Audet, Q Calculations of L-C Circuits and Transmission Lines: A Unified Approach, QEX Sep./Oct., 43 (006), [3] W. Geyi, Calculation of Element Values of Antenna Equivalent Circuit, ISAP005 (Seoul, Korea), [4] R.F. Harrington, Effect of Antenna Size on Gain, Bandwidth, and Efficiency, J. Res. Nat. Bur. Stand. 64D, 1 (1960), [5] R.E. Collin and S. Rothschild, Evaluation of Antenna Q, IEEE Trans. Ant. Prop. 1, 3 (1964), [6] D.R. Rhodes, Observable Stored Energies of Electromagnetic Systems, J.FranklinInst. 30, 5 (1976), 6 Evaluated on resonance in eq. (4) and off resonance by the half-bandwidth δ in eq. (30). 7 The concept of circuit Q originated in circuit examples where radiation is ignored, and the stored energy does not include the (infinite) energy stored in the far ( radiation ) field of a circuit that has been oscillating forever. When the reactance () is evaluated via computations of field energies (as might be done for antenna systems), the infinite, total stored energy is not useful for calculating the Q. 8 A different definition of the Q of an antenna system, not intrinsically related to the relative fractional bandwidth, is often used, following [4, 5], max[ U B (ω 0 ) U B,rad (ω 0 ), U E (ω 0 ) U E,rad (ω 0 ) ]. (31) Still other definitions for the Q of antenna systems exist (see, for example, [6, 7, 8]), based on the notion that the Q of a system can be defined independently of considerations of bandwidth (which seems misquided to this author). 5

6 [7] A.D. Yaghjian and S.R. Best, Impedance, Bandwidth, and Q of Antennas, IEEE Trans. Ant. Prop. 53, 198 (005), [8] W. Geyi, Tribute to Professor Bob Collin (May 18, 011), 6

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Expressions for f r (T ) and Q i (T ) from Mattis-Bardeen theory

Expressions for f r (T ) and Q i (T ) from Mattis-Bardeen theory 8 Appendix A Expressions for f r (T ) and Q i (T ) from Mattis-Bardeen theory The Mattis-Bardeen theory of the anomalous skin effect in superconductors [0] may be used to derive the behavior of the resonance

More information

Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments. Dan Dobkin version 1.0 July 8, 2005

Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments. Dan Dobkin version 1.0 July 8, 2005 Short Wire Antennas: A Simplified Approach Part I: Scaling Arguments Dan Dobkin version 1.0 July 8, 2005 0. Introduction: How does a wire dipole antenna work? How do we find the resistance and the reactance?

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

ES 272 Assignment #2. in,3

ES 272 Assignment #2. in,3 ES 272 Assignment #2 Due: March 14th, 2014; 5pm sharp, in the dropbox outside MD 131 (Donhee Ham office) Instructor: Donhee Ham (copyright c 2014 by D. Ham) (Problem 1) The kt/c Noise (50pt) Imagine an

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven. Lecture 10 Monday - September 19, 005 Written or last updated: September 19, 005 P441 Analytical Mechanics - I RLC Circuits c Alex R. Dzierba Introduction In this note we discuss electrical oscillating

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

y(d) = j

y(d) = j Problem 2.66 A 0-Ω transmission line is to be matched to a computer terminal with Z L = ( j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800 MHz and ε r = 4, determine the

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

The Radiation-Reaction Force and the Radiation Resistance of Small Antennas

The Radiation-Reaction Force and the Radiation Resistance of Small Antennas The Radiation-Reaction Force and the Radiation Resistance of Small Antennas 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 (January 1, 6; updated May 9,

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler University of California Berkeley Physics H7B Spring 999 (Strovink) SOLUTION TO PROBLEM SET Solutions by P. Pebler Purcell 7.2 A solenoid of radius a and length b is located inside a longer solenoid of

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Alternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)

More information

How to measure complex impedance at high frequencies where phase measurement is unreliable.

How to measure complex impedance at high frequencies where phase measurement is unreliable. Objectives In this course you will learn the following Various applications of transmission lines. How to measure complex impedance at high frequencies where phase measurement is unreliable. How and why

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

The Helmholtz Decomposition and the Coulomb Gauge

The Helmholtz Decomposition and the Coulomb Gauge The Helmholtz Decomposition and the Coulomb Gauge 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (April 17, 2008; updated February 7, 2015 Helmholtz showed

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1 Lecture - Self-Inductance As current i through coil increases, magnetic flux through itself increases. This in turn induces back emf in the coil itself When current i is decreasing, emf is induced again

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Where Does the Power Become AC in an AC Power Source?

Where Does the Power Become AC in an AC Power Source? 1 Problem Where Does the Power Become AC in an AC Power Source? Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (February 27, 2007) According to Faraday and Maxwell,

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

ECE 524: Reducing Capacitor Switching Transients

ECE 524: Reducing Capacitor Switching Transients ECE 54: Session 6; Page / Spring 08 ECE 54: Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive reactance

More information

Progress In Electromagnetics Research C, Vol. 33, , 2012

Progress In Electromagnetics Research C, Vol. 33, , 2012 Progress In Electromagnetics Research C, Vol. 33, 213 227, 2012 MAXIMUM BANDWIDTH PERFORMANCE FOR AN IDEAL LUMPED-ELEMENT CIRCULATOR H. Dong *, J. L. Young, J. R. Smith, and B. Aldecoa Department of Electrical

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

Lecture 9 Time Domain vs. Frequency Domain

Lecture 9 Time Domain vs. Frequency Domain . Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency

More information

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

More information

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with correct

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination January 10, 2007 1. This problem deals with magnetostatics, described by a time-independent magnetic field, produced by a current density which is divergenceless,

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

Plumber s LCR Analogy

Plumber s LCR Analogy Plumber s LCR Analogy Valve V 1 V 2 P 1 P 2 The plumber s analogy of an LC circuit is a rubber diaphragm that has been stretched by pressure on the top (P 1 ) side. When the valve starts the flow, the

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Mauro Forti October 27, 2018 Constitutive Relations in the Frequency Domain Consider a network with independent voltage and current sources at the same angular frequency

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Capacitor. Capacitor (Cont d)

Capacitor. Capacitor (Cont d) 1 2 1 Capacitor Capacitor is a passive two-terminal component storing the energy in an electric field charged by the voltage across the dielectric. Fixed Polarized Variable Capacitance is the ratio of

More information

DIRECTIONAL COUPLERS

DIRECTIONAL COUPLERS DIRECTIONAL COUPLERS Ing. rvargas@inictel.gob.pe INICTEL Abstract This paper analyzes two types of Directional Couplers. First, magnetic coupling between a transmission line and a secondary circuit is

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Dr. Vahid Nayyeri. Microwave Circuits Design

Dr. Vahid Nayyeri. Microwave Circuits Design Lect. 8: Microwave Resonators Various applications: including filters, oscillators, frequency meters, and tuned amplifiers, etc. microwave resonators of all types can be modelled in terms of equivalent

More information

= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1

= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1 Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.

More information

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

Note 11: Alternating Current (AC) Circuits

Note 11: Alternating Current (AC) Circuits Note 11: Alternating Current (AC) Circuits V R No phase difference between the voltage difference and the current and max For alternating voltage Vmax sin t, the resistor current is ir sin t. the instantaneous

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information